Mostrar el registro sencillo del ítem

dc.contributor.authorFranchi, Martino V.
dc.contributor.authorAtherton, Philip J.
dc.contributor.authorReeves, Neil D.
dc.contributor.authorFlück, Martin
dc.contributor.authorWilliams, John
dc.contributor.authorMitchell, William K.
dc.contributor.authorSelby, Anna
dc.contributor.authorBeltran Valls, Maria Reyes
dc.contributor.authorNarici, Marco Vincenzo
dc.date.accessioned2015-06-16T06:55:45Z
dc.date.available2015-06-16T06:55:45Z
dc.date.issued2014-03
dc.identifier.citationFRANCHI, M. V.; ATHERTON, P. J.; REEVES, N. D.; FLÜCK, M.; WILLIAMS, J.; MITCHELL, W. K.; SELBY, A.; BELTRÁN VALLS, M. R.; NARICI, M. V. Architectural, functional, and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiologica, v. 210, n. 3 (March 2014), pp. 642-654ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/123723
dc.description.abstractAim We investigated architectural, functional and molecular responses of human skeletal muscle to concentric (CON) or eccentric (ECC) resistance training (RT). Methods Twelve young males performed 10 weeks of concentric (CON) or eccentric (ECC) resistance training (RT) (n = 6 CON, 6 ECC). An additional 14 males were recruited to evaluate acute muscle fascicle behaviour and molecular signalling in biopsies collected from vastus lateralis (VL) after 30 min of single bouts of CON or ECC exercise. VL volume was measured by magnetic resonance imaging. Muscle architecture (fascicle length, Lf; pennation angle, PA) was evaluated by ultrasonography. Muscle remodelling signals to CON or ECC loading [MAPK/AKT-mammalian target of rapamycin (mTOR) signalling] and inflammatory pathway (TNFαMurf-1-MAFbx) were evaluated by immunoblotting. Results Despite the ~1.2-fold greater load of the ECC group, similar increases in muscle volume (+8% CON and +6% ECC) and in maximal voluntary isometric contraction (+9% CON and +11% ECC) were found after RT. However, increases in Lf were greater after ECC than CON (+12 vs. +5%) while increases in PA were greater in CON than ECC (+30 vs. +5%). Distinct architectural adaptations were associated with preferential growth in the distal regions of VL for ECC (+ECC +8% vs. +CON +2) and mid belly for CON (ECC +7 vs. CON +11%). While MAPK activation (p38MAPK, ERK1/2, p90RSK) was specific to ECC, neither mode affected AKT-mTOR or inflammatory signalling 30 min after exercise. Conclusion Muscle growth with CON and ECC RT occurs with different morphological adaptations reflecting distinct fibre fascicle behaviour and molecular responses.ca_CA
dc.format.extent32 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherWileyca_CA
dc.relation.isPartOfActa Physiologica, v. 210, n. 3 (March 2014)ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/CNE/1.0/*
dc.subjectEccentric/concentric loadingca_CA
dc.subjectMuscle remodellingca_CA
dc.subjectResistance trainingca_CA
dc.titleArchitectural, functional, and molecular responses to concentric and eccentric loading in human skeletal muscleca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1111/apha.12225
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttp://onlinelibrary.wiley.com/doi/10.1111/apha.12225/abstractca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem