INSTABILITY OF WEIGHTED COMPOSITION
OPERATORS BETWEEN SPACES OF CONTINUOUS
FUNCTIONS
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ABSTRACT. Let ¢ > 0. A continuous linear operator T': C(X) —
C(Y) is said to be e-disjointness preserving if |[(T'f)(T9)| ., < €,
whenever f,g € C(X) satisfy ||f||.. = lgllo =1 and fg =0. In
this paper we address basically the following question:

How far can the set of weighted composition operators be from
a given e-disjointness preserving operator?

We provide sharp instability bounds.

1. INTRODUCTION

Let K denote the field of real or complex numbers. Let C'(X) stand
for the Banach space of all K-valued continuous functions defined on a
compact Hausdorff X and equipped with its usual supremum norm.

An operator S : C(X) — C(Y) is said to be a weighted composition
map if there exist a function a € C(Y) and a map h : ¥ — X,
continuous on ¢(a) := {y € Y : a(y) # 0}, such that

(Sh)(y) = aly)f(h(y))

for every f € C(X) and y € Y.

We include the case when S = 0 as a weighted composition map
(being c(a) = 0). Obviously every weighted composition map is linear
and continuous, and is also disjointness preserving, in the sense that
given f,g € C(X), fg =0 yields (Sf)(Sg) = 0. Reciprocally, it is well
known that a continuous disjointness preserving operator is a weighted
composition (see for instance [6], [5], [7])).

Given € > 0, a continuous linear operator 7' : C(X) — C(Y)

is said to be e-disjointness preserving if [|[(T'f)(Tg)||,, < €, whenever
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f,9 € C(X) satisty ||f|l., = llgll, =1 and fg = 0 (or, equivalently, if
(T (Tl < €llfllc llglloe whenever fg = 0).

In [4] G. Dolinar studied when an e-disjointness preserving operator
is close to a weighted composition map, and proved that, given € > 0
and an e-disjointness preserving operator 7' : C(X) — C(Y) with
|IT|| = 1, there exists a weighted composition map S : C'(X) — C(Y)
such that

I — S|| < 20/e.

This bound was recently sharpened to 1/17¢/2 in [1], where it was
also proved, by means of an example, that this new bound cannot be
improved.

In this paper we address what could be regarded as the reverse ques-
tion. Namely, we study how far apart an e-disjointness preserving
operator can be from the set of all weighted composition operators.

In general, we prove that the answer does not depend on the topolog-
ical features of the space X but on its cardinality (denoted by card X).
If we assume that Y has at least two points, then the number 2/€ is a
valid bound if X is infinite (Theorem 2.1). A different value plays the
same role if X is finite (Theorem 3.1).

We also prove that these estimates are sharp in every case (Theo-
rems 2.2 and 3.2). Indeed, instead of providing a concrete counterex-
ample, we show that these bounds are the best for a general family of
spaces Y, namely, whenever Y consists of the Stone-Cech compactifi-
cation of any discrete space.

Notation. Throughout K = R or C. X and Y will be compact
Hausdorff spaces with at least two points (when X has just one point
we obtain a trivial case, and when Y consists of a single point, we are
dealing with functionals, and the results take a completely different
form, as can be seen in [2]).

Given a compact Hausdorff space Z, C'(Z)" will denote the space of
linear and continuous functionals defined on C(Z). For p € C(Z)', we
will write A, to denote the measure which represents it. Also, forz € Z,
9, will be the evaluation functional at x, that is, 6,(f) := f(z) for every
f e C(Z), and given T : C(X) — C(Y) linear and continuous, we
set T}, := 0, 0T for each y € Y.

For f € C(Z), 0 < f < 1 means that f(z) € [0,1] for every =z €
Z, c(f) = {x € Z: f(x) # 0} denotes its cozero set and supp(f) its
support.
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We denote by ¢ — DP (X,Y) the set of all e-disjointness preserving
operators from C(X) to C(Y), and by WCM (X,Y) the set of all
weighted composition maps from C(X) to C(Y).

In a Banach space E, for e € E and r > 0, B(e,r) and B(e,r) denote
the open and the closed balls of center e and radius r, respectively.

2. THE CASE WHEN X IS INFINITE

Our first result shows that the bound depends on whether or not the
space X admits a continuous measure (recall that a Borel measure on a
Hausdorff space is said to be continuous if it vanishes on all singletons;
see for instance [3, Definition 7.14.14]).

Theorem 2.1. Let 0 < € < 1/4. Suppose that X is infinite. Then for
each t < 1, there ezxists T € e — DP (X, Y) with ||T|| = 1 such that

B (T,2ty/e) N\WCM (X,Y) = 0.

Furthermore, if X admits a continuous reqular probability measure,
then T' can be taken such that

B (T,2y/€) NWCM (X,Y) = 0.

In Theorem 2.2, we see that the above bounds are sharp for some
families of extremely disconnected spaces Y. This should be compared
with [1, Example 4.6]), where the local connectedness of some other
spaces Y plays an important role when proving that their correspond-
ing stability bounds are sharp and, consequently, far from sharp with
respect to the instability bounds given above.

Theorem 2.2. Let 0 < € < 1/4. Suppose that Y is the Stone-Cech
compactification of a discrete space with at least two points, and that
X is infinite. Let T € e — DP (X,Y) with | T|| = 1. Then

B (T,2y/€) NWCM (X,Y) # 0.

Furthermore, if X does not admit a continuous reqular probability
measure and Y is finite (with cardY > 2), then

B (T,2y/e) NWCM (X,Y) # 0.

Proof of Theorem 2.1. For 6 > 0, let us choose a regular Borel proba-
bility measure p on X such p({z}) < 4/2 for every z € X.

Next, fix yg, 41 in Y and zy € X. After choosing two disjoint neigh-
borhoods, U(yo) and U(y1), of yo and y;, respectively, we define two
continuous functions, o : Y — [0,2y/¢] and 3 : Y — [0, 1], with the
following properties:

o a(y) =2V



4 JESUS ARAUJO AND JUAN J. FONT

e supp(a) C U(yo)
o B(y) =1
e supp(3) C U(wy1)

Next, for each y € Y, we define two continuous linear functionals on

C'(X) as follows:

Gy(f) = a(y) /X fdu

By using these functionals we can now introduce a linear map T :
C(X) — C(Y) such that (Tf)(y) = F,(f) + Gy(f) for every f €
C(X).

Let us first check that |T|| = 1. To this end, it is apparent that
(I'1)(y1) = F,,,(1) + Gy, (1) =140 = 1, where 1 denotes the constant
function equal to 1. Consequently, ||T'|| > 1. On the other hand, it is
easy to see that if f € C(X) satisfies || f|| ., =1, then [(Tf)(y)| <1 for
every y € Y. Hence, ||T]| = 1.

The next step consists of checking that T is e-disjointness preserving.
Let f,g € C(X) with || f|l. = llgll, = 1 and such that ¢(f)Nec(g) = 0.
It is easy to see that (T'f)(y)(Tg)(y) = 0 whenever y ¢ U(yp). On the
other hand, if y € U(yo), then |(T)(u)(Tg) )| = |Gy ()] IG,(g)]. Tt
is clear that there exist two unimodular scalars a;,as € K such that
1G(1) = G (1)] 1 0:Gl0) = (Golo)] Snce oS + gl = 1
then

|Gy(f)|+|Gy<9)| = Gy(a1f+a2g)
S~ /X (arf + asg)dp

< a(y)
Consequently, |G, (f)|1G,(9)] < a(y)?/4. Indeed,

(THITHW) = 16, (D16, () < 28 < BV

= €

Finally, we will see that ||T — S|| > 2v/¢(1 — ¢) for every weighted
composition map S : C(X) — C(Y).

Let S € WCM (X,Y), and let h : ¢(S1) — X be its associated
map. It is clear that, if (S1)(yo) = 0, then ||T" = S|| = [(T' = S)(1)(vo)|| =
2,/€, so we may assume that yo belongs to ¢(S1). By the regularity of
the measure p, there exists an open neighborhood U of h(yg) such that
uw(U) < §. Let us select f € C(X) satistying 0 < f < 1, f(h(yo)) = 0,
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and f = Lon X\U. Obviously (5)(yo) = 0 and |(Tf)(30)] = |Gy (f)]-
Hence

1T =Sl = [(Tf)(yo)l

> o) fdp
X\U

> 2y/e(1-9).
This proves the first part. The second part is immediate because,

being the measure of each point equal to zero, § can be taken as small
as wanted. O

Proof of Theorem 2.2. We are assuming that there exists a discrete
space Z such that Y = §Z. Of course Y may be finite (that is, Y = Z),
and this is necessarily the case when we consider the second part of the
theorem. Let Zy := {y € Z : || T,|| > 2\/€}, which is a nonempty closed
and open subset of Z, and

Zy ={z€ Z\ Zy: Fx, € Xwith|\r,({z.})| > 0}.
Fix any zo € X. By [1, Lemma 2.3], we can define a map h: Z — X

such that [Ar. ({h(2)})| > 1/||T.||* — 4e for every z € Zy, and such that
h(z) = x, for z € Z;, and h(z) := x¢ for z ¢ Zy U Z;. Also, since Z
is discrete, then h is continuous, and consequently it can be extended
to a continuous map from Y to X (when Y # Z). We will denote this
extension also by h.

Definea: Z — Kas a(z) := M. ({h(2)}) if z € ZyUZ;, and (2) :
0 otherwise, and extend it to a continuous function, also called «,
defined on Y. Then consider S : C'(X) — C(Y') defined as (Sf)(y) :
a(y)f(h(y)) for every f € C(X) and y € Y.

Let us check that |7 — S|| < 2y/e. Take f € C(X) with || f]|, < 1.
First, suppose that z € Z\ (ZyU Z;). Then (Sf)(z) =0, so
(T£)(2) = (SHR)] = (Tf)(z)] < 2ve
Now, if z € Zy, then ||T.|| < 24/€ and, as in the proof of [1, Lemma
2.4],

2

(Tf)(=) = (SH)] < ITI - P ({A() D] < 2Ve.

On the other hand, if z € Z;, we know by [1, Corollary 2.5] that

(TF)(2) = (SHE) < ITe) = ITH - 4e.

By [1, Lemma 3.4], we have |(T'f)(z) — (Sf)(2)] < 2y/€ for every z €
Zy. By continuity, we see that the same bound applies to every point
in Y, and the first part is proved.
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Finally, in the second case, that is, when X does not admit a contin-
uous regular probability measure and Y is finite, we have that Y = 7,
and that Z\ (Zp U Z;) consists of those points satisfying ||7%| = 0. The
conclusion is then easy. U

3. THE CASE WHEN X IS FINITE

The best instability bounds in the finite case depend on the sequence
(wn), where for each n € N,
n?—1

4n?

These instability bounds are given in terms of the function rx :
(0,1/4) — R (recall that we are assuming card X > 2), defined as

Wy =

2 (”n;;l)e if n:=card X is odd and € < w,

rx(€) = "T_l if n:=card X is odd and ¢ > w,
2(n—1)y/e

n

if n:=card X is even

Theorem 3.1. Let 0 < e < 1/4. Suppose that X is finite. Then there
erists T € e — DP (X,Y) with ||T|| = 1 such that

B(T,rx(e)) NWCM (X,Y) = 0.

The next result (Theorem 3.2) says that Theorem 3.1 provides a
sharp bound, and gives a whole family of spaces Y for which the same
one is a bound for stability as well.

Theorem 3.2. Let 0 < € < 1/4. Suppose that Y is the Stone-Cech
compactification of a discrete space with at least two points, and that
X is finite. Let T € e — DP (X,Y) with | T|| = 1. Then

B(T,rx(e)) NWCM (X,Y) # 0.

Proof of Theorem 3.1. We first prove the result when n is odd. We
follow the same ideas and notation as in the proof of Theorem 2.1,
with some differences. Namely, we directly take p({z}) = 1/n for
every r € X, and use a new function

a:Y — {O,min{zn—\/g,l}}
n?—1

such that

o (10) :min{Qn—\/E,l}

vn?2 -1
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and supp(a) C U(yo). Notice that a(yy) = 2nye/vn? — 1 if € < wy,,
and a(yo) = 1 otherwise.

Clearly ||T']| = 1, and using the fact that

UaIGRRY :max{u:0§l§n}7

4n? n
we easily see that T' is e-disjointness preserving both if ¢ < w, and if
€ > wy,. On the other hand, by the definition of the measure, reason-
ing as in the proof of Theorem 2.1, we easily check that ||T"— S| >
(1 —1/n)a(yo) for every weighted composition S.

Finally, we follow the above pattern to prove the result when n is
even. In particular we also take u({z}) = 1/n for every x € X, and use
a function a: Y — [0,2+/€] with a(yg) = 2+/€ and supp(«) C U(yo).
The rest of the proof follows as above. O

We shall need the following proposition.

Proposition 3.3. Let 0 < € < 1/4. Suppose that X is a finite set of
cardinality k € 2N. If ¢ € ¢ — DP (X,K) and ||¢|| = 1, then there
erists x € X such that

M) > YR

Proof. By [1, Lemma 2.2], we can assume without loss of generality
that ¢ is positive. Suppose that k& = 2m, m € N. Notice that there
cannot be m different points x4, ..., x,, € X with

M({z)) € (1 - \/;—746 1 +\/k1—746)

for every i € {1,...,m}, because otherwise

N an)) € <1_\/21_746, Hm),

2

against [1, Lemma 2.1]. This implies that there exist at least m + 1
points whose measure belongs to

1 —+/1—4e 1++1—4e

i Sl IV i i |
k k

Suppose that at least m different points 1, ..., x,, € X satisfy A, ({z;}) <

(1—+v1—4€) /k. Then A({z1,...,2n}) < (1—+1—4€) /2, and

consequently we have that A, (X \ {z1,...,zn}) > (1+ V1 —4e) /2.
Since X \ {z1,..., 2y} has m points, this obviously implies that there

exists z € X \ {z1,..., 25} with A,({z}) > (1 + /1 — 4e) /k, and we
U

are done.
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Proof of Theorem 3.2. Let Z be a discrete space with Y = (7. Since
X has n points, say X := {xy,...,2,}, we have that, for each z € Z,
T, is of the form T, := " afd,,, for some af € K, i = 1,...,n.
Consequently, for each z € Z, we can choose a point z, € X such that
A, ({z.})| = [Ar.({z})] for every x € X, which yields |Ar, ({z.})| >
I|T.|| /n. This allows us to define a map h: Z — X as h(z) := x, for
every z € Z. Since h is continuous we can extend it to a continuous
function defined on the whole Y, which we also call h.

Following a similar process as in the proof of Theorem 2.2, define
a: Z — Kas a(z) := Ar,({h(2)}), and extend it to a continuous
function defined on Y, also denoted by . Now, define S : C(X) —
C(Y) as (Sf)(y) == a(y)f(h(y)) for every f € C(X) and y € Y.

Fix any f € C(X), ||fll, < 1, and z € Z. It is then easy to
check that |(Tf)(z) — (Sf)(z)] < (n —1)||T%]| /n . Consequently, if
IT.] < 21/, we have

(TH(=) - () < 227 e <o)

n

Let us now study the case when ||T,|| > 2y/e. First, we know from [1,

Corollary 2.5] that [(T'f)(z) — (Sf)(2)| < | T.|| — v/ ||T:||> — 4e. Next,
we split the proof into two cases.

e Case 1. Suppose that n is odd. We see that to finish the proof
it is enough to show that

. n—1
win (171 = /I~ 46, "2 T ) < vt

whenever ||T.|| > 2y/e. To do this, we consider the functions
7,0 : [24/€,1] — R defined respectively as y(t) := t — v/t — 4e,
and §(t) := (n—1)t/n for every t € [2/€, 1]. We have that v is
decreasing (see [1, Lemma 3.4]) and 0 is increasing on the whole
interval of definition.

Now, if € < w,, then for ty := \/€/w, € [24/€,1], we have
v(tg) = (tp). This common value turns out to be d(ty) =
2¢/(n —1)e/(n+ 1), that is, it is equal to rx(e), and we get
that |(Tf)(z) — (Sf)(z)] < rx(e) for every z € Z.

On the other hand, if € > w,,, then 6(1) < (1), so §(¢t) < (t)
for every t € [24/€,1], and |(T'f)(z) — (Sf)(2)| < (1) for every
z € Z. Since 6(1) = (n — 1)/n = rx(e), we obtain the desired
inequality also in this case.
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e Case 2. Suppose that n is even. By Proposition 3.3, we get that

PG 2 (10 ITIE = ae) /o
T 4+ \/IT2 ) — 4e
) - (59 < ) - VI =

n

Consequently, to finish the proof in this case we just need to
show that

T +\/m _
12— I — e - VT Z46) 2= Ve

n n

min

Let 1 : [2y/€,1] — R be defined as
VIR — e

n

n(t) =t

for every t € [24/¢, 1], and consider also the function ~ defined
above. Clearly, when n = 2 we have n = /2, and the above
inequality follows from [1, Lemma 3.4]. So we assume that n #

2. We easily see that n(t) < v(t) whenever ¢t € [2\/& \/e/wn_l} :

and that 7 is decreasing in [2\/5, \/e/wn_l} (t <1). We deduce
that

min (y(), (1)) < n (2v/6) = 2DV

n
whenever 2,/e <t < 1, as it was to be seen.
By denseness of Z in Y, we conclude that ||T"— S|| < rx(e). O
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