Mostrar el registro sencillo del ítem

dc.contributor.authorZhao, Ke
dc.contributor.authorPan, Zhenxiao
dc.contributor.authorMora-Sero, Ivan
dc.contributor.authorCánovas, Enrique
dc.contributor.authorWang, Hai
dc.contributor.authorSong, Ya
dc.contributor.authorGong, Xueqing
dc.contributor.authorWang, Jin
dc.contributor.authorBonn, Mischa
dc.contributor.authorBisquert, Juan
dc.contributor.authorZhong, Xinhua
dc.date.accessioned2016-02-23T12:28:39Z
dc.date.available2016-02-23T12:28:39Z
dc.date.issued2015
dc.identifier.citationZHAO, Ke, et al. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. Journal of the American Chemical Society, 2015, vol. 137, no 16, p. 5602-5609.ca_CA
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttp://hdl.handle.net/10234/151366
dc.description.abstractAt present, quantum-dot-sensitized solar cells (QDSCs) still exhibit moderate power conversion efficiency (with record efficiency of 6–7%), limited primarily by charge recombination. Therefore, suppressing recombination processes is a mandatory requirement to boost the performance of QDSCs. Herein, we demonstrate the ability of a novel sequential inorganic ZnS/SiO2 double layer treatment onto the QD-sensitized photoanode for strongly inhibiting interfacial recombination processes in QDSCs while providing improved cell stability. Theoretical modeling and impedance spectroscopy reveal that the combined ZnS/SiO2 treatment reduces interfacial recombination and increases charge collection efficiency when compared with conventional ZnS treatment alone. In line with those results, subpicosecond THz spectroscopy demonstrates that while QD to TiO2 electron-transfer rates and yields are insensitive to inorganic photoanode overcoating, back recombination at the oxide surface is strongly suppressed by subsequent inorganic treatments. By exploiting this approach, CdSexTe1–x QDSCs exhibit a certified record efficiency of 8.21% (8.55% for a champion cell), an improvement of 20% over the previous record high efficiency of 6.8%, together with an additional beneficial effect of improved cell stability.ca_CA
dc.description.sponsorShipWe acknowledge the Natural Science Foundation of China (nos. 21421004, 91433106, 21175043), the Science and Technology Commission of Shanghai Municipality (nos. 11JC1403100, 12NM0504101), the Fundamental Research Funds for the Central Universities in China, and the Max Planck Society and Universitat Jaume I project 12I361.01/1 for financial support. H.W. is a recipient of a fellowship of the Graduate School Materials Science in Mainz funded through the German Research Foundation in the Excellence Initiative (GSC 266).ca_CA
dc.format.extent8 p.ca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfJournal of the American Chemical Society, 2015, vol. 137, no 16ca_CA
dc.rightsCopyright © American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectsolar cellsca_CA
dc.subjectquantum dotsca_CA
dc.subjectQDSCsca_CA
dc.subjectterahertz spectroscopyca_CA
dc.titleBoosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Controlca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1021/jacs.5b01946
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttp://pubs.acs.org/doi/full/10.1021/jacs.5b01946ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem