Mostrar el registro sencillo del ítem

dc.contributor.authorAlcaraz, Antonio
dc.contributor.authorLópez Peris, María Lidón
dc.contributor.authorQueralt-Martín, María
dc.contributor.authorAguilella, Vicente
dc.date.accessioned2018-04-16T09:11:00Z
dc.date.available2018-04-16T09:11:00Z
dc.date.issued2017
dc.identifier.citationALCARAZ, Antonio, et al. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions. ACS nano, 2017, vol. 11, no 10, p. 10392-10400.ca_CA
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttp://hdl.handle.net/10234/174131
dc.description.abstractSynthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.ca_CA
dc.format.extent9 p.ca_CA
dc.language.isoengca_CA
dc.relation.isPartOfACS nano, 2017, vol. 11, no 10ca_CA
dc.rightsCopyright © American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectaccess resistanceca_CA
dc.subjection channelsca_CA
dc.subjectPEGca_CA
dc.subjectnanofluidicsca_CA
dc.subjection transportca_CA
dc.subjectsingle-molecule electrophysiologyca_CA
dc.titleIon Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutionsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1021/acsnano.7b05529
dc.relation.projectIDMinistry of Economy and Competitiveness of Spain: FIS2013-40473-P; FIS2016-75257-P AEI/FEDER. Universitat Jaume I: P1.1B2015-28ca_CA
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/doi/full/10.1021/acsnano.7b05529ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem