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1 Introduction and motivation 

The increasing amount of geospatial data that is available 
from new and existing sources has inspired numerous 
businesses, (non-)governmental initiatives and research 
projects to explore ways to utilize it. The heterogeneity of data 
sources and diverse processing histories imply issues of 
syntactic and semantic interoperability. Hence, many research 
initiatives and projects aim to improve data interoperability. 
Many tackle the problem with a bottom-up approach by 
developing proprietary solutions for specific business 
problems (e.g. Xively1, Gigwalk2, Jana3), or by developing 
open-source solutions that allow syntactical (e.g. GDAL4, 
Web 2.0 Broker5), or semantical (e.g. HALE6) translation 
between concrete data sources, formats and standards. Most of 
these have a decidedly technical perspective on standards for 
data formats and data exchange protocols. Others approaches 
address the problem top-down and aim to develop new 
standards that facilitate discovery, view and analysis of 
heterogeneous data sources. The resulting standards address 
interoperability on a technical level (e.g. OGC7, ISO8, [9]), on 
a semantic level (e.g. common vocabularies and code lists, 
e.g. DublinCore9), but also on a governance and legal level 
(INSPIRE10, ISA11). 

                                                                 
1 https://xively.com/ 
2 http://gigwalk.com/ 
3 http://www.jana.com/ 
4 http://www.gdal.org/ 
5 http://www.geotec.uji.es/web-2-0-broker-service/ 
6 http://www.esdi-community.eu/projects/show/hale 
7 http://www.opengeospatial.org/ 
8 http://www.isotc211.org/ 
9 http://dublincore.org/ 
10 http://inspire.jrc.ec.europa.eu/ 

These two perspectives have resulted in substantial 
advances in science and operational systems. Still, all these 
efforts face the problem of ensuring interoperability among 
themselves. It is already difficult to keep track of the past and 
ongoing efforts, let alone to coordinate them. Although mostly 
adhering to common data exchange standards, the projects and 
initiatives originate from various academic, administrative or 
entrepreneurial backgrounds, and thus do not always share 
ideas of and approaches to interoperability. Furthermore, 
while opening existing data silos in formerly closed spatial 
data infrastructures (SDI), new silos are created as part of the 
process - both vertically (e.g. through incompatible 
organizations), and horizontally (e.g. through incompatible 
service buses or middleware).  

The interoperability issue is aggravated by the fast-moving 
technological landscape: (1) new opportunities (read: 
platforms) emerge quickly, while others are abandoned (e.g. 
Gowalla12) or face an uncertain future (e.g. Foursquare13); (2) 
many web portals are no longer maintained after funding 
stopped, but many diverse  government portals offers data [3]; 
(3) out of the numerous citizen science projects (see Sci-
Starter14 and Zooniverse15 platforms and JRC Citizen Science 
and Smart Cities 2014 Summit16), many come with 
proprietary software applications; and (4) initiatives such as 
INSPIRE move slowly because of the legislative requirements 
and number of partners involved, and have difficulty adapting 

                                                                                                    
11 http://ec.europa.eu/isa/ 
12 http://blog.gowalla.com/ 
13 http://www.foursquare.com/ 
14 http://scistarter.com/ 
15 https://www.zooniverse.org/ 
16 http://ies.jrc.ec.europa.eu/DE/derdu-latest-news/sdi-

workshops/citizens-science-and-smart-cities-summit.html 
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Abstract 

The amount of geospatial data is increasing, but interoperability issues hinder integrated discovery, view and analysis. This paper suggests 
an illustrative and extensible solution to some of the underlying challenges, by extending a previously suggested Digital Earth Nervous 
System with multi-sensory integration capacities. In doing so, it proposes the combination of multiple ways of sensing our environment 
with a memory for storing relevant data sets and integration methods for extracting valuable information out of the rich inputs.  Potential 
building blocks for the implementation of such an advanced nervous system are sketched and briefly analysed. The paper stimulates more 
detailed considerations by concluding with challenges for future research and requesting a multidisciplinary development approach – 
including computer sciences, environmental sciences, cognitive and neurosciences, as well as engineering. 
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to new technological developments, e.g. linked open data (for 
a discussion of differences, see Portele, C.17).  

This paper offers an original perspective on the problem 
outlined above by extending and revising the conceptual 
model of a Digital Earth Nervous System (DENS) with the 
process of Multi-Sensory Integration (MSI), drawing on rich 
research from the cognitive and neuro-sciences, as well as 
sensor data fusion from engineering. The aims are threefold: 
(i) to stimulate and enrich the debate on interoperability for 
geospatial data; (ii) to increase understanding of the various 
interactions between geospatial data collection, 
transformation, processing and usage on a global scale; and 
(iii) to show potential future research foci. The DENS-MSI 
should be able to serve as a possible reference and orientation 
for existing approaches and projects to increase mutual 
understanding of interoperability challenges and how to deal 
with conflicting information in a decision-making 
environment.  

The paper is not trying to create a conceptual or logical 
model which is complete (and overly complex) and suitable 
for every circumstance and situation possible. Instead it 
focusses on in-situ sensory and citizens’ observations and 
aims to be simple, extensible (open world assumption), and 
cover the majority of cases. Neither is it meant to promote a 
21st century version of the Gaia hypothesis, from which the 
authors would like to distance themselves.  

In the next section, this paper gives a short introduction to 
and critique of the original Digital Earth Nervous System, and 
its reception and usage since then. The section following it 
briefly explains the background of the MSI concept, which is 
one focus of this paper’s extension of the previously 
suggested DENS. The last section of the paper sketches a 
possible integration of the DENS and MSI, and paths for 
future research. 
 
2 A Digital Earth Nervous System 

The DENS concept was originally formulated by 
DeLongueville et al. [5]. It draws an analogy to the human 
nervous system in order to describe and understand the 
processing of inputs from geospatial sensors (compare Figure 
1). Here, many types of digital data and information with a 
geographic component can form sensory input (stimuli in 
Figure 1), i.e. the sensory input can range from remotely 
sensed spectral information of the earth’s surface to geo-
locatable text messages that are exchanged between citizens.  

The great strength of this approach lies in its unifying vision 
of treating all geospatial information as potential input. It 
acknowledges the rise of volunteered geographic information 
[6, 8] and sensor networks of cheap and wireless hardware 
(e.g. Zigbee18, Raspberry Pi19), and the need for utilizing it 
together with authoritative data from SDIs (see SDI cookbook 
chapter 1020), e.g. as part of quality assurance procedures. It 

                                                                 
17 

http://www.pilod.nl/index.php?title=Boek/Portele#Technical_
Comparison_of_Linked_Data_and_INSPIRE 

18 https://www.zigbee.org/ 
19 http://www.raspberrypi.org/ 
20 

http://www.gsdidocs.org/GSDIWiki/index.php/Chapter_10 

also provides suggestions for methods to collect and store this 
heterogeneous geospatial information, focusing on the OGC 
Sensor Web Enablement (SWE) standard [2]. 

 
Figure 1: Overview of DENS. 

 
Source: The authors. 
 

Several studies have drawn on or from the DENS concept, 
e.g. a functional integration approach for the sensor web [18] 
and a way to sense VGI for disaster management [19]. These 
studies show that the DENS concept offers a valuable 
perspective to create original and successful ways to interact 
and use the various information provided. It is a reasonable 
assumption that developments such as cloud computing21 and 
linked open data [1, 4] will improve feasibility of a DENS 
implementation. 

However, some of the studies also showed that the DENS 
analogy is not suitable for all cases, or the data cannot be 
clearly assigned to every phase. For example, not all detailed 
phases of sensor processing proposed in [5] were applicable in 
[16]. Further, the SWE suite of standards is rather complex to 
implement and will not be the method of choice for many 
potential VGI sources – although lightweight RESTful 
implementations are in development [13].  

The envisioned treatment of the uncertainty of VGI is 
another shortcoming. DeLongueville et al. [5] originally 
suggest that VGI needs to be validated before it is made 
available as an observation, but do not propose possible 
implementations. The current DENS approach cannot explain 
conflicting sensor inputs, e.g. the presence of Tweets about 
forest fires in an area for which remote sensing does not 
indicate any hot spots [20]. The human cognitive system has 
developed methods to deal with conflicting multi-sensory 
input. Contradictory sensor input can be resolved at the level 
of raw sensor data (stimuli and sensations) in order to check 
for obvious errors in sensor readings with the potential result 
of a re-calibration. An alternate opportunity addresses 
conflicts at the level of perceptions, potentially resulting in the 
re-evaluation of a perception. 

For the latter, Spinsanti and Ostermann [20] successfully 
adapted an argument by Flanagin and Metzger [7] on the 
heuristics that humans use to deal with uncertain information: 
by looking into other sources (“What do others say?”) and 
comparing the new information with existing knowledge 

                                                                 
21 http://www.nist.gov/itl/cloud/ 
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(“What do I already know?”). However, the resulting method 
(GeoCONAVI) shows that currently it is computationally 
most expensive in the early stages to reduce noise, yet the 
most significant improvement on information quality occurs 
at the later stages of the processing chain, when the 
information had already been consolidated and clustered [16]. 
Multi-Sensory Integration might provide a solution for an 
early validation and treatment of inconsistent sensor input. We 
explore this option in the next section. 

 
3 Multi-Sensory Integration 

Multi-sensory integration (MSI) – also known as multi-modal 
integration – encompasses the process of combining the 
information from different sensory systems, such as visual, 
audio, tactile, olfactory, taste and interoception22 by the 
nervous system. It is thus a crucial process without which 
there would be no coherent representation of the environment, 
and no interpretable perceptual experience. Therefore, it is 
also the prerequisite for any adaptive behavior and response to 
the environment. An important aspect of human MSI is the 
mutual feedback between sensory systems. Research has 
shown that for example visual and auditive systems influence 
each other, i.e. a strong signal on one “channel” can alter the 
perception of the other.  

The nervous system integrates or segregates groups of 
sensory signals based on three major principles of multi-
sensory integration: spatial proximity, temporal proximity, 
and inverse effectiveness. The first two are analogous to 
Tobler’s First Law, while the inverse effectiveness supports 
an assumption that is present in the work of Spinsanti and 
Ostermann [20], i.e. that multiple sensor readings from 
different but weak sensors can together result in a valid and 
coherent perception. Thus, MSI results in decreased sensory 
uncertainty. Another desirable effect are decreased reaction 
times – while a system might need many stimuli from just one 
sensor, fewer stimuli from many sensors can lead to the same 
conclusion. 

There are several approaches to explaining human MSI, 
such as visual dominance, modality appropriateness, and 
Bayesian integration [21]. Especially the latter might integrate 
well with spatio-temporal data handling. A major challenge 
for Bayesian integration is the assignment of probabilities of 
conditions to observed stimuli.  

In the field of sensor engineering, the research area of 
sensor data or information fusion has already seen a lot of 
activity [14]. The majority of research until now has focused 
on low-level abstracted sensor data, i.e. low-dimensional, 
continuous data from sensors with a known uncertainty, on 
data fusion from several but similar sensors, or on different 
but related sensors in close spatial proximity (e.g. robotics). 
The integration of heterogeneous sensors covering irregular 
areas, e.g. wireless sensor networks from citizens or geosocial 
network data (hard/soft data integration from disparate sensors 
in the terminology of [14]) has seen less activity.  

The following section will investigate how these concepts 
from cognitive science and information fusion could be 
fruitful motivations for future research in the areas of 
(geo)sensor web and (geo)social networks. 

                                                                 
22 sensitivity to stimuli originating inside of the body;  

4 Design and implementation of a DENS 

In this section, we show how concepts and theories from 
neuroscience and robotics can contribute to an overall 
understanding and improvement of geospatial data 
interoperability on a global scale. We directly build on 
previous work on DENS, which only addressed observations 
from a single source and sequences of data flows. 

The following Figure 2 shows an extended and revised 
DENS-MSI and contains all the elements and processes we 
will discuss. As we will argue, this raises three main 
challenges: first, the choice of senses (sensors) and their 
interoperability; second, the choice of memory (geospatial 
data sets); and third, the choice of actual MSI methods. 

It all begins with an observable change in the environment, 
for example, in the case of a forest fire remote sensing, 
satellites can detect higher temperatures on the ground, smoke 
plumes, and citizens and practitioners on the ground begin to 
discuss and share information. This creates stimuli which are 
observed by sensor systems, e.g. Twitter, OSM, Flickr or 
satellites.  

Considering the many potential sensors that the DENS can 
“listen” to, we need to identify those with the highest 
likelihood of containing information about the phenomenon 
that we are interested in (the right cues for combination). 
Thus, we need to have prior knowledge about the 
phenomenon and codify it in rules. For example, the utility of 
some sensor systems depend on the time of the day (just as 
human sensor systems do), e.g. whether it is day or night. As a 
first step, a brokering [15] approach23  can help to integrate 
the sensor data on the technical and syntactic interoperability 
level. The next level would be semantic integration or 

                                                                 
23 http://www.essi-lab.eu/do/view/GIaxe/WebHome 

Figure 2: Extended DENS-MSI. 

Source: The authors
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interoperability through ontologies, metadata, and 
vocabularies [17]. 

Yet, it remains questionable whether it is feasible to 
semantically enrich sensor data on a low (atomic) level [10], 
because of the number of potential sensors readings that need 
processing and the exponential growth of links that might not 
in fact be sensible. It seems more appropriate to do the linking 
and semantic enrichment on the higher level of perceptions. 
On the level of individual stimuli, it seems more reasonable to 
check (i) whether the source is trusted (or neutral); and (ii) 
which (if any) detectable keywords are included, instead of 
analyzing the content and context in detail. The resulting 
sensor set can then be used for the actual MSI. 

The three major principles from neuroscience and cognitive 
science (spatial and temporal proximity, inverse effectiveness) 
show a clear alignment with the core principles of processing 
spatio-temporal data: what is near in space and time is related. 
This strengthens the analogy between human and digital earth 
nervous system. If multiple sensory inputs are available, then 
a DENS-MSI can rely on cue combination, i.e. a comparison 
of the various sensor inputs. In the optimal case, these can be 
unified in single coherent perception (e.g. remote sensing 
shows smoke plume over forests, Tweets talk about fire). 
However, if the cues are dissonant (e.g. Tweets show talk 
about forest fire in location X, but a visual live stream from a 
web cam showing nothing extraordinary or no smoke), causal 
inference provides an alternative. Causal inference is a crucial 
component in human perception and uses prior knowledge to 
resolve the conflicting sensor inputs by resorting to causal 
structures. It determines the most plausible causal structure to 
explain the dissonance. In the example above, possible causal 
structures are a sensor misreading (interpretation of Tweets), 
or temporal misalignment (remote sensing images do not 
match the exact same period). Here we tap into cognitive 
processes, especially long-term memory retrieval, in order to 
determine the most likely causal structure. For the MSI, the 
system would have to be able to assign likelihoods based on 
prior knowledge codified as machine-readable information. 
This is analogous to the GeoCONAVI use of authoritative 
datasets [16]. Given the large number of data sets available, 
we need to identify those that are the most relevant for the 
task or phenomenon. This corresponds to geographic 
information retrieval, with the important question: which data 
sets (i.e. knowledge) to choose? Ivanova [12] explores a 
solution based on domain expert input.  

The research from sensor data fusion has only recently 
begun to investigate the particular issues found with 
integration disparate sensors and hard/soft data, i.e. geospatial 
sensor networks from humans, low-cost in-situ sensors, and 
remote sensing. However, in addition to the Bayesian 
probabilistics discussed above, possibilistic and human 
centered approaches are investigated. While the former offers 
potential solutions that need further exploration, the latter one 
relates to crowd-sourcing tasks (see below). 

Continuing our thought experiment, the integrated sensory 
information results in perceptions of events on the Earth, e.g. 
forest fires. We can expect many such perceptions. These and 
the corresponding stimuli are stored in a short-term memory 
for immediate reference. This short-term memory is 
constantly analyzed (searched for patterns) and monitored. 
Only when a number of criteria (rules) are fulfilled is an alert 

being raised (e.g. several perceptions relating to forest fires in 
close spatial and temporal proximity). Similarly to the MSI, 
this filtering can be supervised by crowd-sourcing efforts.  

As a last step, verified sensor information can be stored in a 
long-term memory to be accessed for future multi-sensory 
integration, or other geographic information retrieval tasks. 
The short-term memory and long-term memory together form 
a ‘Digital Earth Memory System’.  

Clearly, a challenge is to train such a semi-autonomous 
system to filter and sort stimuli, query existing data sets for 
validation, integrate heterogeneous sensor data and monitor 
perceptions that are stored. Supervised machine learning 
would need constant human supervision, but this is actually a 
process that can be very well crowd-sourced. A constant 
stream of a stratified sample of the DENS perceptions could 
be used for this purpose. The stimuli that are part of these 
perceptions are checked by volunteers and micro-tasked paid 
crowd-workers. Hung [11] shows the feasibility of methods to 
filter out spammers and low-quality contributions. For 
example, they could check whether a Tweet that supposedly 
belongs to a perception “forest fire near Avignon, France” is 
actually about a forest fire in France). Gamification offers 
even more opportunities, e.g.15.  

 
5 Conclusions and outlook 

This paper aimed to stimulate the debate on interoperability 
for geospatial observations, to increase understanding of the 
various interactions between geospatial data collection, 
transformation, processing and usage on a global scale, and to 
show potential future research foci.  

Indeed, the paper has highlighted developments in and 
important challenges for improving interoperability of 
heterogeneous geospatial data sources. We have argued that 
the concept of the DENS can help and improve mutual 
understanding between practitioners, researchers, developers 
and citizens. Further, the paper has shown how knowledge 
from the disciplines of cognitive and neurosciences, as well as 
engineering can contribute to an improved DENS model.  

Particularly promising research objectives include the 
assessment of a sensor’s observations’ validity through 
possibilistic methods and the use of crowd-sourcing to 
supervise machine learning of algorithms and rules to filter, 
sort and organized stimuli into coherent perceptions. 

Arguably, too specific approaches had little success in 
increasing interoperability until now, while there is some risk 
of failure for over-generic approaches. Therefore, we suggest 
following a stepwise and incremental development 
methodology. We plan to use well examined cases, such as 
the forest fire [16, 18, 20] or flood [19] examples for the 
initial set-up of a possible solution, before moving into new 
areas. Here, we will address urban environments, which 
should provide a solid ground for, especially because of the 
related high traffic in social media.  
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