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Abstract

Let G be a finite group. We prove that if the set of p-regular conjugacy class sizes of G has exactly
two elements, then G has Abelian p-complementor G = PQ x A, with P € Syl,(G), Q € Syl,(G) and
A Abelian.
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1. Introduction

1td proved in [5] that if G is a finite group such that all its noncentral conjugacy classes
have equal size, then G = Q x A, where Q is a Sylow g-subgroup of G, for some
prime g, and A lies in Z(G). In [1], Beltran and Felipe proved a generalization of this
result for p-regular conjugacy class sizes and some prime p, with the assumption that
the group G is p-solvable. In the present paper, we improve this result by showing
that the p-solvability condition is not necessary.

THEOREM A. Let G be a finite group. If the set of p-regular conjugacy class sizes
of G has exactly two elements, for some prime p, then G has Abelian p-complement
or G=PQ x A, with P € Syl,(G), Q € Syl,(G) and A CZ(G), with q a prime
distinct from p. As a consequence, if {1, m} are the p-regular conjugacy class sizes of
G, then m = p®q®. In particular, if b =0 then G has Abelian p-complements and if
a=0then G=P x Q x Awith A CZ(G).

The proof given in [1] for p-solvable groups is divided into two cases, when the
centralizers of noncentral p-regular elements are all G-conjugated and when they are
not. In the second case, it is easy to check that the hypothesis of p-solvability is not
needed, so our study reduces then to the case in which all the centralizers of noncentral
p-regular elements are conjugated. In order to solve this case, we are going to base
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our arguments on the proof of a theorem of Camina [2, Theorem 1]. We stress that
while Camina used the classification obtained by Gorenstein and Walter [3] of those
groups whose Sylow 2-subgroups are dihedral (this having been used to complete
the classification of the simple finite groups), we present a more simple proof by
making use of a well-known theorem of Kazarin which asserts that in any finite group
the subgroup generated by an element of prime power class size is always solvable
[4, Theorem 15.7].

Furthermore, we remark that it is not feasible that all the centralizers of noncentral
elements of a group G are conjugate, but it is easy to find examples where all
the centralizers of noncentral p-regular elements are conjugate (consequently G has
exactly two p-regular conjugacy class sizes) for some prime p. For instance, the
centralizers of all noncentral 2-elements of SL(2, 3) are conjugate and the 3-regular
class sizes are {1, 6}. Another example is Alt(4), whose 2-regular class sizes are {1, 4}.

We shall assume that every group is finite and we shall denote by G, the set of
p-regular elements of G.

2. Preliminary results
We shall need some results on conjugacy classes of p-regular elements.

LEMMA 1. Let G be a finite group. Then all the conjugacy class sizes in G, are
p-numbers if and only if G has Abelian p-complements.

PROOF. See[1, Lemma 2]. O

The following is exactly [2, Lemma 1], but we present an easier proof. It
generalizes [1, Lemma 3] by eliminating the hypothesis of p-solvability.

LEMMA 2. Suppose that G is a finite group and that p is not a divisor of the sizes of
p-regular conjugacy classes. Then G = P x H where P is a Sylow p-subgroup and
H is a p-complement of G.

PROOF. Let g € G and consider its {p, p’}-decomposition as g = g, g,. Suppose that
g, is noncentral. As the class size of g, is a p’-number, if we fix a Sylow p-subgroup
P of G, then there exists some ¢ € G such that g, € P’ € Cg(g,). Therefore,

G=| P'cor.
teG
Then G = PCg(P) and so, G = P x H where H is a p-complement of G. O
LEMMA 3. Let P be an Abelian p-group, with p a prime and let K be a group of

automorphisms of P such that |K | is divisible by p. Suppose that Cp(x) = Cp(y) for
allx,y € K —{1}. Then O, (K) = 1.

PROOF. Assume that H =0, (K) > 1 and we shall get a contradiction. Suppose
first that Cp(H) =1 and take some nontrivial x € H. If there exists some element
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w € Cp(x) — {1}, then clearly w € Cp(H) and so, necessarily, Cp(x) = 1 and hence,
Cp(y)=1 for all y e K — {1}. But if we count the orbit sizes this cannot happen
because p divides |K|.

As aresult, Cp(H) # 1. Now, as P is Abelian, by coprime action we can write
P=Cp(H) x [P, H], and since Cp(K)=Cp(H) and K is a group of
automorphisms of P, it follows that [P, H] # 1. Thus, if x € K — {1}, then Cp(x) =
CP(K) X C[pJ-[](x). Now, if w € C[p,H](x) — {1}, then Cp(w) = CP(K), SO w €
Cp(K)N [P, H] = 1. This is not possible, so Cp,gj(x) =1 forall x € K — {1}. But
this contradicts again the fact that p is a divisor of | K. O

LEMMA 4. Let G be a finite group such that all its Sylow subgroups are cyclic. If r
and s are two distinct primes dividing |G|, then there exists a subgroup U of G such
that |U| =rs.

PROOF. We work by induction on the order of G. First, it is known that any finite
group whose Sylow subgroups are all cyclic is solvable (see for instance [6, 10.1.10]).
Let M be a maximal normal subgroup of G, so |G : M| = p for some prime p. We can
assume that M is a p’-subgroup, otherwise we can apply the inductive hypothesis to M
and the result is obtained. Also, we only have to show that there exists a subgroup of
order pg for any prime ¢ # p dividing | M|, since the other cases are obtained by the
inductive hypothesis as well. If P is a Sylow p-subgroup of G, then P acts coprimely
on M, so if we fix a prime ¢ dividing |M|, we know (see for example [4, 14.3]) that
there exists some P-invariant Sylow g-subgroup Q of G, which is cyclic. Hence, if
x € Q has order ¢, then U = (x) P has order pq, as required. d

3. Proof of Theorem A

We shall prove by induction on the order of G that either G has Abelian p-
complements or G is a { p, g}-group for some prime g # p without considering central
factors. Likewise, we notice that when G is solvable then the theorem is already proved
by [1, Theorem A]. We shall assume then that the p-complements of G are not Abelian
and that there exist at least two prime divisors of the order of G/Z(G) different from p,
in order to get a contradiction.

As we have already pointed out in the introduction, we are also going to assume
that all the centralizers of noncentral elements in G, are conjugated in G. In the other
case the theorem can be proved exactly the same as case 2 of [1, Theorem A], where
the condition of p-solvability is not necessary. More precisely, the conjugation of the
centralizers of all noncentral elements in G, will be used from Step 4.

The first two steps are exactly Steps 1 and 4 of [1, Theorem A], so we shall omit
their proofs.

STEP 1. We can assume that Cg(x) = Py X Ly, with P, a Sylow p-subgroup of
Cg(x) and Ly < Z(Cg(x)), for any noncentral x € G .

STEP 2. Cg(x) < Ng(Cg(x)) for every noncentral x € G .
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STEP 3. If xe€ Gy, is noncentral, then every Sylow subgroup of
Ng(Cg(x))/Cg(x) is cyclic or generalized quaternion. Furthermore, if ¢ # p is a
prime divisor of the order of this group, then the Sylow g-subgroup has order g.

We fix some x € G,y and write W = Ng(Cg(x))/Cg(x). Let Q be a Sylow g-
subgroup of W for some prime ¢ dividing |W| (possibly ¢ = p). By the assumptions
we have made at the beginning of the proof there exists some prime r, divisor of
|G /Z(G)|, distinct from g and p. Clearly r divides |Cg (x)| since all these centralizers
have the same size. Let R, be a Sylow r-subgroup of Cg (x) and notice that Q acts as a
permutation group on R, since if g € O, then Cr (g) = R, N Z(G). Moreover, since
this is a coprime action and R, is Abelian, we can write Ry =[Ry, Q] x Cg, (Q).
Also, observe that Q acts fixed-point-freely on [Ry, Q], forif r € [Ry, Q] — {1}, then
Cg(t) = Cg(x) by Step 1, so no element of Q — {1} may fix . Consequently, we can
apply a well known result ([4, Theorem 16.12] for instance) to obtain that Q is cyclic
or generalized quaternion.

Assume now that g # p and take Q, a Sylow g-subgroup of Cg(x), which is
normal by Step 1. Accordingly, Q acts on Q, = Q, /L(G)4. If M is the semidirect
product defined by this action, we can take some element in Z(M) N Q, which
has exactly order gq. If 7 € Q,, with t € Q, is such an element, we can construct
the subgroup T = (t)Z(G),; < Cg(x). Observe that Q acts faithfully on T, that is,
Co(T)=1, since C;(t) =Cg(x) by Step 1. Furthermore, notice that [T, Q] C
Z(G)y. We claim now that Q is a g-elementary subgroup. Let v e Q. As t7 € Z(G),
then 1 = [t7, v] = [¢, v]?, where the last equality follows because T is Abelian. Also,
since [#, v] € Z(G) we have [t, v]? =[t, v7], so we conclude that v € Cp(T) =1
and thus Q is elementary, as claimed. But this implies that Q is cyclic of order g by
the above paragraph, and hence the step is proved.

STEP 4. For any x € G, we have |[NG(Cg(x))/Cg(x)| = g for some fixed prime
q #p-

First we are going to prove that W = Ng(Cg(x))/Cg(x) is g-group for some
prime ¢ (including the possibility ¢ = p). Suppose that |W| is divisible by at least
two distinct primes and we shall prove that there exists a subgroup U of W such that
|U| is the product of two prime numbers. By Step 3, if every Sylow subgroup of
W is cyclic then there exists such subgroup U by Lemma 4. We can assume then
that 2 divides |W| and that the Sylow 2-subgroups of W are generalized quaternion,
so we can apply a classic theorem of Brauer and Suzuki (see [4, 45.1]) to obtain
that Oy (W)(r) < W, where 7 is an involution of W. Again by Step 3, the Sylow
subgroups of Oy (W) are cyclic, so if |Qy(W)] is divisible by at least two distinct
primes then the subgroup U exists by Lemma 4 as well. So we can suppose that
O,/ (W) is a cyclic r-group for some prime r # 2. Hence we can take o € Oy (W)
of order r and we may construct the subgroup U = («)(7) of order 2r. As a result,
in all the cases we have a subgroup U < W such that |U| =rs, for some primes r
and s, as we wanted to prove. We shall see now that this leads to a contradiction.
If both primes are distinct from p, then either U has a normal r-complement or has
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a normal s-complement, and we shall assume without loss that the r-complement is
normal. In the other case, that is, if |U| = pr, with r # p then, arguing as in the first
paragraph of Step 3, we get that U operates as a permutation group and fixed-point-
freely on [Sy, U] — 1, where S, is the Sylow s-subgroup of Cg(x) for some prime
s & {p, r}. Notice that such s exists by the assumption we have made at the beginning.
Furthermore, in this second case (by applying for instance [4, Lemma 16.12]) we get
that U is cyclic, so in particular, U has nontrivial normal r-complement. Thus, in
both cases, U has a normal r-complement for some prime r # p. However, U is an
automorphism group of Ry, where R, is the Abelian Sylow r-subgroup of Cg(x).
Moreover, if u, v € U — {1}, then Cg, (1) = Cg_ (v) = Z(G),, so by Lemma 3, we get
0,/ (U) = 1, which is a contradiction.

Take now a noncentral Sylow r-subgroup R, of Cg(x), for some prime r # p. If
t € R, is noncentral, then by applying Step 1, we have Cg(x) =Cg(t). If we
Ng(Ry), then by the same reason, Cg (") = Cg (). Therefore, Cg(x) = Cg(H)" =
Cg(x)¥ and w € Ng(Cg(x)). Thus Ng(Ry) < NG (Cg(x)). Nevertheless, notice that
if R, is not a Sylow r-subgroup of G, then R, < Ng(R,), so r divides |[Ng(Ry)/Ry|,
and this implies that |W| is divisible by r, so W cannot be a p-group. By taking into
account Step 3, the step is proved.

The fact that all the centralizers are conjugated implies that we can assume for the
rest of the proof that |[Ng(Cg(x))/Cg(x)| = g, for a fixed prime g # p and for any
noncentral x € G .

STEP 5. We can assume that O,(G) =1 and that |G : Ng(Cg(x))| is a p-number
for any noncentral x € G o

We fix a noncentral x € G, and for any prime r # p we take R a Sylow r-subgroup
of G. If R is Abelian, as all the centralizers of noncentral elements in G, have
the same order, then the Sylow r-subgroup of Cg(x), Ry, is a Sylow r-subgroup
of G and R is conjugated to R,. Thus, r does not divide |G : Ng(Cg(x))|. If R
is not Abelian, then it is an elementary fact that there exists some t € R — Z(R)
such that Cr(t) < R. As the centralizers of all noncentral p-regular elements are
conjugate, we can assume without loss that Cg(t) = Cg(x). In particular, Cg(t) C
Cg(x). On the other hand, is g € Ng(Cg(t)), then t& € Cgr(t) and Cg(t) =
Cg(t8) by Step 1. Consequently, Cg(x) = Cg(t) = Cg(t8) = Cg(x)8 and so g €
NG (Cg(x)). Thus R < Ng(Cg(t)) < Ng(Cg(x)), and so |G : Ng(Cg(x))| is an r'-
number too. Accordingly, in both cases we have proved that |G : Ng(Cg(x))] is a
p-number.

Now we assume that O,(G) # 1 and we are going to see that G = G/0,(G)
satisfies the hypotheses of the theorem. We fix some noncentral element x € G .
Let y € Cz(x) and notice that [x, y] € O,(G). Hence, we can write x¥ = xa, with
a €0,(G), so x? is a p’-element of C;(x)0,(G), and then x¥ € L’, for some

t € 0,(G), where L, is the p’-subgroup appearing in Step 1. Therefore e L,

and Cg(x) = Cg(xy’_l). As a consequence, yfl € Ng(Cg(x)), so y =wt with
w € Ng(Cg(x)). Thus, y =w and wx = Xw, that is, [w, x] € O,(G). On the other
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hand, as w € Ng(Cg(x)) and x is a p-regular element, this forces [w, x] to be a p-
regular element, so [x, w] = 1. Therefore, C#(X) = Cg(x) and we conclude that G
has two class sizes of p-regular elements. By the inductive hypothesis, either G has
an Abelian p-complement or G = PQ x A, with P € Sylp (G), Qe Syl (G) and
A <Z(G). In the first case, G has an Abelian p-complement, contradicting our first

assumptions and in the second one, G is a solvable group, so the proof would be
finished.

STEP 6. O,(G) € Z(G), for every prime r # p.

Let r be any prime distinct from p and suppose that K = O,(G) is noncentral.
By Step 5, we have K € Ng(Cg(x)), for all x € G,y. The hypothesis and Step 1
imply that there exists an Abelian noncentral normal Sylow s-subgroup of Cg(x),
say Sy, for some prime s # p,r. Notice that S, is normalized by K and thus
[Sy, KIS Sy NK =1, 50 K CCg(Sx) =Cg(x), where the last equality follows as
a consequence of Step 1. On the other hand, if r € K — Z(G), then Cg(t) = Cg(x)
again by Step 1. Moreover, if w € Ng(K), then Cg(t") = Cg(x), hence Cg(x)¥ =
Ce(t)¥ =Ce(t") =Cg(x). Thus, G = Ng(K) € Ng(Cs(x)) and Cg(x) < G. By
Step 4, we have |G : Cg(x)| = ¢g. This means that m = g, so by applying Lemma 2
and It6’s theorem on groups with two conjugacy class sizes (see for instance
[4, Theorem 33.6]) , we obtain G = P x Q x A, with P € Syl,(G), Q € Syl,(G)
and A Abelian, against our initial assumption.

STEP 7. We can now derive the conclusion.

First, we notice that Z(G), # 1, since any element lying in the centre of a Sylow
g-subgroup of G must be central in G too because g divides m by Step 4. We write
G=G/ Z.(G), and we shall prove that G has two p-regular conjugacy class sizes.

We can trivially assume that G is not Abelian, otherwise G would be solvable and
the proof is finished. If @ € G — Z(G), we observe that Cg(a) C Cg(@). If Cg(a) =
Cg(a) foralla € G — Z(G), it certainly follows that G has two p-regular conjugacy
class sizes, as we wanted. Suppose then that there is a p-regular element @ € G such
that Cg(a) # Cz(a). It is easy to see that if w € Cz(a) then w € Ng(Cg(a)), that
is, Cg(a) € Ng(Cg(a)). As |[NG(Cg(a)): Cg(a)| =q by Step 4, this implies that
Ng(Cg(a)) = Cz(a) and so, by Step 5 we conclude that |G : Cg(a)| is a p-number.
Now, by a renowned theorem due to Kazarin (see for example [4, 15.7]), the subgroup

(@@) is a solvable normal subgroup of G. It is easy to see then that this implies that
(a®) is a noncentral solvable normal subgroup of G too, but this is not possible in view
of Steps 5 and 6.

Therefore, we have proved that G has two p-regular conjugacy class sizes, and
by induction we obtain that G has an Abelian p-complement or G = PQ x A, with
Pe Sylp (G), 0 € Syly (G) and A C Z(G). Both cases lead to the solvability of G, so
the proof is finished.

The last assertions in the statement of the theorem will follow then by immediate
application of Lemmas 1 and 2.



[7] Finite groups with two p-regular conjugacy class lengths II 425

References

[11 A.Beltran and M. J. Felipe, ‘Finite groups with two p-regular conjugacy class lengths’, Bull. Aust.
Math. Soc. 67 (2003), 163-169.

[2] A.R.Camina, ‘Finite groups of conjugate rank 2’, Nagoya Math. J. 53 (1974), 47-57.

[3] D. Gorenstein and J. H. Walter, ‘On finite groups with dihedral Sylow 2-subgroups’, lllinois J.
Math. 6 (1962), 553-593.

[4] B. Huppert, Character Theory of Finite Groups, De Gruyter Expositions in Mathematics, 25
(Berlin, New York, 1998).

[5S] N.Itd, ‘On finite groups with given conjugate type I, Nagoya Math. J. 6 (1953), 17-28.

[6] D.J.S.Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, 2nd edn
(Springer, New York, 1996).

ELENA ALEMANY, Departamento de Matemética Aplicada, Universidad Politécnica
de Valencia, 46022 Valencia, Spain
e-mail: ealemany @mat.upv.es

ANTONIO BELTRAN, Departamento de Matemadticas, Universidad Jaume I,
12071 Castellén, Spain
e-mail: abeltran@mat.uji.es

MARIA JOSE FELIPE, Instituto Universitario de Matemdtica Pura y Aplicada,
Universidad Politécnica de Valencia, 46022 Valencia, Spain
e-mail: mfelipe @mat.upv.es



