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Facile synthesis of TiO2 nanotube branched (length ~ 0.5 m) 
thin hollow-nanofibers is reported. The hierarchical three 
dimensional photoanodes (H-TiO2-NF) (only ~ 1 m thick) 10 

demonstrate their excellent candidature as a photoanode in 
QDs-sensitized solar cells, exhibiting ~ 3 fold higher energy 

sc=8.8 mAcm-2) than that of 
the directly grown nanotube arrays on transparent 
conducting oxide (TCO) sc=2.5 mAcm-2) . 15 

 
 The mesoscopic sensitized-solar cell is the emerging candidate 
in electrical power production though direct conversion of solar 
energy to electrical energy without green house effect.1 Recently, 
quantum dot (QDs) semiconductors have attracted a great deal of 20 

interest as sensitizers in mesoscopic sensitized solar cells.2, 3 
Because of the outstanding abilities in multiple hot carrier 
generation, panchromatic solar harnessing and high extinction 
coefficient, the quantum dot-sensitized solar cells (QDSCs) are 
being the future solar energy conversion systems.4 Many efforts 25 

have been invested in developing a wide range of sensitizers; in 
particular, CdX, PbX, CuInX (X=S, Se, Te) and Ag2S etc., have 
been tested in QDSCs, resulting in ~ 4-6 % photo conversion 
efficiency.5-7 These sensitizers are decorated on a wide band gap 
metal oxide framework (TiO2, ZnO and SnO2) that acts as a 30 

photoanode (selective electron contact). Though QDSCs 
demonstrate feasible performance utilizing a variety of QDs 
sensitizers, still it requires more improvement to compete with 
the commercial dye-sensitized solar cells.  
 Semiconductor QDs sensitizers are relatively larger in size 35 

than dye molecules; therefore it is difficult to penetrate deeper 
parts of TiO2 electrode and thus limiting the sensitizer loadings. 
Although, the higher extinction coefficient of semiconductor 
QDs, in comparison with molecular dyes, partially compensates 
the loss of the effective surface and subsequently the decrease in 40 

the sensitizer loading, configuring the photoanode framework 
with large-pore network is necessary to further promote the QDs 
sensitizer loading.8 In Addition, such photoanodes could 
demonstrate high charge transport from sensitizer to a charge 
collector, ultimately, overwhelming the charge recombination at 45 

photoanode/electrolyte interface. Thus, to achieve high sensitizer 
loading, fast electron transport channel, and good electrolyte 
pore-filling, establishing vertically aligned nanostructures, in 
particular, directly synthesized on transparent conductive oxides 
(TCO) has been identified as the promising approach in dye or 50 

QDs-sensitized solar cells.9 Most importantly, vertically grown 
nanotube (NT) arrays have longer electron diffusion length and 
more benefits in pore-filling of solid state hole transport materials 

(HTM), compared to disordered TiO2 mesoporous films.10 
Diverse methods were demonstrated for the fabrication of TiO2 55 

NT arrays, including electrochemical anodization,11 hydrothermal 
treatment12 and vapour-liquid-solid methods. Recently, Gao 
group developed directly assembled TiO2 NT arrays on TCO 
using ZnO nanowire templates.13 Though direct assembly of NT 
arrays on TCO substrates, is more adventurous,14 template-based 60 

NT arrays have wide tube-tube voids which resulted in lesser 
distribution compared to anodization technique. Besides, such 
less density of NTs on a TCO substrate markedly lowers the 
internal surface area of the electrode as well as limits the QD 
loading.  65 

 One simple way to promote the interface surface area of the 
NT array is to extend their length,15 however there exist a trade-
off between the NT length and mechanical stability. Therefore, 
assembling NT array on highly interconnected 3D fibrous 
backbone would be a more effective way for achieving high 70 

electron transport channels in energy conversion devices.16-18 
Scheme 1 illustrates the fabrication stages of hierarchical 3-D 
hollow TiO2 nanofibers (H-TiO2-NF). Our proposed hierarchical 
3-D hollow TiO2 NFs would be the optimum nanostructure for 
achieving higher sensitizer loading and fast electron transport for 75 

QDSCs. In this communication, we demonstrate the fabrication 
of TiO2 nanotubes branched on TiO2 hollow nanofiber 
photoanode, directly grown on TCO and elucidate their 
candidature as an excellent photo anode in QDSCs.  

 80 
Scheme 1. Schematic illustration of H-TiO2 NF photoanode 
fabrication stages (a) TiO2 hollow nanofiber (TiO2-NF), (b) ZnO 
NR templates grown on TiO2-HNF, (c) TiO2 nanotube branches 
grown on TiO2-NF through ZnO NR templates, and (d) QDs-
sensitized H-TiO2 NF photoanode.  85 
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 Figure 1 shows the scanning electron microscopy (SEM) 
image (Figure 1a) of backbone TiO2 NFs confirming the 
continuous 1D geometry. The distribution of the fiber diameter 
lies between 200 and 500 nm with the average wall thickness of 
20 nm. The ZnO NR templates with an average diameter ~ 25 nm 5 

and a length of ~500 nm were vertically grown on the outer 
surface of TiO2 NF which completely covered the backbone (Fig. 
1b). After the TiO2 thin layer coating on ZnO NRs, the ZnO 
templates were finally removed by selective etching (Fig. 1c). 
Fig. 1d shows the QDs-sensitized 3-D TiO2 nanotubes branched 10 

on TiO2 hollow nanofibers (H-TiO2 NF). The high resolution 
TEM images and the selective area electron diffraction pattern 
(SAED) reveal that the TiO2 hollow nanofiber possess anatase 
phase and polycrystalline nature (Fig. 1e). Fig. 1(f) reveals that 
the spatially decorated ZnO NT arrays on TiO2 NF have good 15 

contact with the TiO2 backbone. Furthermore, TEM image (Fig. 
2g and 2h) suggests that the TiO2 tubular branches have 
sufficiently large pore channels for electrolyte filling as well as 
good structural stability even after removing the ZnO templates 
and QDs sensitization, respectively.  20 

 

 
 
Figure 2. FE-SEM images (a-d) and HR-TEM images (e-h) of 
TiO2 hollow nanofibers, ZnO nanorods branched on TiO2 hollow 25 

nanofibers, TiO2 nanotubes branched on TiO2 hollow nanofibers, 
and QDs-sensitized 3-D TiO2 nanotubes branched on TiO2 
hollow nanofibers respectively.  
 
 The detailed experimental procedure for the fabrication of 30 

hierarchical TiO2 NFs and QDSCs device fabrication steps is 
explained in the supporting information (see supporting 
information S1). To demonstrate the influence of electrode 
geometry on photovoltaic performance of QDSCs, the following 
electrodes were tested as photoanodes in QDSCs: (a) directly 35 

grown TiO2 NT on TCO (TiO2-NT) and (b) hierarchical 3-D TiO2 
nanotube branches on hollow TiO2 NF (H-TiO2 NF) electrodes. 
The optical reflection capability of both TiO2-NT and H-TiO2 NF 
is studied by diffused reflectance spectra (Fig. 2a). Under the 
identical TiO2 nanotube growth conditions, the H-TiO2 NF 40 

electrodes show high reflectance compared to TiO2-NT in the 
wavelength range of 380-800nm. This might be attributed to the 
multiple scattering of incident light at the hierarchical TiO2 NT 
branches, thus drastically enhancing the reflectance of the 
electrode. Both QDs-sensitized TiO2-NT and H-TiO2 NF 45 

electrodes found to be decreased in the reflectance at wavelength 
610 and 660nm, respectively, due to the light absorption of the 
CdS/CdSe sensitizer. The photovoltaic performance (J-V plots) of 
TiO2-NT and H-TiO2 NF photoanodes were presented in Fig. 2b 
and the estimated PV parameters are summarized in Table 1.  50 

 
Figure 2. J-V plots of QDSCs using different photoanodes 
(Electrode thickness: ~ 1 m, device active area: 0.25cm-2 
without mask, electrolyte: 1M polysulfide and counter electrode: 
nanocarbon black). 55 

 
 The directly grown TiO2-NTs on a FTO electrode resulted in a 
photoconversion efficiency (PCE) of 
photovoltage, Voc=0.62 V, photocurrent, Jsc=2.5 mAcm-2 and fill 
factor, F.F=58.3%. As anticipated, the hierarchical TiO2 nanotube 60 

branches grown on hollow NF backbone shows unprecedentedly 
promoted PCE oc=0.61 V, Jsc=8.8 mAcm-2 and 
F.F.=50.3%. It clearly evidences that the TiO2 NTs spatially 
assembled on the hierarchical 3D-nanofibrous backbone promote 
the QDSCs performance by a factor of three than the directly 65 

grown TiO2 NTs on a TCO substrate. We can explain the 
enhancement of photocurrent generation with the H-TiO2 NF 
photoanodes by several contributions: (a) higher effective surface 
area and consequently higher QD loading and light harvesting; 
(b) highly efficient charge collection throughout the photoanode 70 

with less boundary layers and (c) multiple scattering effect of the 
comb-like hierarchical NT arrays, in particular, red photons 
harvesting.  
 
Table 1. Photovoltaic parameters of QDSCs using different 75 

photoanodes 
 
Photo  Voc Jsc F.F. Efficiency 
anode  (V) (mAcm-2) (%) (%) 

TiO2-NT  0.62 2.5 58.3 0.9 80 

H-TiO2 NF 0.61 8.8 50.3 2.8 
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 On the other hand, it is interesting to point out that Voc 
obtained for both devices are similar, in spite of the larger 
effective surface area of H-TiO2 NF, expecting a higher 
recombination rate (and consequently lower Voc). But this is not 
the case as observed in Fig. 2b, where similar Voc values are 5 

observed for both the samples. For further understanding of this 
behaviour, the QDSCs recombination has been analyzed using 
the electrochemical impedance spectroscopy (EIS). The stability 
of the samples during the impedance measurement was verified 
by comparing the cyclic voltammograms before and after EIS 10 

measurement (See supporting information S3). Fig. 3 shows the 
recombination resistance obtained for the samples analyzed in 
Fig. 2b. Similar recombination resistances are observed for both 
samples. Despites the larger effective surface area of H-TiO2 
NFs, the recombination resistance does not become significantly 15 

higher than the resistance observed for TiO2-NT. 
 

 
Figure 3. Recombination resistance of TiO2-NT and H-TiO2 NF 
QDSCs. Inset Nyquist plot of H-TiO2 NF sample at applied 20 

voltage, Vapp=0.57 V. Red solid line is the fit of the experimental 
data points using the previously described model for EIS analysis 
of QDSCs samples7. 
 
In this sense, the recombination rate does not increase for the 25 

hierarchical sample; rather it decreases as shown in Fig. 3. This 
fact may be contributable significantly to the 3 fold enhancement 
in the solar cell efficiency observed for the H-TiO2 NFs in 
comparison with the TiO2-NTs. The huge increase of 
photocurrent is not deleteriously compensated by a reduction in 30 

Voc, giving place to a final efficiency improvement of 310%. In 
addition high collection efficiency can be deduced for H-TiO2 NF 
QDSCs (See supporting information S4). 
 
 In summary, 3-D hierarchical TiO2 nanotube branches were 35 

successfully assembled onto the primary hollow TiO2 
nanofibrous backbone. The newly designed H-TiO2 NF 
photoanode has offered large surface area for high QD loading 
with high light scattering property. In comparison with the 
directly grown NT arrays on a TCO substrate, the introduction of 40 

NTs on the continuous hollow nanofibrous layer results in the 
effective charge collection. In addition, the hierarchical structure 
enhances effective surface area without altering the 

recombination rate, as it should be expected. The proposed H-
TiO2 NF architecture fabricated from the simple protocol can 45 

allow wide applications in electrochemical energy conversion and 
storage devices including QDSCs, DSSCs, photocatalyst and 
batteries, where high catalytic/electroactive materials have to be 
loaded and fast charge transport characteristics is required. 
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