Mostrar el registro sencillo del ítem

dc.contributor.authorDa Silva Pereira, Wyllamanney
dc.contributor.authorAndres, Juan
dc.contributor.authorGracia, Lourdes
dc.contributor.authorSan-Miguel, Miguel A.
dc.contributor.authorda Silva, Edison
dc.contributor.authorLongo, Elson
dc.contributor.authorLongo, V. M.
dc.date.accessioned2016-03-21T17:06:34Z
dc.date.available2016-03-21T17:06:34Z
dc.date.issued2015
dc.identifier.issn1463-9076
dc.identifier.issn1463-9084
dc.identifier.urihttp://hdl.handle.net/10234/154725
dc.description.abstractWhy and how Ag is formed when electron beam irradiation takes place on α-Ag2WO4 in a vacuum transmission electron microscopy chamber? To find an answer, the atomic-scale mechanisms underlying the formation and growth of Ag on α-Ag2WO4 have been investigated by detailed in situ transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) studies, density functional theory based calculations and ab initio molecular dynamics simulations. The growth process at different times, chemical composition, size distribution and element distribution were analyzed in depth at the nanoscale level using FE-SEM, operated at different voltages (5, 10, 15, and 20 kV), and TEM with energy dispersive spectroscopy (EDS) characterization. The size of Ag nanoparticles covers a wide range of values. Most of the Ag particles are in the 20–40 nm range. The nucleation and formation of Ag on α-Ag2WO4 is a result of structural and electronic changes in the AgOx (x = 2,4, 6, and 7) clusters used as constituent building blocks of this material, consistent with metallic Ag formation. First principle calculations point out that Ag-3 and Ag-4-fold coordinated centers, located in the sub-surface of the (100) surface, are the most energetically favorable to undergo the diffusion process to form metallic Ag. Ab initio molecular dynamics simulations and the nudged elastic band (NEB) method were used to investigate the minimum energy pathways of these Ag atoms from positions in the first slab layer to outward sites on the (100) surface of α-Ag2WO4. The results point out that the injection of electrons decreases the activation barrier for this diffusion step and this unusual behavior results from the presence of a lower energy barrier process.ca_CA
dc.description.sponsorShipGeneralitat-Valenciana: Prometeo/2009/053 Ministerio de Economia y Competitividad (Spain): CTQ2012-36253-C03-02 Spanish Brazilian program: PHB2009-0065-PC FAPESP : 2013/07296-2, 2012/14468-1, 2010/16970-0, 2013/02032-7. CAPES CNPq : 573636/2008-7, 150753/2013-6. CAPES : 088/2013ca_CA
dc.format.extent8 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherRoyal Society of Chemistryca_CA
dc.relation.isPartOfPhys. Chem. Chem. Phys., 2015, 17, 5352ca_CA
dc.rightsThis journal is © the Owner Societies 2015ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectGeneralized gradient approximation
dc.subjectTotal-energy calculations
dc.subjectAugmentad-wave method
dc.subjectVisible-light
dc.subjectSemiconductor nanocrystals
dc.subjectPhotocatalytic activity
dc.subjectPlasmon resonances
dc.subjectGold nanoparticles
dc.subjectSilver tungstate
dc.subjectBasis-set
dc.titleElucidating the real-time Ag nanoparticle growth on a-Ag2WO4 during electron beam irradiation: experimental evidence and theoretical insightsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1039/C4CP05849F
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttp://pubs.rsc.org/en/content/articlepdf/2015/cp/c4cp05849fca_CA
dc.type.versioninfo:eu-repo/semantics/acceptedVersionca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem