
An Extension of the StarSs Programming Model
for Platforms with Multiple GPUs

Eduard Ayguadé1, Rosa M. Badia1,2, Francisco D. Igual3, Jesús Labarta1,
Rafael Mayo3, and Enrique S. Quintana-Ort́ı3

1 Barcelona Supercomputing Center – Centro Nacional de Supercomputación
(BSC–CNS) and Universitat Politècnica de Catalunya, Nexus II Building, C. Jordi

Girona 29, 08034–Barcelona, Spain.
{eduard.ayguade,rosa.m.badia,jesus.labarta}@bsc.es.

2 Consejo Superior de Investigaciones Cient́ıficas (CSIC), Spain.
3 Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I (UJI),

12.071–Castellón, Spain. {figual,mayo,quintana}@icc.uji.es.

Abstract While general-purpose homogeneous multi-core architectures
are becoming ubiquitous, there are clear indications that, for a num-
ber of important applications, a better performance/power ratio can be
attained using specialized hardware accelerators. These accelerators re-
quire specific SDK or programming languages which are not always easy
to program. Thus, the impact of the new programming paradigms on
the programmer’s productivity will determine their success in the high-
performance computing arena. In this paper we present GPU Superscalar
(GPUSs), an extension of the Star Superscalar programming model that
targets the parallelization of applications on platforms consisting of a
general-purpose processor connected with multiple graphics processors.
GPUSs deals with architecture heterogeneity and separate memory ad-
dress spaces, while preserving simplicity and portability. Preliminary ex-
perimental results for a well-known operation in numerical linear algebra
illustrate the correct adaptation of the runtime to a multi-GPU system,
attaining notable performance results.

Key words: Task-level parallelism, graphics processors, heterogeneous sys-
tems, programming models

1 Introduction

In response to the combined hurdles of maximum power dissipation, large mem-
ory latencies, and little instruction-level parallelism left to be exploited, all major
chip manufacturers have finally adopted multi-core designs as the only means to
exploit the increasing number of transistors dictated by Amdahl’s Law. Thus,
desktop systems equipped with general-purpose four-core processors and graph-
ics processors (GPUs) with hundreds of fine-grained cores are routine today [8].
On the other hand, Nvidia and AMD GPUs, and other accelerators like the
IBM Cell B.E. or ClearSpeed boards, have demonstrated that a high perfor-
mance/power ratio can be attained for certain applications using their specialized

hardware. Thus, it is natural to think that the amount of transistors available in
future systems will make feasible to integrate in the chip functionalities similar
to a hardware accelerator, which so far were external to the processor.

While novel and interesting heterogeneous architectures are expected for the
future, we believe that it is the software (i.e., how easy is to program the new par-
allel architectures) that will determine their success or failure. The StarSs pro-
gramming model addresses the programmability problem exploiting task-level
parallelism [4,12,10]. It consists of a few OpenMP-like pragmas, a source-to-
source translator, and runtime system that schedules tasks to execution preserv-
ing dependencies among tasks. Instantiations of the StarSs programming model
include GRIDSs (for the Grid), CellSs (for the Cell B.E.), and SMPSs (for multi-
core processors). In this paper we extend StarSs with a new instantiation, GPUSs
(GPU Superscalar), with the following specific contributions:

– Heterogeneity: The target architecture for GPUSs is fundamentally differ-
ent: a heterogeneous system with a general-purpose processor and multiple
GPUs. Although a similar approach has been investigated by some of the
authors as part of the FLAME project [13], the focus there was in the specific
domain of dense linear algebra. GPUSs is a general-purpose programming
model, also valid for non-numerical applications.

– Separate memory spaces: We investigate the use of techniques such as soft-
ware caches, cache coherence mechanisms, and scheduling of bundles of tasks
from CellSs and FLAME. The purpose is to hide the existence of multiple
memory address spaces (as many as GPUs plus that of the general-purpose
processor) from the programmer while still delivering high performance. The
internal memory hierarchy of the graphics processor should be explicitly
managed by the programmer of the kernels in order to attain high perfor-
mance. This management is out of the scope of our runtime and programming
model.

– Simplicity: GPUSs inherits the simplicity of StarSs, consisting of a reduced
number of OpenMP-like pragmas, and the corresponding tailored versions
of the StarSs translator and runtime.

– Portability: Although we illustrate a GPU-based implementation, most of
the techniques shown can be easily applied to other type of multi-accelerator
platform without major modifications of the runtime or the user codes.

Few works target the automatic parallelization of codes focusing platforms
with multiple hardware accelerators. In [13] the authors propose an extension of
the SuperMatrix runtime to execute linear algebra codes on systems with multi-
ple graphics processors. Although targeting systems with one GPU, [7] presents
a compiler framework for automatic source-to-source translation of OpenMP
applications into optimized GPU code.

The rest of the paper is organized as follows. In Section 2 we introduce the
Cholesky factorization as a motivating example. Practical aspects of an algo-
rithm to compute this operation are also given in that section. Sections 3 and 4
contain the major contributions of this work. In the first one, we illustrate the
use of the GPUSs constructs to parallelize a blocked algorithm for the Cholesky

factorization; in the second, we describe the main features of the GPUSs run-
time which put these ideas into practice. Section 5 contains initial results for this
operation on a desktop system with two Intel QuadCore processors connected
to a Tesla s1070 (four Nvidia GT200 processors). Finally, concluding remarks
and future work are summarized in Section 6.

2 Computing the Cholesky Factorization

To illustrate the GPUSs extension, we will use an important operation for the
solution of linear systems of equations: the Cholesky factorization. This is the
first step in solving the system Ax = b, where A ∈ Rn×n is a symmetric pos-
itive definite (SPD) matrix. While numerical linear algebra operations like the
Cholesky factorization are appealing because of their use in practical applica-
tions, we note that GPUSs targets the parallelization of general numerical and
non-numerical codes. Here we chose this particular operation because it exhibits
tasks parallelism and an elaborated pattern of data dependencies among tasks.

The Cholesky factorization of a dense SPD matrix A ∈ Rn×n is defined as

A = LLT , (1)

where L ∈ Rn×n is a lower triangular matrix known as the Cholesky factor of A.
(A can be decomposed as A = UT U , with U ∈ Rn×n being upper triangular.)

A blocked algorithm for the Cholesky factorization is given in routine Cholesky
in Figure 1 together with the main function that allocates the matrix and invokes
this routine. Following the common practice, the factorization algorithm over-
writes the lower triangular part of the array A with the entries of L, while the
strictly upper triangular part of the matrix remains unmodified. (Note here that
both in the driver and the factorization routine, the matrix is considered to be
stored by blocks; i.e., entries in the same block are stored in contiguous positions
in memory. This is known to yield better performance for numerical applications;
see, e.g., [9,5].) Figure 2 shows that chol spotrf, chol strsm, chol sgemm, and
chol ssyrk are simple wrappers to routines spotrf, strsm, sgemm, and ssyrk
from LAPACK (the first one) and BLAS (the last three ones) [1,6]. Highly tuned
implementations of the BLAS routines are provided by most hardware vendors;
examples of interest to this work include Intel MKL and Nvidia CUBLAS.

3 The GPUSs Framework

3.1 Target platform

Multi-accelerator systems are the natural target platform for the GPUSs frame-
work. A generic multi-accelerator system consists of a general-purpose processor
(possibly with several cores) called host, connected to a number of hardware ac-
celerators, or devices. We assume that each device can only access its own local
memory space. In our case, the devices are programmable GPUs which com-
municate with the CPU via a PCIExpress bus. Direct communication between

#de f i n e NT . . .
#de f i n e TS . . .

vo id Cho l e sky (f l o a t ∗ A) {
i n t i , j , k ;

f o r (k = 0 ; k < NT; k++) {
c h o l s p o t r f (A [k∗NT+k]) ; // F a c t o r i z e d i a g on a l b l o ck

f o r (i = k+1; i < NT; i++)
c h o l s t r sm (A[k∗NT+k] , A [k∗NT+i]) ; // T r i a n g u l a r s o l v e s

f o r (i = k+1; i < NT; i++) { // Update t r a i l i n g submat r i x
f o r (j = k+1; j < i ; j++)

chol sgemm (A[k∗NT+i] , A [k∗NT+j] , A [j ∗NT+i]) ;
c h o l s s y r k (A[k∗NT+i] , A [i ∗NT+i]) ;

}
}

}

i n t main (vo id) {
i n t i , j , k ;

f l o a t ∗A[NT] [NT] ; // A l l o c a t e mat r i x o f NT x NT b lock s ,
// o f d imens ion TS x TS each

f o r (i = 0 ; i < NT; i++)
f o r (j = 0 ; j <= i ; j++)

A[i] [j] = (f l o a t ∗) ma l l o c (TS∗TS∗ s i z e o f (f l o a t)) ;

I n i t m a t r i x (A) ; // I n i t i a l i z e e l ement s o f the mat r i x

Cho l e sky (A) ; // Compute the Cho l e sky f a c t o r
}

Figure 1. Blocked algorithm for computing the Cholesky factorization.

devices is not possible, so that data transfer between them must be performed
through the host memory (main memory).

Most modern hardware accelerators are designed as many-core systems, repli-
cating specialized fine-grained cores, and featuring an internal memory hierarchy.
It is important to point out that exploiting the hardware parallelism due to the
existence of multiple fine-grained cores inside the accelerator is out of the scope
for GPUSs. Our approach considers each accelerator as a single execution unit
(or coarse-grained core), capable of efficiently executing pieces of code (or ker-
nels) written by the programmer. Thus, GPUSs is not aware of the internal
architecture of the hardware accelerator. It only exploits the parallelism derived
from the existence of multiple hardware accelerators connected to the system.

GPUSs can be used to parallelize a code consisting of several invocations to
CUDA kernels initially designed to be executed on a single GPU, adapting it
to a multi-GPU system. Tuning techniques applied inside those kernels (use of
shared memory, coalesced accesses to target memory, absence of bank conflicts
in the access to shared memory,. . .) are CUDA-specific improvements which will
affect the global performance of the parallel execution. However, those details
are transparent to GPUSs, whose goal is to efficiently dispatch the execution of

// LAPACK s p o t r f wrapper
vo id c h o l s p o t r f (f l o a t ∗A)
{

i n t i n f o = 0 ;
i n t t s = TS ;
s p o t r f ("Lower" , &ts , A, &ts ,

&i n f o) ;
}

// BLAS trsm wrapper
vo id c h o l s t r sm (f l o a t ∗T,

f l o a t ∗B)
{

f l o a t sone = 1 . 0 ;
i n t t s = TS ;
s t r sm ("Right" , "Lower" ,

"Transpose" , "Non -Unit" ,
&ts , &ts ,
&sone , T, &ts ,

B, &t s) ;
}

// BLAS gemm wrapper
vo id chol sgemm (f l o a t ∗A,

f l o a t ∗B,
f l o a t ∗C)

{
f l o a t sone = 1 . 0 ,

minus sone = −1.0;
i n t t s = TS ;
sgemm("No Transpose" , "Transpose" ,

&ts , &ts , &ts ,
&minus sone , A, &ts ,

B, &ts ,
&sone , C , &t s) ;

}

// BLAS s y r k wrapper
vo id c h o l s s y r k (f l o a t ∗A,

f l o a t ∗C)
{

f l o a t sone = 1 . 0 ,
sminus one = −1.0;

i n t t s = TS ;
s s y r k ("Lower" , "No Tranpose" ,

&ts , &ts ,
&sminus one , A, &ts ,
&sone , C , &t s) ;

}

Figure 2. Building blocks for the blocked algorithm for computing the Cholesky fac-
torization.

kernels to different accelerators, reducing both the number of data transfers and
device idle times.

3.2 Programming model

The programming model introduced by StarSs and extended by GPUSs allows
the automatic parallelization of sequential applications. A runtime system is in
charge of using the different hardware resources of the platform (the multi-core
general-purpose processor and the GPUs) in parallel to execute the annotated
sequential code.

It is responsibility of the programmer to annotate the sequential code to
indicate that a given piece of code will be executed on a GPU. These annotations
themselves do not indicate a parallel region, but a function which can be run on
an accelerator. In a system with multiple accelerators, the runtime extracts the
parallelism by building a data dependency graph (in which each node represents
an instance of an annotated function, also called a task, and edges denote data
dependencies between tasks) and by executing independent tasks on the different
accelerators in parallel.

GPUSs basically provides two OpenMP-like constructs to annotate code. The
first one, directly inherited from StarSs, is used to identify a unit of work, or
task, and can be applied to tasks that are just composed of a function call, as
well as to headers or definitions of functions that are always executed as tasks:

#pragma cs s task [c l a u s e− l i s t]
{ f u n c t i o n−heade r | f u n c t i o n−d e f i n i t i o n | f u n c t i o n−c a l l }

When the program calls a function annotated in this way, the runtime will create
an explicit task. This construct is complemented with clauses input, output, and
inout, which identify the directionality (input, output, or both, respectively) of
the arguments to the function. The clauses are used by the GPUSs runtime to
track dependencies among tasks and decide at run time whether a task can be
scheduled/issued for execution.

In our particular example, we can use this construct to annotate the LAPACK
and BLAS wrappers as follows:

#pragma cs s task i nou t (A[TS] [TS])
vo id c h o l s p o t r f (f l o a t ∗A) ;

#pragma cs s task input (T[TS] [TS]) i nou t (B[TS] [TS])
vo id c h o l s t r sm (f l o a t ∗T, f l o a t ∗B) ;

#pragma cs s task input (A[TS] [TS]) i nou t (C [TS] [TS])
vo id c h o l s s y r k (f l o a t ∗A, f l o a t ∗C) ;

#pragma cs s task input (A[TS] [TS] , B [TS] [TS]) i nou t (C [TS] [TS])
vo id chol sgemm (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) ;

Although we have annotated the header declaration of the wrappers here, the
effect is the same that would be obtained by annotating the function call or its
definition. We also indicate the dimension of the non-scalar arguments in clauses;
this is trivial in our example, as all matrix blocks are of size TS × TS. Here TS
could also be an argument to the function, with the appropriate directionality
indication.

The second construct follows a recent proposal to extend the OpenMP task-
ing model for heterogeneous architectures in [2], and has been incorporated in
GPUSs. The construct adopts the form

#pragma cs s t a r g e t dev i c e (dev ice−name) [c l au s e− l i s t]

The target construct specifies that the execution of the task should be offloaded
to the device specified by device-name (and as such, its code must be handled
by the appropriate compiler back-end and its execution appropriately managed
by the runtime). Tasks which are not annotated with this construct are executed
on the host. For Nvidia GPUs, the device name is cuda. Some additional clauses
can be used with this pragma, to specify data movement between memory spaces
of the shared variables inside the task. In particular

copy i n (data−r e f e r e n c e− l i s t)
copy out (data−r e f e r e n c e− l i s t)

will move the variables in data-reference-list from host to device memory
or vice-versa, respectively. In other words, when the corresponding task is ready
to be issued, the runtime will transfer the variables in the copy in list from
host memory to device memory. Once the execution of the tasks is completed,
variables in the copy out list will be retrieved from device to host memory.

Applying the previous construct to the Cholesky factorization is simple:

#pragma cs s task i nou t (A[TS] [TS])
vo id c h o l s p o t r f (f l o a t ∗A) ;

#pragma cs s t a r g e t dev i c e (cuda) copy i n (T[TS] [TS] , B [TS] [TS])\
copy out (B[TS] [TS])

#pragma cs s task input (T[TS] [TS]) i nou t (B[TS] [TS])
vo id c h o l s t r sm (f l o a t ∗T, f l o a t ∗B) ;

#pragma cs s t a r g e t dev i c e (cuda) copy i n (A[TS] [TS] , C [TS] [TS])\
copy out (C [TS] [TS])

#pragma cs s task input (A[TS] [TS]) i nou t (C [TS] [TS])
vo id c h o l s s y r k (f l o a t ∗A, f l o a t ∗C) ;

#pragma cs s t a r g e t dev i c e (cuda) copy i n (A[TS] [TS] , B [TS] [TS] ,\
C[TS] [TS])\

copy out (C [TS] [TS])
#pragma cs s task input (A[TS] [TS] , B [TS] [TS]) i nou t (C [TS] [TS])
vo id chol sgemm (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) ;

In this case, we have decided to offload the execution of the BLAS wrappers
chol strsm, chol ssyrk, and chol sgemm to the GPUs. The LAPACK wrapper
chol spotrf will be executed on the host. The examples above use optimized
implementations of these BLAS kernels for the GPU (e.g., in the Nvidia imple-
mentation CUBLAS). Thus, we accommodate the possibility of executing a given
task in the host, which may be more efficient for certain tasks.

Function definitions are not restricted to wrappers to library routine calls,
as in the examples above. In GPUSs, native CUDA code could also be included
in the body of the annotated functions. In this case, the programming model al-
lows the developer to explicitly define some CUDA-specific execution parameters
(basically, grid and block sizes; see [8].)

The bottom-line is that the sequential code in Figure 1 does not need to be
modified to execute it in parallel on a multi-GPU platform. With the previous
annotations, GPUSs automatically parallelizes the execution of the factorization,
issuing tasks (or bundles of them) to the available execution units.

4 The GPUSs Runtime

4.1 Adapting the CellSs runtime to the Tesla system

Although being very different from the architectural viewpoint , there are many
conceptual similarities between the Cell and the Nvidia Tesla architectures,
which allow the adaptation of the runtime developed for the Cell to a system
with multiple hardware accelerators. In general, many of these similarities also
hold for other multi-accelerator systems.

Both architectures are heterogeneous: the Cell consists of a general-purpose
processor, or PPE, that orchestrates execution on a set of specialized fast cores,
or SPEs. All processors can communicate through a fast interconnection bus
(EIB), using small memory pools for each SPE, and a global memory space
accessible to all processors. On the other hand, the multi-GPU system consists
of a central general-purpose processor with a memory pool (RAM) and a number
of GPUs (Nvidia Tesla) connected to the host through a PCIExpress bus.

Some of the practical differences between both architectures have a direct
implication in the design and adaptation of the runtime. First, the Cell PPE is
much slower than the SPEs. Thus, the workload assigned to the PPE must be
carefully designed to avoid penalizing the global performance of the runtime. In
particular, critical decisions such as scheduling or resource assignation must be
simplified, adopting trade-offs between simplicity and performance.

In addition, the local memory spaces for each GPU are considerably larger
than the corresponding local stores of each SPE, and GPUs usually attain higher
performance for large data streams [3]. This dictates the use of a coarser task
granularity in GPUSs, which gives more time to the CPU to apply more elabo-
rated scheduling techniques that may boost performance.

The third main difference lies in the interconnect between host and devices.
Here, the peak bandwidth of the Cell EIB (25 GB/s per channel) is much higher
than that of the PCIExpress bus (0.5 GB/s per lane in the Gen2 specification.)
Moreover, direct communication between SPEs can be performed in the Cell,
but this technique cannot be applied for the Tesla system where all transfers
between GPUs must be done through the main memory. The penalty introduced
by the use of the PCIExpress bus urges a reduction of data transfers. The impact
of data transfers in multi-GPU systems has already been analyzed [13], and
similar techniques can also be applied to the GPUSs runtime implementation.

4.2 The GPUSs runtime

Despite the architectural differences between the Cell B.E. and a SMP processor,
the two runtime systems developed for those architectures in the StarSs frame-
work (CellSs and SMPSs) share many features that have been inherited by the
GPUSs implementation described.

Both runtime systems are divided in two main modules. The first one is
devoted to the execution of the annotated user code, task identification and
generation, data renaming and scheduling. The second module manages the data
movements between memory spaces (only in the CellSs implementation) and task
execution. The actual implementation of those modules varies for each system;
more details can be found in [12] and [4]. We will focus on the main differences
and particularities introduced in the GPUSs runtime.

Similarly to the CellSs runtime (see [4,11]), three actors play a fundamental
role in the execution of an application using the GPUSs runtime:

– A master thread executes the user code, intercepting calls to annotated func-
tions, generating tasks, and inserting them in a Task Dependency Graph.

– A helper thread consumes tasks as the GPUs become idle, mapping them to
the most suitable device taking into consideration data locality policies.

– A set of worker threads (one per GPU) which wait for available tasks, per-
form the necessary data transfers between RAM memory and the correspond-
ing GPU, invoke the task call on GPU, and retrieve the results (if necessary).
There is a key difference in the worker infrastructure between the Cell and
the Nvidia Tesla system: GPUs are passive processing elements, waiting

for tasks ready for execution, but without any other processing capability;
thus, worker threads are executed on the CPU, while in the Cell B.E. worker
threads run in the accelerator/SPEs. Therefore, the GPUSs runtime is exe-
cuted entirely on the host, not divided into host and device as in the CellSs
system.

As in the CellSs runtime, the main program communicates with the corre-
sponding worker thread by using event signaling when a GPU becomes idle,
and a new task is ready for execution; the worker thread receives the necessary
information to identify and invoke each ready task, and locate the necessary
parameters for the execution of the task. Once the task has been executed by
the proper GPU and data has been transferred back to main memory, the bound
worker thread notifies the end of the execution to the helper thread, which can
then continue with the notification of new ready tasks. The number of worker
threads (an thus, the number of accelerators used in the executions) can be
specified by the user at runtime.

4.3 Locality exploitation and task scheduling

The two classes of available memory spaces (host and device memories) can be
seen as a two-level memory hierarchy: before executing a task, the bound worker
thread transfers the necessary blocks to the local memory of its GPU, performs
the computations, and transfers back the updated data.

The impact of data transfers on the basic implementation explained above
can be reduced by considering the local memory space of each accelerator as
a cache memory that stores recently-used data blocks. The implementation of
a software cache of read-only blocks stored in the memory of each GPU can
reduce the amount of data transfers between host and device memory spaces.
The replacement policy (LRU in our experiments) and the number and size of
cache blocks can be tuned to improve performance.

In combination with the software cache, we have implemented two different
memory coherence policies to reduce the amount of data transfers:

Write-invalidate: When the execution of a task is completed, the correspond-
ing worker thread invalidates the read-only copies of the blocks modified
by the active GPU on the memories of the remaining GPUs, notifying the
worker threads bound to those GPUs to do so.

Write-back: To reduce the number of transfers further, a write-back policy is
employed, allowing inconsistencies between data blocks stored in the caches
of the accelerators and the blocks in RAM. Data blocks written by a GPU
are only updated in RAM when another GPU has to operate with them.

The system automatically handles the existence of multiple memory spaces
(as many as accelerators plus the system memory space) by keeping a memory
map of the cache of each accelerator. The translation of addresses between mem-
ory spaces is transparent to the user, who is not aware of the existence of several
separate memory spaces in his/her code. This centralized directory, managed by

the helper thread, allows efficient handling of data blocks necessary for the man-
agement of the different data caches explained above. This software cache is an
extension of that developed for CellSs, in which each worker thread had direct
control over the bound SPE local store, being implemented in a distributed way.

Additionally, the information stored in the memory directory can be used
to reduce data transfers by selectively mapping tasks to the most appropriate
accelerator.

5 Experimental Results

In our experiments we used an Nvidia Tesla s1070 computing system with four
Nvidia GT200 GPUs and 16 GBytes of DDR3 memory (4 GBytes per GPU).
The Tesla system is connected to a workstation with two Intel Xeon QuadCore
E5440 (2.83 GHz) processors with 8 GBytes of shared DDR2 RAM memory. The
Intel 5400 chipset features two PCIExpress Gen2 interfaces connected with the
Tesla, which deliver a peak bandwidth of 48 Gbits/second on each interface.
Nvidia CUBLAS (version 2.2) built on top of the CUDA API (version 2.2) together
with Nvidia driver (185.18) were used in our tests. MKL 10.0.1 was employed for
all computations performed in the Intel Xeon using the 8 cores available in the
system. Single precision was employed in all experiments. When reporting the
rate of computation, we consider the cost of the Cholesky factorization to be the
standard n3/3 flops (floating-point arithmetic operations), for square matrices
of order n. The GFLOPS rate is computed as the number of flops divided by
t×10−9, where t equals the elapsed time in seconds. The cost of all data transfers
between RAM and GPU memories is included in the timings. No page-locked
memory has been used in the allocation of the input matrices in the host memory.

Figure 3 (left side) shows the performance results for the Cholesky factoriza-
tion algorithm shown in Figure 1, executed on the Tesla s1070 system using
the GPUSs runtime. The four GPUs available in the Tesla system were used
in the experiment, executing all the tasks exclusively on the graphics processor.
The optimal block size, experimentally determined, is much larger in our case
than in the Cell B.E. implementation in [4]: observed optimal block sizes for the
Tesla system were always equal or larger than 512, while in the CellSs case the
optimal block size was 64 (limited by the small size of the Local Store of each
SPE, and the existence of tuned versions of the kernels only for this block sizes).

An important improvement in performance is observed in Figure 3 when the
write-back policy is incorporated. The figure also displays the performances of
a LAPACK-like code linked with CUBLAS executed on a single GPU [3], and the
MKL multi-threaded Cholesky factorization on the eight cores of the system.

The right-hand side plot in Figure 3 reports the speed-up of the algorithm
in Figure 1, with the corresponding GPUSs annotations, and executed using the
GPUSs runtime system on 1, 2, 3, and 4 processors of the Tesla system. Speed-
ups are calculated with respect to the same algorithm, linked with CUBLAS, and
run on a single processor of the Tesla. The results in the figure corresponding
to a single processor reveal the small overhead introduced by the runtime.

0

100

200

300

400

500

0 4096 8192 12288 16384 20480

G
F
L
O
P
S

Matrix size

Cholesky factorization - GPUSs runtime

GPUSS - Cached Write-back - 4 GPUs
GPUSS - Basic implementation - 4 GPUs

MKL spotrf - Dual Intel Xeon (8 cores)
Cholesky GPU (CUBLAS) - 1 GPU

0

0.5

1

1.5

2

2.5

3

3.5

4

0 4096 8192 12288 16384 20480

S
p
e
e
d
u
p

Matrix size

Cholesky factorization - Speed-up

GPUSS - 4 GPUs
GPUSS - 3 GPUs
GPUSS - 2 GPUs
GPUSS - 1 GPUs

Figure 3. Impact of the data cache and different memory coherence policies on the
performance of the GPUSs runtime for the Cholesky factorization (left). Speed-ups of
the runtime for the Cholesky factorization using 1, 2, 3, and 4 GPUs (right).

6 Concluding Remarks

In this paper we have validated the versatility of the StarSs programming model,
extending it to target architectures equipped with multiple hardware accelera-
tors. With a very small number of modifications to user’s code, our approach
deals with data transfers, different memory spaces, and task scheduling in a
heterogeneous system. The parallelization of the codes is performed by a run-
time system based on the CellSs runtime, with notable preliminary performance
results for a complex operation like the Cholesky factorization.

Although the experiments and runtime have been developed for a specific
multi-GPU system (Nvidia Tesla), many of the ideas introduced here can also
been applied to other architectures consisting of a workstation connected to
multiple hardware accelerators via a fast interconnect.

Future work will include the implementation in the runtime of some of the
extensions proposed in [2], mainly the possibility of deciding the target device (in
our case, host or GPU) for the execution of a given task based on the state of the
system. More complex scheduling strategies or software cache implementations,
the implementation of multi-buffering to overlap transfers and computation, and
ports to other multi-accelerator architectures are also in the roadmap.

Acknowledgments

The researchers at BSC-UPC were supported by the Spanish Ministry of Science
and Innovation (contract no. TIN2007-60625 and CSD2007-00050), the Euro-
pean Commission in the context of the SARC project (contract no. 27648), the
HiPEAC Network of Excellence (contract no. IST-004408), and the MareIncog-
nito project under the BSC-IBM collaboration agreement. The researchers at
UJI were supported by the Spanish Ministry of Science and Innovation/FEDER
(contracts no. TIN2005-09037-C02-02 and TIN2008-06570-C04-01) and by the

Fundación Caixa-Castelló/Bancaixa (contracts no. P1B-2007-19 and P1B-2007-
32). Part of this work was performed while Francisco D. Igual was visiting BSC-
UPC. Support for this visit came from the Spanish ICTS program of the BSC.

References

1. E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum,
S. Hammarling, A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
Users’ Guide. SIAM, Philadelphia, 1992.

2. Eduard Ayguade, Rosa M. Badia, Daniel Cabrera, Alejandro Duran, Marc Gon-
zalez, Francisco D. Igual, Daniel Jimenez, Jesus Labarta, Xavier Martorell, Rafael
Mayo, Josep M. Perez, and Enrique S. Quintana-Ort́ı. A proposal to extend the
OpenMP tasking model for heterogeneous architectures. In Evolving OpenMP in
an Age of Extreme Parallelism. 5th International Workshop on OpenMP, IWOMP
2009, Lecture Notes in Computer Science, Dresden, Germany, 2009. Springer.

3. Sergio Barrachina, Maribel Castillo, Francisco D. Igual, Rafael Mayo, and En-
rique S. Quintana-Ort́ı. Solving dense linear systems on graphics processors. In
Euro-Par ’08: Proceedings of the 14th international Euro-Par conference on Par-
allel Processing, pages 739–748, Berlin, Heidelberg, 2008. Springer-Verlag.

4. Pieter Bellens, Josep M. Pérez, Rosa M. Badia, and Jesús Labarta. CellSs: a
programming model for the Cell BE architecture. In SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, page 86, New York, NY, USA,
2006. ACM Press.

5. S. Chatterjee, A.R. Lebeck, P.K. Patnala, and M. Thottethodi. Recursive array
layouts and fast matrix multiplication. IEEE Trans. on Parallel and Distributed
Systems, 13(11):1105–1123, 2002.

6. Jack Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level
3 basic linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, 1990.

7. Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. Openmp to gpgpu: a compiler
framework for automatic translation and optimization. In PPoPP ’09: Proceed-
ings of the 14th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 101–110, New York, NY, USA, 2009. ACM.

8. NVIDIA. NVIDIA CUDA Programming Guide 2.2. 2008.
9. N. Park, B. Hong, and V.K. Prasanna. Tiling, block data layout, and memory hier-

archy performance. IEEE Trans. on Parallel and Distributed Systems, 14(7):640–
654, 2003.

10. J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta. CellSs: Making it easier
to program the cell broadband engine processor. IBM Journal of Research and
Development, 51(5), Aug 2007.

11. Josep M. Perez, Rosa M. Badia, and Jesus Labarta. Scalar-aware grid superscalar.
DAC TR UPC-DAC-RR-CAP-2006-12. Technical report, Universitat Politécnica
de Catalunya, Computer Architecture Department, 2006.

12. Josep M. Pérez, Rosa M. Badia, and Jesús Labarta. A flexible and portable pro-
gramming model for SMP and multi-cores. Technical Report 03/2007, Barcelona
Supercomputing Center - CNS, Barcelona, Spain, 2007.

13. Gregorio Quintana-Ort́ı, Francisco D. Igual, Enrique S. Quintana-Ort́ı, and
Robert A. van de Geijn. Solving dense linear systems on platforms with multi-
ple hardware accelerators. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 121–130, New
York, NY, USA, 2009. ACM.

