Mostrar el registro sencillo del ítem

dc.contributor.authorMolenaar, Sam D.
dc.contributor.authorSleutels, Tom
dc.contributor.authorPereira, Joao
dc.contributor.authorIorio, Matteo
dc.contributor.authorBorsje, Casper
dc.contributor.authorZamudio, Julian A.
dc.contributor.authorFabregat-Santiago, Francisco
dc.contributor.authorBuisman, Cees
dc.contributor.authorTer Heijne, Annemiek
dc.date.accessioned2019-02-07T11:54:28Z
dc.date.available2019-02-07T11:54:28Z
dc.date.issued2018-07-11
dc.identifier.citationMOLENAAR, Sam D., et al. In situ Biofilm Quantification in Bioelectrochemical Systems by using Optical Coherence Tomography. ChemSusChem, 2018, vol. 11, no 13, p. 2171-2178ca_CA
dc.identifier.issn1864-5631
dc.identifier.issn1864-564X
dc.identifier.urihttp://hdl.handle.net/10234/180830
dc.description.abstractDetailed studies of microbial growth in bioelectrochemical systems (BESs) are required for their suitable design and operation. Here, we report the use of optical coherence tomography (OCT) as a tool for in situ and noninvasive quantification of biofilm growth on electrodes (bioanodes). An experimental platform is designed and described in which transparent electrodes are used to allow real‐time, 3D biofilm imaging. The accuracy and precision of the developed method is assessed by relating the OCT results to well‐established standards for biofilm quantification (chemical oxygen demand (COD) and total N content) and show high correspondence to these standards. Biofilm thickness observed by OCT ranged between 3 and 90 μm for experimental durations ranging from 1 to 24 days. This translated to growth yields between 38 and 42 mgurn:x-wiley:18645631:media:cssc201800589:cssc201800589-math-0001  gurn:x-wiley:18645631:media:cssc201800589:cssc201800589-math-0002 −1 at an anode potential of −0.35 V versus Ag/AgCl. Time‐lapse observations of an experimental run performed in duplicate show high reproducibility in obtained microbial growth yield by the developed method. As such, we identify OCT as a powerful tool for conducting in‐depth characterizations of microbial growth dynamics in BESs. Additionally, the presented platform allows concomitant application of this method with various optical and electrochemical techniques.ca_CA
dc.format.extent8 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherWileyca_CA
dc.relation.isPartOfChemSusChem, 2018, vol. 11, no 13ca_CA
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject3D imagingca_CA
dc.subjectbioelectrochemical systemsca_CA
dc.subjectbiofilmsca_CA
dc.subjectmicrobial growthca_CA
dc.subjecttomographyca_CA
dc.titleIn situ Biofilm Quantification in Bioelectrochemical Systems by using Optical Coherence Tomographyca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1002/cssc.201800589
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://onlinelibrary.wiley.com/doi/full/10.1002/cssc.201800589ca_CA
dc.contributor.funderThis work was performed in the cooperation framework of Wetsus, European Centre of Excellence for Sustainable Water Technology (www.wetsus.eu). Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment, the Province of Fryslan, and the Northern Netherlands Provinces. The authors would like to thank the participants of the Resource Recovery research theme for the fruitful discussions and their financial support.ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución-NoComercial 4.0 Internacional