Mostrar el registro sencillo del ítem

dc.contributor.authorChang, Jin
dc.contributor.authorKuga, Yuki
dc.contributor.authorMora-Sero, Ivan
dc.contributor.authortoyoda, taro
dc.contributor.authorOgomi, Yuhei
dc.contributor.authorHayase, Shuzi
dc.contributor.authorBisquert, Juan
dc.contributor.authorShen, Qing
dc.date.accessioned2016-06-02T10:23:18Z
dc.date.available2016-06-02T10:23:18Z
dc.date.issued2015
dc.identifier.citationCHANG, Jin, et al. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation. Nanoscale, 2015, vol. 7, no 12, p. 5446-5456.ca_CA
dc.identifier.issn2040-3364
dc.identifier.issn2040-3372
dc.identifier.urihttp://hdl.handle.net/10234/160262
dc.description.abstractBulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.ca_CA
dc.description.sponsorShipThis research was supported by the Japan Science and Technology Agency (JST) CREST program and MEXT KAKENHI grant number 26286013.ca_CA
dc.format.extent11 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherThe Royal Society of Chemistryca_CA
dc.relation.isPartOfNanoscale, 2015, vol. 7, no 12ca_CA
dc.rights© The Royal Society of Chemistryca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectheterojunctionsca_CA
dc.subjectbulk heterojunction (BHJ)ca_CA
dc.subjectsolar cellsca_CA
dc.subjectcolloidal quantum dotsca_CA
dc.subjectmetal-oxide componentsca_CA
dc.titleHigh reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivationca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1039/C4NR07521H
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttp://pubs.rsc.org/en/content/articlehtml/2015/nr/c4nr07521hca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem