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Modeling the dimensional variation propagation in multi-station machining
processes (MMPs) has been studied intensively in the past decade to under-
stand and reduce the variation of product quality characteristics. Among oth-
ers, the Stream-of-Variation (SoV) model has been successfully applied in a
variety of applications, such as fault diagnosis, process planning and process-
oriented tolerancing. However, current SoV model is limited to the MMPs
where only fixtures with punctual locators are applied. Other types of fixtures,
such as those based on locating surfaces, have not been investigated yet. In
this paper, the derivation of SoV model is extended to model the effect of
fixture- and datum-induced variations when fixtures with locating surfaces are
applied. Due to the hyperstatic nature of these fixtures, different workholding
configurations can be adopted. This will increase the dimension of the SoV
model exponentially and thus, may make the model-based part quality predic-
tion extremely complex. This paper presents how to reduce the complexity of
the SoV model when fixtures based on locating surfaces are applied and how
to evaluate the worst-case approach of the resulting part quality.
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MMP : Multi-station Machining Process.
CS: Coordinate System.
DCS (D): Design Coordinate System.
FCS (F ): Fixture Coordinate System.
RCS (R): Reference Coordinate System.
DMV : Differential Motion Vector.
DTV : Differential Transformation Matrix.
HTM : Homogeneous Transformation Matrix.
KPC: Key Product Characteristic.

Mathematical symbols for SoV model
Ak−1: Matrix that represents how the variations are transmitted by datum features

generated before station k. Matrix defined by matrices A1
k−1, A

2
k−1, A

4
k−1

and A5
k−1.

Bk: Matrix that represents how fixture and machining deviations affect part qual-
ity at station k. Matrix defined by matrices Bf

k and Bm
k .

Ck: Matrix that represents how the deviations of part surfaces are related to the
deviations of KPCs inspected after station k.

uk: Fixture and machining deviations at station k.
vk: Measurement noise of the inspection process after station k.
wk: Un-modeled system noise and linearization errors at station k.
xk: Dimensional deviations of part surfaces at station k.
yk: Deviations of the KPCs inspected after station k.

General mathematical symbols
dR
F : Small translational deviations of F with respect to (w.r.t.) R,

[

dRFx, d
R
Fy, d

R
Fz

]T
.

HD
F : HTM of F w.r.t. D.

pF
i : Position vector of point i w.r.t. F ,

[

pFix, p
F
iy, p

F
iz

]T
.

xR
F : DMV of F w.r.t. R,

[

(dR
F )

T , (θR
F )

T
]T

.

θR
F : Small orientational deviations of F w.r.t. R,

[

θRFx, θ
R
Fy, θ

R
Fz

]T
.

δHD
F : HTM for small position and orientation deviations from nominal values of F

w.r.t. D.
∆D

F : DTM of F w.r.t. D.

1. Introduction

Multi-station machining processes (MMPs) are widely applied in order to ensure
modularity, flexibility, and reconfigurability of modern manufacturing systems. As
abstractively illustrated in Figure 1, a MMP possesses the following common char-
acteristics: (i) a series of machining operations are performed at multiple stations to
sequentially generate designated features of products; (ii) some features generated from
an upstream station are used as the datum features at downstream stations; and (iii)
due to the inter-station operational dependency, variations of quality characteristics will
be propagated from upstream stations to downstream stations.

The manufacturing variation propagation poses great challenges to the product and



February 26, 2013 14:32 International Journal of Production Research
Manuf˙variation˙surfaces˙rev6˙tr˙5˙borrar

International Journal of Production Research 3

manufacturing process design for MMPs. The traditional product-oriented approach
also called over-the-wall design, prevents the integration of design and manufacturing
activities to improve product development (Ceglarek et al. 2004). In order to overcome
this limitation and implement a process-oriented integrated product/process design
and reduce the ramp-up time, it is desirable to establish a mathematical model of the
3-dimensional (3D) variation propagation along stations and evaluate the impacts of
variation sources on product quality integrity.

There are mainly two types of 3D variation propagation modeling approaches for
MMPs: Model of Manufacture Part (MoMP, (Villeneuve et al. 2001)) and Stream-
of-Variation model (SoV, (Shi 2007, Liu 2010)). While both modeling approaches
are fundamentally similar, SoV model is preferable to the MoMP for process-oriented
activities, such as fault diagnosis and process planning, whereas the MoMP is preferable
to the SoV model for product-oriented activities, such as product tolerance analysis and
synthesis (Abellán-Nebot et al. 2012a).

The SoV model was developed for multi-station assembly processes (Jin and Shi
1999) and was later adapted for MMPs (Zhou et al. 2003). The well-known state space
model from control theory (Ogata 2001) is adopted to mathematically represent the
relationship between the variation sources (e.g., fixture mislocation) in MMPs and the
quality deviations of the machined surfaces (e.g., the depth of a distance between two
surfaces) generated at each station. More importantly, the SoV approach explicitly
models the propagation of the quality deviations from upstream stations to downstream
stations through datum schemes.






 

  


 




 








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











Figure 1. Manufacturing variation propagation in a MMP

SoV model is a mathematical representation of the relationship between dimensional
deviations of part surfaces and their causes, and the propagation of such random devia-
tions along multiple stations. The dimensional deviations of part surfaces from nominal
values are represented by a state vector xk where k = 1, · · · , N and N is the number
of stations in the MMP. As shown in Figure 1, the dimensional random deviations of
part surfaces machined in a MMP are mainly caused by three types of variation sources:
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fixture-induced variations, machining-induced variations and datum-induced variations.
The impact of these three variation sources on part surface deviations in an N-station
MMP can be defined from first principles with a generic state space model as (Abellán-
Nebot et al. 2012b)

xk = Ak−1 · xk−1 +B
f
k · uf

k +Bm
k · um

k +wk, k = 1, 2, · · · , N, (1)

where B
f
k · u

f
k represents the fixture-induced variations within station k, denoting u

f
k as

the fixture errors; Bm
k · um

k represents the machining-induced variations within station
k, denoting um

k as the cutting-tool path deviation; Ak−1 · xk−1 represents the variations
transmitted by datum features generated at upstream stations; wk is the un-modeled
system noise and linearization errors. The general framework of building the state space
model for a given N -station MMP is provided by Zhou et al. (2003), which presented the

procedure of deriving the matrices Ak−1, B
f
k and Bm

k at each station, according to given
product and process information (i.e. part geometry and fixture layouts). The matrices

Ak−1, B
f
k and Bm

k are defined as:

Ak−1 = [A1
k−1 +A5

k−1 ·A
4
k−1 ·A

2
k−1 ·A

1
k−1], (2)

B
f
k = [A5

k−1 ·A
4
k−1 ·A

3
k−1], (3)

Bm
k = [A5

k−1], (4)

where A1
k−1 is the relocating matrix; A2

k−1 is the datum-induced variation matrix; A3
k−1

is the fixture-induced variation matrix; A4
k−1 is an auxiliary matrix; and A5

k−1 is the
selector matrix (see Zhou et al. 2003). Figure 2 shows the methodology overview for the
SoV model derivation with the matrices defined at each step. Recently, Abellán-Nebot
et al. (2012b) expanded the matrix Bm

k to model machining-induced variations such as
cutting-tool wear, spindle thermal expansion, deflections and kinematic and geometric
machine-tool errors. However, one important limitation of the current SoV model is that
it can only model the MMPs using fixtures equipped with punctual locators (Zhou et al.
2003, Loose et al. 2007). Reflected in the state space model, this limitation is related to
the matrices A2

k−1 and A3
k−1, which are not generic to model other types of fixtures,

such as those based on locating surfaces. It is desirable to provide the capability of
modeling MMPs with general fixture devices, where surface-to-surface floating contacts
exist between workpiece and fixture (Kamali Nejad et al. 2012, Abellán-Nebot et al.
2012a). In order to overcome this limitation, this paper proposes a methodology to
derive the matrices A2

k−1 and A3
k−1 when fixtures based on locating surfaces are applied.

Unlike fixtures based on 3-2-1 fixturing scheme and punctual locators, fixtures based on
locating surfaces produce different workholding configurations corresponding to different
variation scenarios, and thus, different A2

k−1 and A3
k−1 matrices should be defined.

Furthermore, when a large number of stations are considered, the complexity of the
resulting SoV model grows exponentially, making its derivation and the part quality
prediction challenging. To address this challenge, a methodology to simplify the model
and analyze the part quality according to the worst-case approach is required.

The rest of the paper is organized as follows. Section 2 and 3 present the procedures of
deriving the matrices of the fixture- and the datum-induced variations, respectively, for
the MMPs with surface locating surfaces. As the resulting model may have significantly
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Figure 2. SoV model derivation and contribution of the paper

high dimension, Section 4 presents how to simplify the model and evaluate the part
quality when the worst-case approach is analyzed. Section 5 shows a case study to
validate the proposed methodology. Finally, Section 6 concludes the paper.

General assumptions: Datum surfaces and locating surfaces are assumed to be plane
and their form errors are assumed negligible. Geometric errors are assumed to be small
in comparison to nominal values and thus, the small-angle approximation can be applied.
Deformations due to clamping forces are assumed negligible.

2. Fixture-induced variations with locating surfaces

Given a fixture, a workpiece should be located at a unique location, which is defined
by its position and orientation and is considered to be deterministic if the workpiece
cannot make an infinitesimal motion while maintaining contact with all the locating
surfaces (Wang 2002). Due to fabrication and assembly imperfection, there are, however,
random deviations of the locating surfaces from their nominal locations. Such imper-
fection can also be represented as the random deviations of the true fixture coordinate
system (FCS) with respect to (w.r.t.) its nominal location (

◦

FCS), as illustrated in
Figure 3. Assuming that the position and orientation deviations are very small, the
FCS deviation is expressed by a DMV, denoted as x

◦F
F . This vector will be composed

of a position deviation vector, defined by d
◦F
F = [d

◦F
Fx, d

◦F
Fy, d

◦F
Fz]

T , and an orientation

deviation vector, defined by θ
◦F
F = [θ

◦F
Fx, θ

◦F
Fy, θ

◦F
Fz ]

T . Thus, the location deviation is

defined as x
◦F
F =

[

(

d
◦F
F

)T
,
(

θ
◦F
F

)T
]T

. Since the cutting-tool trajectory is also referenced

from ◦FCS, the deviation of FCS will lead to the deviation of the cutting-tool path
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w.r.t. the location of the workpiece, and thus, random deviations of machined surfaces
w.r.t. their nominal locations, as shown in Figure 3.

  



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
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(a) Nominal conditions
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   
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

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

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



(b) Conditions with fixture errors

Figure 3. Illustration of fixture-induced errors and coordinate systems.

In order to model the effects of fixture errors on the quality of a machined surface,
i.e., its deviation from nominal location, we consider an ideal machining operation and
a point i on the surface generated by the cutting-tool, as shown in Figure 3 (a). This
point is defined w.r.t. ◦FCS, and is denoted as p

◦F
i = [p

◦F
ix , p

◦F
iy , p

◦F
iz ]. With the vector

p̃
◦F
i = [p

◦F
i , 1]T , the point i w.r.t. the part design coordinate system (DCS, the reference

system for all the surfaces on a part), denoted as ◦DCS, can be expressed as:

p̃
◦D
i = H

◦D
◦F · p̃

◦F
i , (5)

where H
◦D
◦F is the homogeneous transformation matrix (HTM) of ◦FCS w.r.t.

◦

DCS.
However, due to fixture-induced errors (neglecting any other errors), the actual FCS
may deviate from ◦FCS and thus, the point on the machined surface will deviate w.r.t.
◦DCS, as shown in Figure 3 (b). The actual position of a point i in ◦DCS, given the
position of point i in ◦FCS is:

p̃
◦D
i = H

◦D
F · δHF

◦F · p̃
◦F
i , (6)

where δHF
◦F is the HTM for small position and orientation deviations of ◦FCS w.r.t.

FCS (see Appendix A). Thus, the deviation of the point i on the machined surface from
nominal values is:

δp̃
◦D
i = H

◦D
F · δHF

◦F · p̃
◦F
i −H

◦D
F · I4×4 · p̃

◦F
i ,

= H
◦D
F ·

(

δHF
◦F − I4×4

)

· p̃
◦F
i . (7)

According to Appendix A, Eq. (7) can be rewritten as

δp̃
◦D
i = −H

◦D
F · ∆

◦F
F · p̃

◦F
i , (8)

where ∆
◦F
F is the differential transformation matrix (DTM) and can be derived from

the DMV x
◦F
F =

[

(

d
◦F
F

)T
,
(

θ
◦F
F

)T
]T

. Therefore, the fixture-induced deviation can be
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defined as a function of x
◦F
F .
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Figure 4. A generic 3-2-1 locating scheme based on locating surfaces.

In order to derive x
◦F
F when fixtures based on locating surfaces are applied, the 3-2-1

locating scheme and the workpiece shown in Figure 4 is considered. The locating surfaces
1, 2 and 3 are in contact with the datum A (primary datum), B (secondary datum) and C
(tertiary datum) on the workpiece, respectively, and are used to constrain three degrees
of freedom (d.o.f.), two d.o.f. and one d.o.f., respectively. For this locating scheme, the
following restrictions apply:

(1) R1. There is a full contact between locating surface 1 and the primary datum
surface A, and thus, any point on datum surface A, denoted as Al, will also lie
on locating surface 1. Considering the CS of the surfaces with Z-axis pointing
normal to the surface, the condition

[

p̃1
Al

]

(z)
= 0 holds for any Al, where [·](z)

refers to the Z component of the vector.

(2) R2. There are at least two contact points between locating surface 2 and the
workpiece datum surface B. Thus, the constraints

[

p̃2
Bi

]

(z)
= 0 and [p̃2

Bj
](z) = 0

can be defined, where Bi and Bj are two contact points on the workpiece surface
B. For any other points on surface B that are potential contact points, denoted
as Bl for l "= i, j, the condition

[

p̃2
Bl

]

(z)
≤ 0 holds.

(3) R3. There is at least one contact point between locating surface 3 and the work-
piece tertiary datum surface C. For the contact point Ci on the workpiece surface
C, the condition

[

p̃3
Ci

]

(z)
= 0 holds. Also, the condition

[

p̃3
Cl

]

(z)
≤ 0 holds, where

Cl, l "= i, is any potential contact point between surfaces C and 3.

These restrictions ensure a deterministic contact between fixture surfaces and datum
surfaces. Note that the clamping order should keep the same sequence as the workpiece
mounting sequence, clamping firstly the primary datum with the fixture surface, and
then clamping the secondary and the tertiary datum. One can easily expect that any
random deviation of locating surfaces may generate a deviation of the FCS, defined by
the DMV x

◦F
F . Analyzing step by step the workpiece mounting sequence (see Figure 5),

x
◦F
F can be obtained as follows.

Step 1: The workpiece datum surface A is placed on the locating surface 1 (see Fig-
ure 5). In this step, the deviation of the locating surface 1 along the three constrained
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
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
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











































Figure 5. a) Nominal workpiece-fixture assembly. Sequence of small movements for locating the
workpiece on the actual fixture over the: b) primary datum, c) secondary datum, and d) tertiary
datum.

d.o.f. will generate a deviation of the workpiece surface A in its three corresponding
constrained d.o.f. As small deviation magnitudes are assumed, CS of surface A deviates
to that of A′. This small movement can be evaluated as:

δH
◦A
A′ = H

◦A
◦1 · δH

◦1
1 ·H1

A′ . (9)

According to restriction (R1), H1
A′ = H

◦1
◦A, and thus Eq. (9) becomes:

δH
◦A
A′ = H

◦A
◦1 · δH

◦1
1 ·H

◦1
◦A, (10)

where H
◦A
◦1 and H

◦1
◦A are defined according to the nominal part dimensions and nominal

fixture layout. Note that these small deviations are only carried out on the three
constrained d.o.f. and for the others, null deviations apply.

Step 2: The workpiece is moved over the primary datum to touch the locating surface
2 with its secondary datum surface B (see Figure 5). The two contact points, defined in
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restriction (R2) ensure:

[

p̃2
Bi

]

(z)
=

[

H2
B · p̃B

Bi

]

(z)
= 0, (11)

[

p̃2
Bj

]

(z)
=

[

H2
B · p̃B

Bj

]

(z)
= 0, (12)

[

p̃2
Bl

]

(z)
=

[

H2
B · p̃B

Bl

]

(z)
≤ 0, (13)

As the workpiece is moved to make contact, the HTM H2
B is defined as:

H2
B = H2

1 ·H
1
A ·HA

B ,

= (δH2
◦2 ·H

◦2
◦1 · δH

◦1
1 ) ·H1

A · (δHA
◦A ·H

◦A
◦B · δH

◦B
B ). (14)

Since only fixture variations are considered, there is no deviation of A (B) from ◦A (◦B)
and thus, matrices δHA

◦A and δH
◦B
B are 4×4 identity matrices. Furthermore, after step 1

the restriction (R1) satisfies the condition H1
A = H1

A′ = H
◦1
◦A. Considering that over the

primary datum the workpiece is moved to make contact with the secondary datum (and
thus there is an additional HTM δHA′

A′′ that defines the small translational and rotational
movement of the workpiece conducted over the primary datum to make the workpiece
contact at points Bi and Bj), Eq. (14) can be rewritten as:

H2
B = (δH2

◦2 ·H
◦2
◦1 · δH

◦1
1 ) · (H

◦1
◦A · δHA′

A′′) ·H
◦A
◦B. (15)

Note that matrix δHA′

A′′ defines the small translational and orientation deviations that
are constrained by the secondary datum surface, the other deviations defined in this
HTM are zero. By solving Eqs. (11), (12) and (15) constrained by Eq. (13), matrix
δHA′

A′′ can be evaluated.

Step 3: The workpiece is moved over the primary datum while maintaining the contact
between surfaces B and 2 until the workpiece is in touch with the locating surface 3 with
its tertiary datum surface C. The contact point, Ci, ensures:

[

p̃3
Ci

]

(z)
=

[

H3
C · p̃C

Ci

]

(z)
= 0, (16)

[

p̃3
Cl

]

(z)
=

[

H3
C · p̃C

Cl

]

(z)
≤ 0, (17)

where Ci and Cl are the points defined in restriction (R3). As the workpiece is moved
over the primary and secondary datum to make contact, the HTM H3

C is defined as:

H3
C = H3

1 ·H
1
A ·HA

C ,

= (δH3
◦3 ·H

◦3
◦1 · δH

◦1
1 ) ·H1

A · (δHA
◦A ·H

◦A
◦C · δH

◦C
C ). (18)

In this case, H1
A is equal to H

◦1
◦A ·δHA′

A′′ ·δHA′′

A′′′ , where δHA′′

A′′′ is the HTM that defines the
small translational movement of the workpiece performed over the primary and secondary
datum to make the workpiece contact at point Ci. Considering only fixture errors, Eq.
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(18) can be rewritten as:

H3
C = (δH3

◦3 ·H
◦3
◦1 · δH

◦1
1 ) · (H

◦1
◦A · δHA′

A′′ · δHA′′

A′′′) ·H
◦A
◦C .

(19)

By solving Eqs. (16) and (19) constrained by Eq. (17), matrix δHA′′

A′′′ can be evaluated.

Finally, the deviation of the FCS w.r.t. nominal values can be obtained by deriving
the position and orientation of CS A′′′ w.r.t. A by the following equation:

δH
◦F
F = H

◦F
◦A · δH

◦A
A′′′ ·HA′′′

F , (20)

which can also be presented as:

δH
◦F
F = H

◦F
◦A · δH

◦A
A′ · δHA′

A′′ · δHA′′

A′′′ ·HA′′′

F . (21)

Due to solid rigid movement, FCS is deviated in the same way as CS of the datum
surface A, i.e., HA′′′

F = H
◦A
◦F , and assuming that the deviations are small (second and

higher order small values can be neglected), Eq. (21) becomes:

δH
◦F
F = H

◦F
◦A ·

(

I4×4 + ∆
◦A
A′ + ∆A′

A′′ + ∆A′′

A′′′

)

·H
◦A
◦F . (22)

The terms ∆
◦A
A′ , ∆A′

A′′ and ∆A′′

A′′′ are DTMs obtained from δH
◦A
A′ , δHA′

A′′ and δHA′′

A′′′ (see
Appendix A) which are calculated from Eqs. (10), (15) and (19), respectively. The term
δH

◦F
F from Eq. (22) can be rewritten in vector form as:

x
◦F
F = [Υ1 Υ2 Υ3] · [(x

◦1
1 )T (x

◦2
2 )T (x

◦3
3 )T ]T , (23)

where x
◦1
1 , x

◦2
2 and x

◦3
3 represent the DMVs of the CS of the locating surfaces 1, 2 and

3, respectively; Υ1, Υ2 and Υ3 are the resulting matrices from reordering and rewriting
using DMVs. Note that the matrix related to fixture-induced variations used in Eq. (1)
to derive the SoV model, denoted as A3

k−1, is equal to −[Υ1 Υ2 Υ3]. Also note that
the rank of A3

k−1 should be 6 to ensure that the 6 d.o.f. of the workpiece are constrained.

3. Datum-induced variations with locating surfaces

As the fixture-induced variations will exert onto the part dimension through datum
surfaces and will propagate along multiple machining stations with datum schemes,
datum-induced variations corresponding to fixture based on locating surfaces should be
explicitly modeled. Datum surfaces used for locating the workpiece may always present
some degree of geometric imperfection due to manufacturing variability in previous
stations. Due to this imperfection, the part reference coordinate system (RCS) of the
workpiece in the fixture setup will deviate from its nominal location, denoted as ◦RCS,
and thus a dimensional variation of the machined part will present.

In order to model the impacts of deviations of datum surfaces, it is easy to consider an
ideal machining operation and a point i on the surface generated by a cutting-tool, as
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(b) Conditions with datum errors

Figure 6. Example of datum feature errors.

shown in Figure 6 (a). Without loss of generality, the CS of the primary datum surface
is defined as the RCS, denoted as ◦R, from which the machined surfaces are referred. A
point i w.r.t. ◦R is defined as:

p̃
◦R
i = H

◦R
◦F · p̃

◦F
i . (24)

However, ◦R may deviate from its nominal location due to datum-induced variations
(neglecting any other types of variations). This deviation can be modeled by a HTM
δHR

◦R and thus a point on the machined surface may deviate, as shown in Figure 6 (b).
The actual position of a point i w.r.t. R, knowing the position of point i w.r.t. the ◦FCS,
can be defined as:

p̃R
i = δHR

◦R ·H
◦R
◦F · p̃

◦F
i . (25)

If there are no datum-induced variations, δHR
◦R will reduce a 4×4 identity matrix. Thus,

the deviation of a point i on the machined surface due to datum-induced variations can
be obtained as:

δp̃R
i = (δHR

◦R ·H
◦R
◦F −H

◦R
◦F ) · p̃

◦F
i . (26)

According to Eq. (26), the deviation of a point on the machined surface is a function of
the deviation of R, which is modeled by the term δHR

◦R.

In order to derive δHR
◦R for fixtures based on locating surfaces, we consider the fixture

layout illustrated in Figure 4, the primary, secondary and tertiary datums are A (which
is the same as R), B, and C, respectively. According to the workpiece and clamping
mounting sequence explained in the previous subsection, the first step is to place the
datum surface A on locating surface 1. As only datum-induced variations are assumed
and the restriction (R1) applies, HA

1 = H
◦A
◦1 , and δHA

A′ is an identity matrix, I4×4. For
the second step, the workpiece is moved to make a contact between datum surface B and
locating surface 2, which is defined by the HTM δHA′

A′′ . There are at least two contact
points i and j that ensure Eqs. (11-13). Thus, the HTM H2

B can be defined as:

H2
B = H

◦2
◦1 · (H

◦1
◦A · δHA′

A′′) · (H
◦A
◦B · δHA

B). (27)
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From Eqs. (11-13) and (27), matrix δHA′

A′′ can be evaluated.

Similarly, the third step moves the workpiece to make a contact between datum surface
C and locating surfaces 3, and then, Eqs. (16) and (17) hold. As the workpiece is moved
over the primary and secondary datum to make contact, the HTM H3

C is defined as:

H3
C = H

◦3
◦1 · (H

◦1
◦A · δHA′

A′′ · δHA′′

A′′′) · (H
◦A
◦C · δHA

C), (28)

where δHA′′

A′′′ is the HTM that defines the small translational movement of the workpiece
over the primary and secondary datum surfaces to make the workpiece contact at point
Ci. From Eqs. (16), (17) and (28), matrix δHA′′

A′′′ can be evaluated.

By neglecting second-order small values (and higher), the deviation of A w.r.t. 1 is
defined as:

H1
A = H

◦1
◦A ·H1

A

= H
◦1
◦A ·

(

I4×4 + ∆A′

A′′ + ∆A′′

A′′′

)

, (29)

where ∆A′

A′′ and ∆A′′

A′′′ are the DTMs obtained from δH
◦A
A′ , δHA′

A′′ and δHA′′

A′′′ which are
calculated from Eqs. (27) and (28), respectively. From Eq. (29), it can be observed that

δH
◦A
A = δH1

A = I4×4 + ∆A′

A′′ + ∆A′′

A′′′ , (30)

since δH1
◦1 is I4×4.

It should be noted that in the current SoV model derivation, the deviation due to
datum-induced variations is added into the model through the deviation of FCS w.r.t.
the CS of datum surface A, represented by the DMV xA

F . According to Eqs. (31) and
(32)

HF
A = HF

1 ·H1
A, (31)

H
◦F
◦A · δHF

A = H
◦F
◦1 ·H

◦1
◦A · δH

◦A
A , (32)

it can be observed that δHF
A = δH

◦A
A , and rewriting δH

◦A
A from Eq. (30) in vector form,

δHF
A can be expressed by its DMV as:

xA
F = T1 · x

A
B +T2 · x

A
C , (33)

where xA
B and xA

C are the DMVs of the CSs of the locating datum surfaces B and C w.r.t.
locating datum A, respectively, and T1 and T2 are the resulting matrices from ordering
and rewriting Eq. (30) using DMVs. By regrouping the terms, Eq. (33) becomes

xA
F = A2

k−1 · [. . . xA
B . . . xA

C . . . ]T , (34)

where A2
k−1 = [0 . . . T1 . . . 0 . . . T2 . . . 0] is the matrix related to

datum-induced variations used in Eq. (1) to derive the SoV model.
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Table 1. Resulting matrices and inequalities for workholding configuration A-(B5B6)-C5

Υ1 =















0 0 0 0 0 0
0 0 0 LG 0 0
0 0 −1 LE/2 −LD/2 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0















, Υ2 =















0 0 1 −LE/2 −LG/2 0
0 0 0 LD 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0















, Υ3 =















0 0 0 0 0 0
0 0 1 −LG/2 −LD/2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















.

T1 =















0 0 −1 0 LF /2 0
0 0 0 −LD/2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0















, T2 =















0 0 0 0 0 0
0 0 −1 −(LF /2− LG) LD/2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















.

When does this configuration hold?
LD · θA

Cy
− LD · θ

◦
3

3y
+ LD · (−θA

Bx
+ θ

◦
2

2x
) ≤ 0; θ

◦
1

1x
· LG + θA

Cx
· LG − θ

◦
3

3x
· LG ≤ 0

LD · θA
Cy

+ θ
◦
1

1x
· LG − LD · θ

◦
3

3y
+ LD · (−θA

Bx
+ θ

◦
2

2x
) + θA

Cx
· LG − θ

◦
3

3x
· LG ≤ 0; −LG · (θA

By
+ θ

◦
1

1y
− θ

◦
2

2y
) ≤ 0;

4. Part quality prediction

Following the state space model formulation from control theory (Ogata 2001), a vir-
tual inspection after the kth machining station can be conducted and represented as a
measurement equation as:

yk = Ck · xk + vk, (35)

where yk is a vector containing the deviations of the M inspected key product character-
istics (KPCs) after station k; yk is represented as a linear combination of the deviations
of the workpiece surfaces at the kth station, i.e., Ck · xk; and vk is the measurement
noise of the inspection process. Considering Eqs. (1) and (35), the SoV model can be
expressed in an input-output form as:

Y = Γ ·U+ ε, (36)

where Y = yN = [y1, . . . , yM ]T and U = [uT
1 ,u

T
2 , . . . ,u

T
N ]T , where uk =

[(uf
k)

T (um
k )T ]T . Matrix Γ is built based on matrices Ak−1, B

f
k , Bm

k and Ck.
The procedure of deriving Γ and ε is explained in detail in Shi (2007).

When applying isostatic fixtures based on 3-2-1 punctual locators, Eq. (36) is unique.
However, if fixtures are based on surfaces, different workholding configurations may exist,
corresponding to the different variations of fixture and datum surfaces from current
and previous machining stations. Each workholding configuration is defined by different
matrices A2

k−1 and A3
k−1 according to the contact points between fixture and workpiece

surfaces. Thus, at each workholding configuration different Γ matrices are defined, and
Eq. (36) becomes







Y1
...

YP






=







Γ
f
1
...

Γ
f
P






·Uf + Ω · Γm ·Um + Ω · ε, (37)

where P is the number of potential workholding configurations in the MMP, and Y•

refers to deviations of the KPCs when the MMP presents the configuration •. That is, at
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each station, a specific workholding configuration presents. Note that each configuration
will present only if the sources of variation produce this specific workpiece-fixture
assembly. In other words, a specific workpiece-fixture assembly holds if a set of contact
points exist, and thus, this configuration is subjected to a set of inequalities that
can be denoted as Φ · U ≤ 0. From Eq. (37), Uf and Um are the staking vector

of the deviations of locating fixture surfaces and machining errors, respectively; Γ
f
•

and Γm are the corresponding block matrices from Γ; and Ω is a M ·P ×1 vector of ones.

It can be noted that the complexity of the SoV model increases notably when fixtures
based on surfaces are applied. Compare to the common SoV model for locator-based
fixtures, the size of the resulting SoV model in its input-output form as shown in
Eq. (37) increases exponentially with the number of stations. Furthermore, this SoV
model is subjected to a large number of inequalities that indicates which of the P con-
figurations apply for a given sources of variations, making its analysis extremely difficult.

For illustrative purposes, consider the fixture and workpiece shown in Figure 4. After
conducting the procedure explained in Subsection 2 and 3, matrices A3

k−1 and A2
k−1

(defined by sub-matrices Υ1, Υ2, Υ3, T1 and T2) can be obtained according to each
potential workholding configuration. Note that this fixture-workpiece assembly presents
up to 8 potential configurations if the 3-2-1 workpiece and clamping sequence explained
above is applied. Which one of the 8 potential configurations is presented depends on the
existing sources of variation. According to these sources of variation, the secondary datum
may block the workpiece movement through 2 different pair of contact points (points
B2 and B3, and points B5 and B6) and the tertiary datum may block the workpiece
movement through 4 different contact points (points C2, C3, C5 and C6), resulting in
8 different workpiece-fixture assemblies. Table 1 shows the resulting matrices for the
workpiece-fixture assembly defined by A-B5B6-C5, following the 3-2-1 locating scheme
notation, and the corresponding inequalities that make this configuration hold. As shown
in Table 1, this configuration will be subjected to 4 inequalities, which are obtained by
Eqs. (13) and (17). Different matrices and inequalities will be defined for the other 7
potential configurations. Then, P is equal to 8, and Eq. (37) is composed of 8 ·M linear
equations. Furthermore, if one considers a two station process with fixtures based on
surfaces, the 8 potential workholding configurations at station 1 will be combined with
the other 8 potential configurations at station 2, resulting in 64 potential configurations.
In this case, each configuration is subjected to 8 inequalities, 4 for each workholding
configuration. As a conclusion, an N -station machining process based on the fixture
shown in Figure 4 will be defined by Eq. (37), which is composed of M ·P linear equations,
subjected to 4N · P inequalities, with P equal to 8N .

4.1. Reduction of number of workholding configurations

As shown above, the fixtures based on workholding surfaces significantly increase the
complexity of the SoV model and the dimension of the model will be unmanageable for
MMPs with large number of stations. In order to reduce the dimension of the SoV model,
the following two-step methodology is proposed.

(1) Eliminating non-impacting sources of variation. The SoV model defined in
Eq. (37) can be simplified by eliminating the components of the DMV of
the locating surfaces that have no impacts on the d.o.f. constrained by the



February 26, 2013 14:32 International Journal of Production Research
Manuf˙variation˙surfaces˙rev6˙tr˙5˙borrar

International Journal of Production Research 15

fixture. For instance, for a plane with a local CS defined with Z axis pointing
normal to the place, any translational deviation along X and Y axis or orien-
tation deviation along Z axis keeps the plane invariant. Thus, the DMVs x

◦1
1 ,

x
◦2
2 and x

◦3
3 at each station can be simplified from 6 × 1 to 3 × 1 vectors, and

the number of sources of error related to the fixtures is decreased from 18N to 9N .

(2) Combining workholding configurations. The SoV model defined in Eq. (37) can
also be simplified by combining those workholding configurations that produce
the same deviation on the KPCs into a single one with a set of inequalities that
result from compounding their inequalities. As a result, the potential workhold-
ing configurations will decrease from P to P̄ configurations. Assuming that the
machining operations generate planar surfaces, this combining procedure can be
conducted by applying two rules:

• Rule 1: At each station, if the nominal primary datum is parallel to the ma-
chined surface, the effect of deviations of locating surfaces that locate the sec-
ondary and tertiary datums can be neglected. If one considers Q potential
workholding configurations at this station, any one out of this Q workhold-
ing configurations can be used for analyzing the resulting part quality. The
inequalities that apply in this case only refer to the upper (ub) and lower (lb)
boundaries of the DMV that defines the deviations of the locating surface for
the primary datum.

• Rule 2: At each station, if the nominal secondary datum is parallel to the
machined surface, the effect of deviations of the locating surface that locates
the tertiary datum can be neglected. If one considers Q potential workholding
configurations at this station, only the ones that show different contact points
at the secondary datum are considered, discarding those with different contact
points only at the tertiary datum. As the locating surface at the tertiary datum
has no influence, the resulting inequalities include: (i) those from the configu-
rations considered according to the contact points at the secondary datum, and
(ii) those related to the boundaries ub and lb of the DMVs that define the de-
viations of the locating surfaces at primary and secondary datums, discarding
those related to the tertiary datum.

4.2. Worst-case analysis

Given the SoV model expressed by Eq. (36), part quality prediction can be conducted
according to two common approaches: the worst-case analysis and the statistical anal-
ysis (Abellán-Nebot et al. 2012a). The worst-case analysis can be conducted assuming
that all coefficients increase the KPC variation. Thus, the worst-case deviation is defined
as

Ywc = ± (|Γ| · |U|+ |ε|) . (38)

It is straightforward to solve Eq. (38) if the MMP is composed of isostatic 3-2-1 fixtures
based on locators. However, for MMPs with fixtures based on locating surfaces, multiple
workholding configurations can arise, with each one subjected to a set of inequalities.
This, makes it extremely complex to solve Eq. (38).
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As a result, the worst-case variations of the KPCs have to be estimated for each
potential set of workholding configurations, subjected to its inequalities (i.e. Y1wc

, . . . ,
YP̄wc

should be obtained). Since the inequalities are linear and the worst-case analysis
refers to obtain the maximum and minimum values of the KPCs, the worst-case analysis
becomes a set of 2M · P̄ simplex optimization problems. The optimization result will
indicate the worst-case value of each KPC, and the values of the sources of variations at
which the worst-case value is produced.

5. Case Study

The proposed methodology is applied to generate the SoV model for a 3-station
machining system shown in Figure 7. This MMP is used to manufacture the part shown
in Table 2. After station 3, the machined part is moved to an inspection station to
measure KPC1, KPC2 and KPC3, as marked in the figure of Table 2. In order to
validate the proposed methodology and its worst-case analysis, the same MMP was ana-
lyzed using a Computer-Aided-Design (CAD) software named Pro/Engineer Wildfire 5.0.

 
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Figure 7. A three-station machining process. For all stations, LG = 35, LH = 95, LN = 90 and
LJ = LM = 95 (in mm).

The analyzed MMP present 512 potential workholding configurations (83, 8 different
workholding configurations at each station). Thus, the SoV model would be composed
of 1, 536 (3 · 512) equations and 6, 144 (4 · 3 · 512) inequalities, making its analysis highly
complicated. However, the model can be simplified by applying rules 1 and 2 accordingly.
At stations 1 and 2, rule 1 applies, and thus, only one workholding configuration (any
of them, denoted as ∗) at these stations is required to be analyzed subjected to the
inequalities of the boundaries of the primary locating surface. At station 3, rule 2 applies,
and thus, only 2 of the 8 workholding configurations with different contact points at the
secondary datum (contact points B2, B3, and B5, B6) are required to be analyzed,
subjected to 8 inequalities plus those inequalities related to the boundaries of the DMV
of the primary and secondary locating surface. Thus, the MMP can be simplified from 512
configurations to 2 configurations, where configuration 1 is denoted as (∗)/(∗)/(A-B2B3-
C5) and configuration 2 is denoted as (∗)/(∗)/(A-B5B6-C5). In total, 6 equations (3 · 2)
subjected to 8 inequalities (plus inequalities related to boundaries) define the simplified
SoV model. Using this model, the worst-case values of the KPCs were obtained through a
simplex optimization. Table 4 shows the results according to the methodology proposed
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Table 2. Product design information. Nominal position and orientation of each surface.

Part Surface (ω
◦
D

Si
)T (t

◦
D

Si
)T






  






 


























































S0 [0, π, 0] [47.5, 47.5, 0]
S1 [0, π, 0] [47.5, 47.5, 2.5]
S2 [0, 0, 0] [47.5, 42.5, 45]
S3 [0, 0, 0] [47.5, 90, 40]
S4 [π/2,−π/2,−π/2] [47.5, 0, 22.5]
S5 [0,−π/2, 0] [0, 47.5, 22.5]
S6 [π/2, π/2,−π/2] [47.5, 95, 20]
S7 [0, π/2, π/2] [95, 47.5, 22.5]
S8 [π/2, π/2,−π/2] [47.5, 85, 42.5]

t
◦
D

Si
: Nominal position (mm); ω

◦
D

Si
: Nominal orientation (rad)

Table 3. Upper and lower boundaries of locating surfaces and machining deviations. Values apply for all
machining stations (in mm and rad)

Locating surface deviations
[−0.04,−0.04,−0.04] ≤ [dx, dy, dz ] ≤ [0.04, 0.04, 0.04]

[−0.004,−0.004,−0.004] ≤ [θx, θy, θz] ≤ [0.004, 0.004, 0.004]
Machining deviations

[−0.02,−0.02,−0.02] ≤ [dx, dy, dz ] ≤ [0.02, 0.02, 0.02]
[−0.002,−0.002,−0.002] ≤ [θx, θy, θz] ≤ [0.002, 0.002, 0.002]

Table 4. Numerical resolution of the worst-case analysis. The pair numbers for each KPC refer to its
extreme points at each configuration (in bold the worst-case value). Dimensions in -mm-.

KPC1 KPC2 KPC3

Pro/E
Config. 1: (∗)/(∗)/(A-B2B3-C5)

45.0796 40.8629 10.7771
44.9204 39.3127 9.8507

Config. 2: (∗)/(∗)/(A-B5B6-C5)
45.0796 40.6873 10.1507
44.9204 39.1371 9.7938

Proposed Methodology
45.0800 40.8700 10.7700
44.9200 39.1300 9.7900

Average Error 0.5% 0.82% 1.37%

and the CAD solution. The results shown that the methodology proposed in this paper
is able to find the worst-case of the KPCs with an average error of 0.9%.

6. Conclusions and future work

Despite the well-known capability of the SoV model for modeling fixture-, datum- and
machining-induced variations in MMPs, its application has been limited to processes
where the fixture devices used only generate an unique isostatic configurations such as
those referred to 3-2-1 fixture schemes based on punctual locators. This paper has shown
in detail how to derive the effect of fixture- and datum- variations when applying fixtures
based on locating surfaces and how to include them into the SoV model formulation.
Due to the hyperstatic nature of this type of fixtures, the complexity of the SoV model
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grows exponentially, making the derivation of the model and the part quality prediction
challenging when a large number of stations are considered. To address this challenge,
a methodology to reduce the dimension of the model and analyze the part quality
according to the worst-case approach has been also discussed and proved effective
through a case study.

Potential future works may include improving the comprehensiveness of the model by
including surface form errors and modeling other type of contacts between fixture and
workpiece surfaces such as plane-cylinder contacts. It should be remarked that current
technologies in industry for modeling process variation are numerical-based (based on a
large number of simulations with CAD systems) rather than model-based. This is be-
cause of the complexity of the modeling derivation procedure. Meanwhile, practitioners
are focused on numerically analyzing many isolated pieces of information rather than
providing a comprehensive understanding of the manufacturing and production system
behavior. However, it is expected that future production systems will be designed from
a mathematical-model-based point of view, and some software providers have been
recently investigating on the application of the SoV model for modeling, analysis and
synthesis, and performance prediction of multi-station manufacturing processes (3DCS
2008). The mathematical derivation presented in this paper for fixture based on locating
surfaces can be of interest in this future application.
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Appendix A. Differential Transformation Matrix

A differential transformation matrix (DTM) in the 3D space is a 4 × 4 matrix that is
used to represent the small position and orientation deviation of one CS w.r.t. another
CS. For illustrative purposes, let us consider two CSs, 1 and 2, as shown in Figure A1.
If CS 2 is deviated from nominal values by a small position and orientation deviation
defined as d

◦2
2 = [d

◦2
2x, d

◦2
2y , d

◦2
2z ]

T and θ
◦2
2 = [θ

◦2
2x, θ

◦2
2y, θ

◦2
2z ]

T , respectively, the HTM between

the nominal CS ◦1 and the actual CS 2, named H
◦1
2 , is defined as:

H
◦1
2 = H

◦1
◦2 · δH

◦2
2 , (A1)

where H
◦1
◦2 is the HTM between the nominal CSs ◦1 and ◦2, and δH

◦2
2 is a HTM that

defines a small deviation of the CS 2 from nominal values, and is defined as:

δH
◦2
2 =









1 −θ
◦2
2z θ

◦2
2y d

◦2
2x

θ
◦2
2z 1 −θ

◦2
2x d

◦2
2y

−θ
◦2
2y θ

◦2
2x 1 d

◦2
2z

0 0 0 1









. (A2)
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Figure A1. HTM from CS 2 to CS 1 if CS 2 is deviated from nominal values.

Eq. (A2) can be rewritten as:

δH
◦2
2 = I4×4 + ∆

◦2
2 , (A3)

where ∆
◦2
2 is called the DTM which is defined as:

∆
◦2
2 =

(

θ̂
◦2
2 d

◦2
2

01×3 0

)

, (A4)

where θ̂
◦2
2 is the skew matrix of θ

◦2
2 and it is defined as:

θ̂
◦2
2 =





0 −θ
◦2
2z θ

◦2
2y

θ
◦2
2z 0 −θ

◦2
2x

−θ
◦2
2y θ

◦2
2x 0



 . (A5)

It is important to remark that any DTM defines the small position and orientation
deviation of one CS w.r.t. another CS, and these deviations can also be expressed in
vector form as a differential motion vector (DMV). For instance, given the DTM of CS
2 w.r.t. 1, denoted as ∆1

2, a DMV is straightforwardly defined as:

x1
2 =

(

d1
2

θ
1
2

)

. (A6)
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