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Abstract The AVC video coding standard adopts variable block sizes for inter frame coding
to increase compression efficiency, among other new features. As a consequence of this, an
AVC encoder has to employ a complex mode decision technique that requires high compu-
tational complexity. Several techniques aimed at accelerating the inter prediction process
have been proposed in the literature in recent years. Recently, with the emergence of many-
core processors or accelerators, a new way of supporting inter frame prediction has presented
itself. In this paper, we present a step forward in the implementation of an AVC inter
prediction algorithm in a graphics processing unit, using Compute Unified Device Archi-
tecture. The results show a negligible drop in rate distortion with a time reduction, on
average, of over 98.8 % compared with full search and fast full search, and of over 80 %
compared with UMHexagonS search.
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1 Introduction

ISO/IEC 1449610 | ITU-T Rec. H.264 or Advanced Video Coding (AVC) [8] is the newly-
established video coding standard which represents the best state-of-the-art video compres-
sion and achieves much higher compression than the other previously existing video coding
standards at the same quality. The main purpose of AVC is to offer a good quality standard
able to considerably reduce the output bit rate of the encoded sequences, compared with
previous standards, with a view to being used in a variety of applications such as DVD,
video-streaming, HDTV, etc., while exhibiting a substantially improved definition of quality
and image. AVC promises a significant advance compared with the commercial standards
currently most in use (MPEG-2 and MPEG-4) [7].

AVC adopts many video coding techniques, such as multiple reference frames, weighted
prediction, a de-blocking filter, variable block size and quarter-pixel precision for motion
compensation, which allow this optimum performance to be achieved at the expense of an
increase in the computational complexity of the encoder.

One of these new features is AVC inter prediction, which supports motion compensation
block sizes ranging from 16x 16 to 4x4, with many options available between them. AVC
inter prediction supports motion compensation block sizes ranging from 16x16, 16x8, 8%
16 to 8 x8, where each of the sub-divided regions is a MacroBlock (MB) partition. If the 8 x
8 mode is chosen, each of the four 8 x8 block partitions within the MB may be further split
in 4 ways: 8x8, 8 x4, 4x8 or 4x4, which are known as MB sub-partitions. Then, the Motion
Compensation (MC) and the Motion Estimation (ME) processes are carried out for each
partition and sub-partition, with these processes taking up most of the time of the encoding
algorithm. More specifically, ME can take up more than 90 % of the total encoding time.
Inter prediction is implemented in the reference software by means of the tree-structured MC
algorithm.

Therefore, it seems reasonable to accelerate ME in order to reduce the total encoding
time. Different computing platforms can be used for this purpose. Interesting cases are the
heterogeneous architectures. Examples of this type of platforms include Graphics Processing
Units (GPUs), Cell Broadband Engines (Cell BEs), and Field-Programmable Gate Arrays
(FPGAs). GPUs, for instance, consist of tens or hundreds of similar processing cores which
are designed and organized with the goal of achieving higher performance [5]. The demand
for these devices comes primarily from consumer applications, including multimedia and
computer or console gaming.

The progress of GPUs is now the focus of a great deal of attention. They have changed
from fixed pipelines to programmable pipelines, and the hardware design also includes
multiple cores, bigger memory sizes and better interconnection networks that offer practical
and acceptable solutions for speeding up both graphics and non-graphics applications. GPUs
are highly parallel and are normally used as coprocessors to assist the CPU with massive
data computations.

For example, NVIDIA® has developed a powerful GPU architecture called Compute
Unified Device Architecture (CUDA) [15], which consists of a Single Instruction Multiple
Data (SIMD) computing device. The main feature of these devices is a large number of
processing elements integrated into a single chip at the expense of a significant reduction in
cache memory. For instance, the architecture of the NVIDIA® GPUs is organized as a set of
SIMD multiprocessors called Stream Multiprocessors (SM). Each SM has multiple process-
ing elements and a set of resources shared by all cores. Each core executes the same
instruction at the same clock cycle but on different data. GPUs also have an external DRAM
memory which can be classified depending on its access mode.
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The ME algorithm proposed in the AVC encoding algorithm fits well in the GPU
philosophy, and offers a new challenge for GPUs. The main issue is how to efficiently
distribute all the computations over the GPU. This paper proposes an algorithm to perform
the integer-pixel and fractional-pixel ME developed for the AVC over a GPU. In order to
evaluate the algorithm, both in terms of time and in terms of Rate Distortion (RD)
performance, the algorithm is integrated in the AVC JM reference software, using CUDA.
The algorithm obtains on average a speed up of over 86 compared with full search and fast
full search, and of over 5 compared with UMHeagonS search.

The rest of the paper is organized as follows: Section 2 presents related proposals; the
details of the implementation of our approach and its performance evaluation are presented
in Sections 3 and 4, respectively; finally, the conclusions and future work are set out in
Section 5.

2 Related work

In the AVC JM reference software, inter prediction is the most computationally-expensive
task. It is carried out in two steps: MC and ME. In the literature, many approaches have been
proposed in order to accelerate these processes. Most of them are based on estimate data
using faster algorithms, aiming to determine which MB partitions are not suitable to be
selected for encoding the current MB, based on its characteristics or determining stopping
criteria for the MB mode selection algorithms. But, until now, there have not been many
solutions which make use of GPUs to accelerate this highly complex algorithm, which is the
major focus of this paper: to exploit the powerful GPU architecture to accelerate the AVC
IM reference software ME algorithm.

In the framework of video processing using GPUs, one of the pioneering approaches was
developed by Kelly and Kokaram in 2004 [11]. In this work, the authors propose using
computer graphics hardware for fast image interpolation. Basically, the authors implemented
the well-known full search block-matching ME algorithm by using the OPENGL API. The
results show a speedup of up to fourfold. However, the ME algorithm is only a part of the
current video coding standards. In the same year, Chen et al. in [3], exploiting hyper-
threading architectures, parallelized the AVC encoding algorithm using the OpenMP
programming model for Intel architectures. The authors obtained speedups of up to fourfold.
This implementation was not a GPU-based approach but was instead a hyper-threading one.

In 2006, Ho et al. in [6] presented an ME algorithm for AVC using GPUs based on a
block-by-block approach and providing a mechanism which is able to adjust the arithmetic
intensity to maximize performance on different GPUs.

In 2007, Lee et al. in [13] presented multi-pass and frame parallel algorithms to accelerate
the AVC ME using a GPU. They unroll and rearrange the multiple nested loops involved in
the ME algorithm by using the multi-pass method over the GPU.

In 2008, Chen and Hang in [2] proposed an implementation of the AVC ME algorithm
using CUDA. The algorithm is based on an efficient block-level parallel algorithm for the
variable block size ME in AVC. They decompose the AVC ME algorithm into 5 steps so that
they can achieve highly parallel computation. Also in 2008, Kung et al. in [12] presented a
GPU-based ME for 4x4 blocks. They rearrange the 4 x4 block encoding order in order to
overcome the dependencies between adjacent MBs. However, AVC defines more block sizes
for ME.

In 2009, Schwalb et al. in [17] presented a small diamond search ME adapted to the
programming model of modern GPUs. They reduce the execution time compared with the
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Unsymmetrical Multi-Hexagon search (UMHexagonS) ME algorithm. The coding efficien-
cy is lower than the one reported by UMHexagonS. In the same year, Momcilovic and Sousa
in [14] proposed a scalable parallelization approach for AVC ME. They obtain the Motion
Vectors (MVs) by applying efficient data reusing techniques and exploiting the power of the
GPUs.

Finally in 2010, Cheung et al. in [4] proposed a GPU implementation of the simplified
Unsymmetrical Multi-Hexagon search (smpUMHexagonS) ME algorithm. The authors
divide the current frame into multiple tiles. Each tile is processed by a single GPU thread,
and different tiles are processed by different independent threads concurrently on the GPU.
They report significant bitrate increases (12 %) with a penalty in quality (0.4 dB) depending
on the sequence and the tile length.

The present approach uses the same starting point as [2], but our work (as will be shown
below) offers better performance than that obtained in [2]. This is mainly due to an improved
usage of memory transfers (our algorithm performs as few memory transfers and allocations
as possible, since memory transfers and allocations can degrade the algorithm’s perfor-
mance), a considerable reduction in bank conflicts and an adequate definition and manage-
ment of data structures. Moreover, in [2] there are some parts of the algorithm that are not
parallelized, such as the seven different MB-partitions, which does not occur in this work.
Therefore, the present work improves the AVC ME procedure, creating a more parallel and
more efficient procedure. Moreover, the work presented in [2] does not offer RD results,
because they only implement the ME algorithm and do not include it in any AVC encoder.
Thus, the speedups are meaningless since the quality and bit rate are as important as the time
reduction.

In a nutshell, there are not many approaches focused on AVC ME implementation
in GPUs using CUDA, and most of them do not analyze RD performance. The time
reduction, or the speedup, is a very important feature that can be achieved by using
GPUs, but all the approaches must keep the RD as close as possible to the reference
software, which is a sequential approach to be run on a traditional CPU. Moreover,
there are some approaches that do not focus on video coding standards and only try
to parallelize a part of them, such as ME. In the AVC video coding standard, ME is
only a part of the whole encoding algorithm and, therefore, all the approaches should
try to combine all of the coding tools in order to show how this affects the rest of the
modules. At this point, the approach presented in this paper offers an implementation
of the AVC reference software video-encoding algorithm using a GPU as a co-
processor of the CPU. Our new approach is integrated in the AVC JM 17.2 reference
software [9] and offers a high speed up with a negligible RD drop.

3 Proposed inter prediction on CUDA

The main challenge of this approach is to efficiently support the tree-structured MC
algorithm executed in the AVC JM 17.2 reference software encoder [9] for P frames. The
algorithm is divided into two main steps: integer-pixel ME and fractional-pixel ME.
Before starting with the execution of the GPU code, some data must be transferred to the
GPU DRAM. The data which does not change during the execution is transferred once per
sequence and is allocated to the GPU constant memory: frame dimensions, search range,
search area dimensions, number of positions inside the search area, and distribution of
positions within the search area, which has been changed to exploit locality in memory
accesses. Figure 1.a shows the search area distribution used by the JM reference software,
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Fig. 1 Search area distribution, a) spiral pattern, b) custom pattern

which follows a spiral pattern and position 0 corresponds to the center of the search area.
Figure 1b shows our custom search area distribution, which follows the raster scan order and
position 0 corresponds to the top-left corner of the search area and the positions are
distributed by rows. Position values shown in Fig. 1b are an example, and they depend on
the Search_Range parameter.

At the beginning of coding each P frame, the search area MV predictors (MV,s) are
calculated and transferred to the GPU DRAM. The search area MV s are calculated using
the motion information from the previous frame, unlike in a sequential execution in which
the motion information of neighbor MBs can be used. We use as MV, the 16x16 MV of the
MB located in the same position in the previous frame. The frame to be coded and the
reference frame are also transferred to the GPU DRAM.

3.1 Integer-pixel motion estimation

The proposed algorithm for integer-pixel ME is divided into three steps which need to be
executed sequentially following a highly-parallel procedure by using the GPU: calculate 4 %
4 Sum of Absolute Differences (SAD) costs, build structured motion tree and perform a
reduction. The steps are executed once per frame, obtaining the MVs for all MB partitions
and sub-partitions with integer-pixel accuracy, in parallel.

The goal of the first step is to obtain the 4x4 SAD-Submatrix for each MB in a frame, as
depicted in Fig. 2. For this purpose, a GPU thread is generated for each search area position
((2*Search_Range)* search area positions per MB) and 256 threads are grouped into a GPU
thread block. Contiguous threads are mapped to contiguous search area positions as depicted
in Figs. 1b and 2. The SAD is computed in 4 x4 blocks; thus, each thread obtains 16 SAD
costs resulting from dividing the MB into 4 x4 blocks (bg to bys in Fig. 2), so a thread obtains
all 4x4 SAD costs associated to a certain MB candidate position in the search area.
Therefore, each column of the 4 x4 SAD-Submatrix depicted in Fig. 2 corresponds to one
position checked inside the search area, which is calculated by the same GPU thread.
Intermediate results for this kernel (4x4 SAD-Submatrix) are stored in GPU registers for
faster memory access by the second step.
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Fig. 2 Obtaining 4x4 SAD costs

The second step is performed by the same GPU kernel used to perform the first step. By
using the 4x4-block SAD calculations the second step obtains the SAD costs for the
different partitions and sub-partitions required in the tree-structured MC algorithm. Figure 3
shows how to build the SAD costs for a given position (Pst) for the different MB partitions
and sub-partitions starting with the 4x4 SAD costs. Our algorithm only needs to add two 4 x
4 SAD costs to obtain one 8 x4 SAD cost and so on. This procedure is possible because we
use a common search area for all MB partitions and sub-partitions, unlike a sequential
implementation which can calculate separate MV,s and separate search areas for the
different MB partitions and sub-partitions. Furthermore, to compute the final costs, the
Lagrangian cost equation is used. The Lagrangian cost is defined as SADyg + X *
vectoryis, Where vectory is the number of bits required to encode the MV - MV, and X
depends on the Quantification Parameter (QP) used to encode the sequences. Intermediate
results are stored in multiprocessor local shared memory for the final step.

Finally, the same GPU kernel performs a partial reduction (third step) of the generated
data. At this point, each thread block contains the motion information for all partitions and
sub-partitions for 256 correlative search area positions and applying a binary reduction for
each partition/sub-partition obtains the best MV for each partition/sub-partition of the
associated positions. Figure 4 shows a generic binary reduction in which each thread
involved in the reduction procedure (ty to t,,.;, where m is the number of threads involved
in the reduction procedure) performs a reduction for each row in multiprocessor shared
memory (by to by.;, where N is the number of rows in multiprocessor shared memory
involved in the reduction procedure). Note that m is half of the remaining positions in any of
the eight iterations needed to reduce from 256 positions to 1. In order to complete the
reduction process, eight iterations are needed, starting with 256 (2°%) Lagrangian costs per
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Fig. 3 SAD cost building for different MB partitions
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partition/sub-partition and finishing with one Lagrangian cost per sub-partition, where the
SAD-matrix size is reduced by half in each iteration. The reductions are performed with
SAD-matrix sizes (S) of 256, 128, 64, 32, 16, 8, 4, and 2 using T strides, such that T =S/2, to
obtain the best Lagrangian cost per block. These strides are chosen to avoid local shared
memory bank conflicts. The code for the eight iterations is unrolled to avoid unnecessary
loop climbs. Intermediate results are allocated to multiprocessor shared memory.

At the end of this kernel, each thread block launched for execution returns the best 41
Lagrangian costs (all MB partitions of the tree-structured MC algorithm) associated to 256
search area positions, and the resulting data is allocated to global GPU memory.

An independent GPU kernel performs the final reduction following the same binary
reduction explained above. At this point, in GPU global memory there are still
(2*Search_Range)?/256 Lagrangian costs for each partition/sub-partition. This last
kernel performs a final reduction per sub-partition to obtain the best Lagrangian cost
for each partition/sub-partition of each MB in a frame. Final results are located in the
GPU global memory. When the GPU kernels have been completed, the final results
are transferred to CPU main memory.

3.2 Fractional-pixel motion estimation

In order to further improve compression, the AVC standard assumes that the best match can
be found in a region offset from the current MB (search area) by an integer number of pixels.
However, for many MBs a better match can be obtained by searching a region interpolated to
sub-pixel accuracy; for this case, a new prediction pixel is created by means of an interpo-
lation of its neighbor. The AVC reference software supports quarter-pixel accuracy, which
means that the image sizes are multiplied by four in each dimension or, in other words, one
pixel is converted into sixteen sub-pixels. One of these sub-pixels is the pixel with full-pixel
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accuracy; three of them are the sub-pixels with half-pixel accuracy and the other twelve
pixels are the sub-pixels with quarter-pixel accuracy.

As mentioned at the beginning of this section, the images are located in GPU
DRAM with full-pixel accuracy. So, we need firstly to extend the reference images to
sub-pixel accuracy. The sub-pixels with half-pixel accuracy are obtained by means of
a 6-tap filter and the sub-pixels with quarter-pixel accuracy are obtained by a bilinear
filter. One GPU thread per integer-pixel is generated and it applies both filters to
obtain the fifteen sub-pixels.

The sub-pixel accuracy ME is performed in two steps: the first one is the half pixel
refinement and the second one is the quarter pixel refinement, which are performed for all
partitions. The best matching obtained for full-pixel accuracy becomes the center point for
half-pixel refinement, and the best matching for half-pixel refinement becomes the center for
quarter-pixel refinement. The algorithm for half-pixel and quarter-pixel refinement is the
same, but applied over different data.

The algorithm for sub-pixel ME is similar to the algorithm used for full-pixel ME: we
divide the MB into sixteen 4x4 blocks and each one takes as its starting point the
appropriate MV, i.e., all 4x4 blocks will take the same MV to perform the 16> 16 partition
and the final cost will be obtained using atomic GPU operations. On the other hand, all 4 x4
blocks will take different M Vs to perform the 4 x4 partition and no extra operations will be
needed. The same reduction procedure used for full-pixel accuracy ME is used to obtain the
best MV. However, there are two important things to take into account here. First, we cannot
reuse the motion information from the smallest partition to obtain the Lagrangian cost of the
higher partition because each partition has a different starting point (full-pixel MV or half-
pixel MV). We have to recalculate the 4x4 cost for each partition. Second, the metric to
compute the Lagrangian cost is the Hadamard SAD instead of SAD, as configured for the
baseline profile in the AVC JM 17.2 [9] reference software used. Hadamard SAD is more
complex than SAD, but it gives better results.

4 Performance evaluation

In order to test the performance of the algorithm proposed in this paper, it was integrated in
the AVC JM 17.2 reference software encoder [9]. The parameters used in the AVC encoder
configuration file were those included in the baseline profile of this reference software. Only
some parameters were changed in the configuration file:

*  The number of reference frames was set to 1 in order to keep the complexity as low as
possible, because higher values imply excessive time consumption. An analysis using
more reference frames is possible but the conclusions obtained will be the same
regardless of the number of reference frames used, because the algorithm is executed
as many times as reference frames configured.

* RD-Optimization was disabled for the same reason as the NumberReferenceFrames
parameter.

*  The GOP pattern was set to I(11)P.

* The tests were carried out with popular sequences in VGA format (640x480), 720p
format (1280x720) and 1080p format (1920x1080), so the SourceWidth and Source-
Height parameters were changed accordingly.

* Depending on the length of the sequence, the parameter FramesToBeEncoded was
adjusted in order to encode the full sequence in each case.
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*  The Quantization Parameter (QP) called QPISlice and QPPSlice was varied between 28,
32, 36 and 40, according to [1, 10, 18].

* The search range was set to 32, which means 4096 positions inside the search area per
MB partition and sub-partition.

* The frame rate parameter was set to 30 for VGA format (30 Hz) and 50 for 720p and
1080p formats (50 Hz).

* By default the SearchMode for testing was full search, but we also tested our
approach using fast full search and Unsymmetrical Multi-Hexagon Search
(UMHexagonS) mode as reference. More information about these ME algorithms
can be found in [16].

In order to make a proper comparison, an unmodified AVC reference software encoder
implementation was run on the same machine as the proposed algorithm, with the same
encoding configuration and with no calls to the GPU.

4.1 System

To evaluate the performance of the proposed algorithm, the following development envi-
ronment was used: the host machine used was an Intel® Core™ i7 running at 2.80 GHz with
6 GB of DDR3 memory. The GPU used was an NVIDIA GTX480 with an NVIDIA driver
and CUDA support (260.19). The operating system for this scheme was Linux Ubuntu 10.4
x64 with GCC 4.4. Table 1 shows the main GPU features.

4.2 Metrics
In order to evaluate the performance of our proposal the following metrics were used:

* RD function. In the definition of the RD function, the PSNR is the distortion for a given
bit rate. The averaged global PSNR is based on Eq. 1. The Luminance PSNR is
multiplied by four, since the YUV input files are in the format 4:2:0, which is composed
of four 8x8 blocks for the luminance component and only two 8%8 blocks for the
chrominance components.

4xPSNRy + PSNRy + PSNRy

PSNR = (1)
6
Table 1 GPU main features

characteristic GTX480
Compute capability 2.0
Global memory 1.5 GB
Number of multiprocessors 15
Number of cores 480
Constant memory 64 KB
Shared memory per block 48 KB
Registers per block 32,768
Max active threads per multiprocessor 1,536
Clock rate 1.4GHZ
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TR and Speedup. This is to evaluate the time saved by the proposed algorithm. Time
Reduction (TR) is based on Eq. 2 and Speedup is based on Eq. 3.

Tr — T
TR(%) = LM » 100 )
Tim
T
Speedup = M (3)
Tr

Ty denotes the coding time used by the AVC JM 17.2 reference software, and Ty is the

time taken by the algorithm proposed in this paper. Tg; also includes all the computational
costs for the operations needed in order to prepare the information required by our proposal.

APSNR and ABitrate. The experiments were carried out on the test sequences using
four quantization parameters, namely, QP=28, 32, 36 and 40. The detailed procedures
for calculating bitrate and PSNR differences can be found in the work by Bjentegaard
[1], and make use of Bjentegaard and Sullivan’s common test rule [18]. These proce-
dures have been recommended by the JVT Test Model Ad Hoc Group [10]. The YUV
files used for comparing the PSNR results are the original YUV file at the input of the
AVC JM 17.2 reference software and the one obtained after decoding the AVC video
stream using the AVC JM 17.2 reference software decoder.

Frames per second (FPS). FPS shows the frames coded in a second by the different parts
of the AVC encoder.

4.3 Results

Tables 2, 3 and 4 show that the RD performance is practically the same for our GPU-based
approach as for three of the most well-known ME algorithms implemented by the reference
AVC encoder (full search, fast full search and UMHexagonS search [16]). The penalty
obtained by our algorithm compared with the full search and fast full search algorithms is
allowed due to the TRs obtained, since most of the operations are executed in parallel. This

Table 2 RD Performance of the proposed GPU-based algorithm for VGA sequences

Sequence Full Search Fast Full Search UMHexagonS Search
APSNR (dB) ABitrate (%) APSNR (dB) ABitrate (%) APSNR (dB) ABitrate (%)

Fun fair —0.026 0.82 -0.032 1.02 0.045 —-1.40
Harp -0.068 2.25 -0.079 2.64 0.001 -0.02
Mobile -0.082 2.36 -0.094 2.72 —-0.019 0.49
Parade -0.072 1.97 -0.083 2.29 —0.024 0.60
Sgi-ant -0.082 2.33 -0.082 232 —-0.016 0.49
Soft-football -0.039 1.22 -0.039 1.21 0.080 -2.72
Tempete —0.068 1.99 —0.081 2.35 —0.014 0.27
Waterfall -0.072 2.66 -0.104 3.88 —-0.026 0.98
mean -0.064 1.95 -0.074 2.30 0.003 -0.16
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Table 3 RD Performance of the proposed GPU-based algorithm for 720p sequences

Sequence  Full Search Fast Full Search UMHexagonS Search

APSNR (dB) ABitrate (%) APSNR (dB) ABitrate (%) APSNR (dB) ABitrate (%)

Coral —0.027 1.13 —0.043 1.79 0.054 —2.08
Dolphins —0.072 2.59 —0.087 3.11 0.199 -7.07
Mobile —0.037 1.15 —0.068 2.16 0.031 -1.12
Nile —0.104 4.03 —0.183 7.27 0.009 —0.31
Parkrun —0.043 1.40 —0.045 1.48 —0.018 0.57
Shields —0.043 1.38 —0.108 3.48 —0.038 1.00
Stockholm —0.040 1.35 —-0.105 3.87 —0.021 0.45
mean —0.052 1.86 —0.091 3.31 0.031 -1.22

RD penalty is a consequence of some algorithm issues, such as the custom MV,s or the
search area distribution. As the ME for a given MB is calculated concurrently together with
all the MBs of the current frame, the center point of the search area may not be adjusted by
taking into account the information of the neighbor MBs because this information is not
accessible. However, the algorithm described in this paper may determine sub-optimal MV ,s
by using previous frames. On the other hand, our algorithm outperforms the coding
efficiency of the UMHeaxagonS search algorithm.

Figure 5 shows the RD graphic results for the reference and the proposed approaches, for
different sequences in VGA format and Fig. 6 shows them for 1080p format, from a value of
28 to 40 for QP, comparing them with the full search and UMHexagonS search algorithms.
As can be seen from the figure, the PSNR vs. bit rate obtained with the proposed encoder,
based on our algorithm, deviates slightly from the results obtained when applying the
sequential reference encoders. Due to space limitations only a sub-set of the complete set
of sequences is shown.

Table 5 shows the speedup, TR and its associated FPS for the ME process against three of
the most well-known ME algorithms implemented by the reference AVC encoder (full

Table 4 RD Performance of the proposed GPU-based algorithm for 1080p sequences

Sequence  Full Search Fast Full Search UMHexagonS Search

APSNR (dB) ABitrate (%) APSNR (dB) ABitrate (%) APSNR (dB) ABitrate (%)

Blue sky —0.064 2.08 —0.056 1.80 0.168 =5.19
Crowd —0.118 3.86 —0.130 4.26 0.035 -1.25
Ducks —0.037 1.20 —0.047 1.52 —0.002 —-0.12
Into Tree —-0.074 3.66 —0.124 5.48 0.026 —-1.18
ParkJoy —-0.077 2.33 —0.083 2.52 0.017 —0.61
Pedestrian —0.051 2.27 —0.065 2.92 0.168 —6.79
Riverbed 0 —-0.03 —0.004 0.15 0.024 -0.91
Tractor —-0.127 4.49 —0.127 4.47 0.557 —17.50
mean —0.069 2.48 —0.080 2.89 0.124 —4.19
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Fig. 5 RD results comparing the performance of the proposed and the AVC JM reference software encoder
for VGA sequences

search, fast full search and UMHexagonS search [16]) for VGA format, Table 6 shows them
for 720p format and Table 7 shows them for 1080p format. The first main column shows the
differences between the GPU approach compared with the full search algorithm, in the
second main column compared with the fast full search algorithm and in the third main
column compared with the UMHexagonS search algorithm. Finally, the fourth main column
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Fig. 6 RD results comparing the performance of the proposed and the AVC JM reference software encoder
for 1080p sequences
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Table 5 Time Reduction of the proposed ME for VGA sequences

Sequence Full Search Fast Full Search UMHexagonS FPS
TR% Speed up TR% Speed up TR% Speed up

Fun fair 99.33 60.01 98.30 58.76 79.50 4.88 19.46
Harp 98.28 58.22 98.39 62.20 74.67 3.95 19.58
Mobile 98.53 67.84 98.28 58.06 78.25 4.60 19.45
Parade 98.55 69.04 98.27 57.74 76.87 4.32 19.47
Sgi-ant 97.66 42.74 98.30 58.92 64.24 2.80 19.79
Softfootball 98.77 81.43 98.34 60.10 85.03 6.68 19.23
Tempete 98.47 65.40 98.30 58.90 77.74 4.49 19.47
Waterfall 98.32 59.53 98.33 59.87 71.40 3.50 19.54
mean 98.34 60.42 98.33 59.71 75.25 4.04 19.50

shows the FPS for the ME process obtained by our proposed algorithm. The GPU
approach considerably reduces the time requirements compared with all ME algo-
rithms analyzed. On average, the algorithm obtains a speedup of over 52.1 (TR over
98 %) for all video content compared with the full search and fast full search
algorithms, and it obtains a speedup of over 3.6 (TR over 72 %) for all video content
compared with the UMHexagonS algorithm.

Table 8 shows the speedup, TR and its associated FPS, focusing exclusively on the
parallelized process of the ME on the GPU (ME is composed of our parallel
algorithm as well as of other parts that we do not port to the GPU, i.e. skip mode,
ME structure initialization and MVs calculation) for VGA format, Table 9 shows
them for 720p format, and Table 10 shows them for 1080p format. The first main
column shows the differences between the GPU approach compared with the full
search algorithm, the second main column shows the comparison with the fast full
search algorithm and the third main column shows the comparison with the UMHex-
agonS search algorithm. Finally, the fourth main column shows the FPS obtained for
the parallelized process of the ME. As expected after the analysis of Tables 5, 6 and

Table 6 Time Reduction of the proposed ME for 720p sequences

Sequence Full Search Fast Full Search UMHexagonS FPS
TR% Speed up TR% Speed up TR% Speed up
Coral 97.20 35.77 98.42 63.26 62.36 2.66 6.57
Dolphins 98.03 50.88 98.40 62.66 75.41 4.07 6.49
Mobile 98.44 64.05 98.35 60.44 73.84 3.82 6.53
Nile 97.62 41.94 98.41 62.73 64.01 2.78 6.57
Parkrun 98.78 82.12 98.29 58.41 79.63 4.90 6.48
Shields 98.23 56.63 98.33 59.84 76.15 4.19 6.54
Stockholm 98.27 57.93 98.35 60.67 75.14 4.02 6.55
mean 98.08 52.18 98.36 61.10 72.36 3.62 6.54
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Table 7 Time Reduction of the proposed ME for 1080p sequences

Sequence Full Search Fast Full Search UMHexagonS FPS
TR% Speed up TR% Speed up TR% Speed up
Blue sky 97.72 43.84 98.42 63.44 72.35 3.62 2.89
Crowd 98.56 69.39 98.33 60.02 75.50 4.08 2.86
Ducks 98.84 85.87 98.31 59.17 76.64 4.28 2.86
Into Tree 98.53 67.99 98.43 63.53 71.86 3.55 2.87
ParkJoy 98.74 79.19 98.35 60.64 77.96 4.54 2.86
Pedestrian 97.64 42.42 98.41 62.92 71.30 3.48 2.90
Riverbed 98.86 87.87 98.38 61.69 83.12 5.92 2.83
Tractor 98.02 50.60 98.35 60.47 78.70 4.69 2.84
mean 98.36 61.11 98.37 61.44 75.93 4.15 2.86

7, the GPU approach achieves the best results focusing exclusively on the parallelized
process of the ME. On average, the algorithm obtains a speedup of over 86.7 (TR
over 98.80 %) for all video content compared with the full search and fast full search
algorithms, and it obtains a speedup of over 5.1 (TR over 80.4 %) for all video
content compared with the UMHexagonS algorithm.

Finally, Tables 11, 12 and 13 show the average FPS for the whole AVC encoding process
obtained after encoding all sequences from a value of 28 to 40 for QP, depending on the
sequence format. Also, they show the required time to encode a two-hour video (216000
frames for a VGA format at 30 Hz and 360000 frames for a 720p and 1080p format at
50 Hz), where the solution based on GPU achieves a considerable time reduction.

4.4 Comparison with other known results
In this section, we undertake a comparative analysis of our proposal with some of the most

recent and prominent approaches in video coding using GPUs. In many cases, a comparative

Table 8 Time Reduction of the proposed GPU-based algorithm for VGA sequences

Sequence Full Search Fast Full Search UMHexagon$S FPS
TR% Speed up TR% Speed up TR% Speed up

Fun fair 98.99 99.37 98.97 97.18 86.12 7.21 32.48
Harp 98.96 95.80 99.02 102.39 82.27 5.64 32.50
Mobile 99.11 112.59 98.96 96.20 85.20 6.76 32.52
Parade 99.13 114.47 98.95 95.59 84.12 6.30 32.54
Sgi-ant 98.47 65.30 99.02 102.02 67.75 3.10 32.63
Softfootball 99.26 135.63 98.99 99.82 90.24 10.25 32.23
Tempete 99.08 108.46 98.97 97.55 84.77 6.57 32.54
Waterfall 98.98 98.45 98.99 99.11 79.72 4.93 32.62
mean 99.00 100.00 98.99 98.68 82.52 5.72 32.51
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Table 9 Time reduction of the proposed GPU-based algorithm for 720p sequences

Sequence Full Search Fast Full Search UMHexagonS FPS
TR% Speed up TR% Speed up TR% Speed up

Coral 98.30 58.99 99.05 104.92 71.80 3.55 10.99
Dolphins 98.82 85.01 99.05 104.87 83.18 5.93 10.96
Mobile 99.06 106.84 99.00 100.71 81.78 5.49 10.98
Nile 98.56 69.48 99.04 104.27 73.36 3.75 11.02
Parkrun 99.28 138.04 98.98 97.89 86.36 7.33 10.97
Shields 98.94 94.35 98.99 99.65 83.61 6.10 11.00
Stockholm 98.96 96.37 99.01 101.01 82.80 5.82 11.00
mean 98.85 86.75 99.02 101.84 80.41 5.10 10.99

evaluation is not possible because the algorithm is completely different. In [12] the authors
only focus on 4 x4 blocks for ME and in [14] the authors utilize different metrics to obtain
the candidate MVs, namely SAD costs instead of Hadamard SAD costs for sub-pixel
accuracy ME, which is less complex than the one we use. In other cases, the encoding
conditions are completely different and the comparison is not fair. In [17] the authors use
JM9.0 and they do not use Bjentegaard and Sullivan’s common test rule [18] for RD
performance analysis.

However, although the authors of [2] only implement the ME algorithm for
variable block sizes and do not include it in any AVC encoder (they cannot analyze
the RD performance), they report that their algorithm running for CIF sequences and
using 16 as search range is executed at 31.54 fps. Our algorithm using the same
encoding conditions is executed at 177.5 fps. Note that our GPU is 2.6 times faster
than the GPU used in their work.

In [4], the authors propose a GPU-based implementation of the well-know smpUMHex-
agonS ME algorithm. They partition each frame into multiple tiles, where each tile contains
one or more MBs and each tile is processed by a single GPU thread. Table 14 shows the RD

Table 10 Time reduction of the proposed GPU-based algorithm for 1080p sequences

Sequence Full Search Fast Full Search UMHexagon$S FPS
TR% Speed up TR% Speed up TR% Speed up
Blue sky 98.64 73.60 99.06 106.73 80.71 5.18 4.90
Crowd 99.15 117.21 99.01 101.32 83.27 5.98 4.87
Ducks 99.31 145.90 99.00 100.30 84.25 6.35 4.88
Into Tree 99.13 114.36 99.07 107.02 80.33 5.08 4.87
ParkJoy 99.25 133.87 99.02 102.38 85.18 6.75 4.87
Pedestrian 98.59 70.81 99.05 105.36 79.80 4.95 4.90
Riverbed 99.33 149.19 99.04 104.64 89.06 9.14 4.84
Tractor 98.84 85.95 99.03 102.79 85.86 7.07 4.87
mean 99.03 103.03 99.04 103.77 83.56 6.08 4.88
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Table 11 Two-hour sequence encoding time for VGA sequences

Feature JM 17.2 Full Search JM 17.2 Fast Full Search JM 17.2 UMHexagonS Search Proposal
fps 0.31 0.32 3.08 6.27
Time (Hours) 193.55 187.50 19.48 9.57

results for their algorithm as well as our RD results using the same encoding conditions. We
have employed the same 720p sequences sampled at 60 Hz, selecting 64 as the search range
and all pictures are encoded as P-frames except the initial I-frame. The comparison is
achieved when comparing our results against the reference smpUMHexagonS (implemented
in JM) with their results against smpUMHexagonS too. With their implementation, they
obtain more degradation as many tiles are used due to the dependencies between neighbor-
ing MBs. However, we mitigate the degradation in our approach. Our algorithm outperforms
the RD performance obtained by their fastest configurations (90 or more tiles); our algorithm
has lower bitrate increments and lower PSNR losses than their algorithm for all video
sequences.

Table 15 shows the execution time for the experiments carried out to fill the previous
Table 14. Table 15 also shows the average execution time for each configuration. Note that
the peak performance for our GPU is 1350 GFlops and the peak performance for the GPU used
in [4] is 345.6 GFlops, which means that our GPU is 3.9 times more powerful. For this reason
and for a fair comparison, we have included the column labeled as Index in Table 15, which
shows the ratio between the average execution time obtained by their implementation for a
certain encoder configuration and the average execution time for our implementation using the
same encoder configuration. Higher values than 3.9 for this index mean that our algorithm is
faster than their algorithm. In conclusion, our algorithm is as fast as their best configuration
(index of 3.85) and it outperforms the execution time for the other configurations (higher index
than 3.9). The execution time using 3 and 12 tiles is not specified in [4]; however, we expect a
higher execution time than the other tile configuration since they use less GPU threads.

5 Conclusions and future work

In this paper an algorithm that concurrently executes the inter prediction performed in the AVC
JM 17.2 reference software encoder is presented. Our approach is based on an efficient parallel
implementation of the algorithm and its data structures involved in the ME and MC. Exploiting
current GPU computational capability provides us with another way to accelerate inter predic-
tion in traditional video codecs, with a view to developing real-time video encoders.

Table 12 Two-hour sequence encoding time for 720p sequences

Feature JM 17.2 Full Search JM 17.2 Fast Full Search JM 17.2 UMHexagonS Search Proposal
fps 0.12 0.10 1.10 2.10
Time (Hours) 833.33 1000 90.91 47.62
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Table 13 Two-hour sequence encoding time for 1080p sequences

Feature JM 17.2 Full Search JM 17.2 Fast Full Search JM 17.2 UMHexagonS Search Proposal
fps 0.04 0.04 0.43 0.86
Time (Hours) 2500 2500 232.56 116.28

Table 14 RD comparison with Cheung et al. results [4]

Number Sequence
of Tiles

Crew City Harbor Night

ABitrate APSNR  ABitrate APSNR  ABitrate APSNR  ABitrate APSNR

(%) (dB) (%) (dB) (%) (dB) (%) (dB)
3,600 3.14 —0.082 12.93 —0.407 5.58 —0.221 4.64 —-0.170
900 3.08 -0.079 11.12 —0.352 2.39 —0.094 3.55 —0.130
225 3.12 —0.080 11.17 —0.350 2.25 —0.089 3.42 —0.125
90 3.22 —0.083 10.82 —-0.339 2.21 —0.087 3.40 -0.124
12 0.63 —0.016 1.41 —0.044 0.57 —0.022 1.19 —0.043
3 0.09 —0.003 0.26 —0.008 0.07 —0.003 0.16 —0.006
Our algorithm 3.08 —0.071 6.68 —0.309 0.88 —0.028 1.55 —0.047

Table 15 Execution time comparison with Cheung et al. results [4]

Number Sequence Average GPU Index
of Tiles time (ms)

Crew City Harbor Night

GPU Time (ms) GPU Time (ms) GPU Time (ms) GPU Time (ms)
3,600 835.05 927.32 1,248.95 1,688.50 1,174.95 3.85
900 959.16 1,005.55 1,341.45 1,975.95 1,320.53 433
225 2,169.25 2,108.71 2,763.79 4,175.44 2,804.30 9.19
90 4,373.63 4,165.28 5,318.38 6,920.73 5,194.51 17.02
12 Unknown
3
Our algorithm 305.09 306.16 304.96 304.71 305.23

Real-time encoding is not achieved in this work. However, future algorithm adaptations
for Tesla Data Center Solutions composed of more than one GPU and powerful CPUs could
be the starting point to achieve it. Moreover, in an AVC encoder there are other modules that
could be good candidates to be adapted to the programming model of modern GPUs, e.g.

Intra Prediction.
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The algorithm’s good performance is mainly due to an optimized usage of memory
transfers, a significant reduction in shared memory bank conflicts and an adequate definition
and management of data structures.

The results show a considerable time reduction of over 98.8 % compared with full
search (speedup of over 86) and of over 98.9 % compared with fast full search
(speedup of over 98) for all kinds of video content, with negligible RD drop. We
should also mention that our algorithm outperforms the encoding efficiency of
UMHexagonS search while obtaining a time reduction of over 82 % (speedup of
over 5) for all kinds of video content.
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