
Huerta, Schade, Granell (Eds): Connecting a Digital Europe through Location and Place. Proceedings of the AGILE'2014

International Conference on Geographic Information Science, Castellón, June, 3-6, 2014. ISBN: 978-90-816960-4-3

1 Introduction

The amount of geographic information available as Linked

Open Data (LOD) is rapidly increasing and becoming an

invaluable source for application development. The term

Linked Data refers to a set of best practices to publish

machine-readable and semantically annotated data online [1].

The approach builds on established Web standards for

identifying and accessing data sources (URLs), lightweight

semantics (RDF) for data description, and a standardized

query language for data access (SPARQL). These principles

facilitate a distributed and interlinked collection of datasets

known as the Linked Data Cloud [3]. Geographic information

sources such as GeoNames1 play a central role in this cloud,

which is also documented by new datasets from cultural

heritage [5], environmental monitoring [6], and emergency

response [7], as well as the OGC GeoSPARQL query

language [8].

At the same time, software development has transformed

towards cloud environments and multi-platform development,

especially including mobile devices. New software

development platforms and libraries have eased the

development of interactive web pages and mobile apps.

Examples are web frameworks such as Django,2 online

content management systems such as Drupal3 and mobile app

platforms such as PhoneGap4 and App Inventor5 [10].

1 http://geonames.org
2 https://www.djangoproject.com
3 http://drupal.org
4 http://phonegap.com
5 http://appinventor.mit.edu

The goal of this paper is to review the process to get from

LOD to a working application and put it in the context of the

required skillset. We sketch the steps in developing web-based

visualizations of humanitarian data (see Figures 1 and 2) and

draw conclusions concerning the practical and conceptual

skills that need to be covered in a GIScience curriculum for

students to be able to complete such a development task.

Figure 1: Web-based visualization of data from the

International Aid Transparency Initiative. Brighter colors

indicate higher amounts of development aid received.

Geo-Information Visualizations of Linked Data

 Rob Lemmens

University of Twente

Faculty of Geo-

Information Science and

Earth Observation (ITC)

P.O. Box 217

7500 AE Enschede

The Netherlands

r.l.g.lemmens@utwente.nl

Carsten Keßler

Center for Advanced Research

of Spatial Information and

Department of Geography

Hunter College, CUNY

695 Park Avenue

New York, NY-10065

USA

carsten.kessler@hunter.cuny.edu

Abstract

Linked Data provides an ever-growing source of geographically referenced data for application development. In this paper, we analyse

the workflow behind the development of such an application. Using two examples based on worldwide development aid and refugee data,

we discuss the steps from locating data for use and data integration, up to the actual visualization in a web-based application. At each step,
we discuss the skill set required for completion and point to potential challenges. We conclude the paper by putting our case study in the

context of GIScience curriculum development.

Keywords: Linked Data, visualization, development, frameworks, workflow

AGILE 2014 – Castellón, June 3-6, 2014

2 Development workflow

This section describes the different steps that were required

to build the two sample web applications and discusses the

different skills required to complete them. Figure 3 gives an

overview of the different components and their interplay.

Figure 2: Web-based visualization of UNHCR refugee data.

The blue arrows connect the refugees’ current country of

residence and their home country.

2.1 Locating data

Linked Data sets can be provided as RDF files in different

formats or through SPARQL endpoints. Registries such as

W3C SparqlEndpoints6 and datahub7 act as a good starting

point to look for data relevant to the given application, from

which the developer can look for related (i.e., linked) datasets.

This process requires a general understanding of the Linked

Data principles and potentially some proficiency in the

SPARQL query language. In case of the two sample

applications developed for this case study, the datasets

included data from the International Aid Transparency

Initiative,8 the Humanitarian eXchange Language [7],9

UNCHR refugee statistics (self-hosted), DBpedia,10 and

currency conversion rates.11

2.2 Data access

Whether the data is available as a file or from a SPARQL

endpoint, data access will typically start by exploring the

dataset, e.g., by listing the resources provided, or by browsing

their types and the properties that describe them. This process

iteratively leads to a query that generates the subset of the

dataset the developer wants to process in her application, and

it often includes reverting to locating additional data sources if

information is missing.

Retrieving the data in the required form can also prove

challenging. In both of our examples, the goal for the

visualization was to show aggregates, i.e., the total amount of

development aid that went to a given country, and the total

number of refugees from country A that are currently in

country B. The actual data, however, were highly

6 http://www.w3.org/wiki/SparqlEndpoints
7 http://datahub.io/organization/lodcloud
8 http://aidtransparency.net; data provided as LOD by VU Amsterdam

at http://eculture.cs.vu.nl:1987/iati/home
9 http://hxl.humanitarianresponse.info
10 http://dbpedia.org
11 http://currency2currency.org

disaggregated, e.g., by donor (IATI) or by demographic

breakdown (UNCHR). The extra steps in the query require in-

depth knowledge of the SPARQL query language and pose an

additional challenge for novice developers. The following

query, for example, asks for the total number of refugees from

country A in country B, as specified in the UNHCR data:

prefix hxl: <http://hxl.humanitarianresponse.info/ns/#>
prefix dbpprop: <http://dbpedia.org/property/>

SELECT DISTINCT ?fromCode ?toCode (SUM(?count) AS
?refugees) WHERE {

 ?pop hxl:atLocation ?to ;
 hxl:placeOfOrigin ?from ;
 hxl:personCount ?count .

 ?to hxl:atLocation ?country .

 ?country dbpprop:isoCode ?toCode .
 ?from dbpprop:isoCode ?fromCode .

 FILTER (?count > 0)

} GROUP BY ?fromCode ?toCode ORDER BY ?fromCode

While we have only worked with separate datasets for the

visualizations presented here (option 1 in Figure 3), a fully

distributed solution based on federated queries (option 3 in

Figure 3) would require additional data. For the IATI

application, for example, the development aid numbers

provided as LOD are in different currencies, so they all have

to be converted to a common currency. This requires an

additional data source with currency conversion rates, such as

currency2currency [12].

2.3 Data integration

Whenever more than one dataset is required for the

application, these datasets in most cases have to be integrated

in some way. If the goal is a simple visualization on a map,

and the involved datasets include spatial references, the

integration can be done on the map. In that case, this is a

purely visual integration, and no further work is required.

In most cases, however, the underlying data will have to be

integrated through common identifiers – similar to joins

between tables in a relational database. In our IATI

application, for example, we had to join the IATI data and the

currency conversion rates to DBpedia, since the former uses

3-letter ISO currency codes, while the latter uses DBpedia

URIs as identifiers for the currency codes. The corresponding

integration can be implemented either in the query or in the

application. An implementation in a federated query [9] that

accesses multiple RDF datasets at once has the advantage that

the result is a single file that can be directly processed by the

framework used for the user interface. However, this approach

is often slow since SPARQL results from multiple endpoints

have to be collected, integrated, and returned to the client.

Querying each dataset separately from the application is often

faster, but results in multiple files that have to be integrated at

the application level, thus placing more load on the client.

Again, these considerations require knowledge about different

querying and caching techniques to improve response time,

depending on how frequently the queried datasets are updated.

AGILE 2014 – Castellón, June 3-6, 2014

2.4 Data output and visualization

While the XML-based SPARQL results format that endpoints

return by default is very uncommon in any non-semantic web

environment, the results can also be obtained in more

common formats, such as CSV or JSON. The desired

response format for a query can be set through an additional

parameter in the HTTP request, or by setting the

corresponding HTTP accept header. Both approaches require

basic knowledge of the HTTP protocol and experience in

using libraries such as cURL.12

The decision which results format should be chosen hinges

on the input formats supported by the library chosen for the

user interface. In a web development context, SPARQL query

results can be shown by dedicated tools such as sgvizler [11]

and Spark.13 Web-based data aggregation tools such as

Highcharts14 and Google fusion tables15 allow for combining

spreadsheet-type information into graphs and simple maps on

the web. Geo-information representation tools such as

OpenLayers16 and Leaflet17 specifically handle georeference

systems and map rendering.

12 http://curl.haxx.se
13 http://www.revelytix.com/content/spark
14 http://www.highcharts.com/
15 http://www.google.com/drive/apps.html#fusiontables
16 http://openlayers.org/
17 http://leafletjs.com/

We have opted for a generic and scalable tool based on

Javascript: the D3 (Data Driven Documents) library, as this

provides powerful capabilities for all of the above, is fairly

easy to learn and is well documented. Any of the options

listed above requires a certain level of proficiency in

JavaScript, HTML, and CSS. While we focus on web-based

applications here, developing native applications for desktop

or mobile platforms adds another level of complexity.

3 Application: IATI data visualization

To demonstrate the needs for the abovementioned app

development, we take the use case of creating web-based

visualizations of humanitarian data, coming from different

sources. In our case, these sources can be combined in

different ways, basically through SPARQL queries and by

data merging in the app. The latter is implemented by D3

JavaScript functions.

Figure 3 depicts the options: Separate visualizations (1),

combined visualization by app merge (2) and combined

visualization by SPARQL query (3). Combined visualizations

allow for an integrated analysis of sources. In contrast to

studies such as Findley et al. [4], which demonstrates

geographical correlations between foreign aid and armed

conflicts, we do not intent to explain such correlations, but

rather focus on the technical aspects of data source

integration.

Figure 3: workflow components and integration options.

AGILE 2014 – Castellón, June 3-6, 2014

The International Aid Transparency Initiative (IATI) fosters

the exchange of information on international aid projects.

IATI does this by setting standards for information exchange

and providing a hub for registering data sets. IATI does not

provide the data itself, this is done by the donor organizations

themselves. IATI does provide information about how to

create and consume IATI-standardized information and about

available tools by third parties. IATI information has been

deployed in a triple store [2] and is available as a SPARQL

endpoint.

Since a federated query approach proved too slow during

the data integration step, subsets of the used datasets were

exported using SPARQL construct queries and loaded into a

local triple store. This allowed for faster iterations during the

development of the integration query, which was then

ultimately used to produce a CSV file fed into D3. In a

production environment, this file could be produced directly

from the original endpoint via federated query and cached,

with updates e.g. on a daily basis, depending on the data

update frequency.

4 Conclusions

The amount of Linked Open Data containing geographic

information is growing and becomes an attractive data source

for application development. Based on the premise of truly

linked data, it should be straightforward to use data from

different sources together in applications. In reality, the

integration of data from such sources to be able to use them

together is still challenging, leading to situations where it is

easier and more straightforward to download subsets of the

data and integrate them locally. While this is a practice-

oriented approach, it is clearly not in the spirit of Linked Open

Data.

Once the data for an application has been assembled, the

developer is confronted with the choice from a wide variety of

frameworks for implementation. While many frameworks

such as D3 have sophisticated functionalities for the

visualization of and interaction with geoinformation, putting

them to use still confronts novice developers with a steep

learning curve. In order to implement the (relatively simple)

visualizations shown in this paper, profound knowledge of

RDF, SPARQL, HTTP requests, HTML, and JavaScript is

required. Adding interaction and developing for touch screen

devices, for example, adds another layer of complexity.

While adding all of these technologies to the already

demanding GIScience curricula is hardly possible, we believe

that the study programs can enable their students to learn

these (and other) new technologies faster. Proficiency in

different geo-information standards is already part of the

curriculum in many programs and can easily be extended to a

broader range of web standards. Existing research methods

courses can be extended with sections on research for

software development to familiarize students with resources

such as StackOverflow18 as well as tools such as GitHub19 and

bl.ocks.org.20 Finally, hands-on lab exercises that ask for the

development of creative solutions, rather than following

“click-through” instructions, get the students used to

independent problem solving.

18 http://stackoverflow.com
19 https://github.com
20 http://bl.ocks.org

References

[1] Berners-Lee, T.: Linked Data – Design Issues (2009)

Online:

http://www.w3.org/DesignIssues/LinkedData.html

[2] Brandt, K. (2013), Linked Data for IATI, MSc

Thesis,Vrije Universiteit Amsterdam.

[3] Cyganiak, R., Jentzsch, A. (2011) Linking Open Data

cloud diagram. Online: http://lod-cloud.net

[4] Findley, M. G., J. Powell, D. Strandow, and J. Tanner

(2011), The Localized Geography of Foreign Aid: A

New Dataset and Application to Violent Armed Conflict,

World Development, 39(11), 1995–2009,

doi:10.1016/j.worlddev.2011.07.022.

[5] Haslhofer, B., & Isaac, A. (2011). data.europeana.eu:

The Europeana Linked Open Data Pilot. In International

Conference on Dublin Core and Metadata Applications

(pp. 94-104).

[6] Kauppinen, T., de Espindola, G. M., Jones, J., Sánchez,

A., Gräler, B., & Bartoschek, T. (2013). Linked brazilian

amazon rainforest data. Semantic Web.

[7] Keßler, C. and Hendrix, C. (forthcoming) The

Humanitarian eXchange Language: Coordinating

Disaster Response with Semantic Web Technologies.

Semantic Web Journal, accepted.

[8] OGC (2012) GeoSPARQL – A Geographic Query

Language for RDF data.

[9] Prud'hommeaux, E.,Buil-Aranda, C. (2013) SPARQL 1.1

Federated Query. W3C Recommendation:

http://www.w3.org/TR/sparql11-federated-query/

[10] Shih, F., O. Seneviratne, D. Miao, I. Liccardi, L. Kagal,

E. Patton, C. Castillo, and P. Meier (2013),

Democratizing Mobile App Development for Disaster

Management, in AIIP ’13 Joint Proceedings of the

Workshop on AI Problems and Approaches for

Intelligent Environments and Workshop on Semantic

Cities, pp. 39–42, ACM.

[11] Skjaeveland, M. (2012), Sgvizler: A javascript wrapper

for easy visualization of SPARQL result sets, in

Extended Semantic Web Conference.

[12] Stolz, A. and Hepp, M.(2013) Currency Conversion the

Linked Data Way, in: Proceedings of the Workshop on

Services and Applications over Linked APIs and Data

(SALAD2013), in conjunction with the 10th Extended

Semantic Web Conference (ESWC 2013), May 26-30,

Montpellier, France.

http://www.w3.org/DesignIssues/LinkedData.html
http://lod-cloud.net/

