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Improving hyperspectral pixel classification with
unsupervised training data selection

Olga Rajadell, Pedro Garcia-Sevilla, Viet Cuong Dinh and Robert P.W. Duin

Abstract—An unsupervised method for selecting training data
is suggested here. The method is tested by applying it to
hyperspectral land-use classification. The data set is reduced
using an unsupervised band selection method and then clustered
with a non parametric cluster technique. The cluster technique
provides centers of the clusters and those are the samples
selected to compose the training set. Both the band selection
and the clustering are unsupervised techniques. Afterwards an
expert labels those samples and the rest of unlabeled data
can be classified. The inclusion of the selection step, although
unsupervised, allows to select automatically the most suitable
pixels to build the classifier. This reduces the expert effort because
less pixels need to be labeled. However, the classification results
are significantly improved in comparison with results obtained
by a random selection of training samples, in particular for very
small training sets.

I. INTRODUCTION

Segmentation and classification are well known issues in
image processing that are lately faced as a single problem by
using pixel classification. For classification, expert labeling is
needed to train the system to later classify unlabeled samples.
Some authors work in a supervised scenario where prior
knowledge is available and training data is selected within each
class [1] [2]. Active learning techniques have also been ap-
plied. In these, the expert collaboration improves progressively
the training data [3] [4]. In both cases, the way the training
data is first selected is a concern generally solved by randomly
picking among the unlabeled data. This is unsupervised but
not very efficient. Randomly distributed samples can lie in
non interesting areas and reducing the size of the training
set may make the training data non representative. On top of
that, expert collaboration is expensive. To face both problems
we suggest to provide the system with the most interesting
samples from the beginning. The traditional randomly selected
training set is thereby replaced by a selective choice.

In unsupervised scenarios, data analysis techniques are
widely used for finding relevant data when no prior knowledge
is available. Among them, clustering techniques allow to
divide data into groups of similar samples. A very large
number of clustering techniques is available but some of them
rely upon a prior knowledge, such as the number of clusters
and the shape of clusters in the feature space (often elliptical).
When dealing with an arbitrarily structured feature space,
only nonparametric methods are applicable since no model
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assumption have to be made [5]. Clustering algorithms have
successfully been applied to image segmentation in various
fields and applications [6]. Fully unsupervised procedures
often have insufficiently accurate segmentation results. For
such a reason, a hybrid scenario between supervised and
unsupervised techniques is of high interest. In this case, the
methods applied use a small set of labels to train a classifier.
Because labeling is neither fast nor cheap, the fewer labeled
data the system needs the better [7].

The contribution of this paper is the introduction of a
method to select the training data. The suggested method
is tested for hyperspectral landscape image classification and
compared with a random selection of the training set. Results
based on a selective choice of the training set outperform those
achieved with randomly picked training data, mainly when a
very small number of labeled samples is used. The scheme is
presented in Section II with a focus on the selection method.
Results will be shown over the dataset presented in Section III
and analyzed in Section IV. Section V are conclusions.

II. CLASSIFICATION SCHEME

Comaniciu et al. states in [8] that vision tasks can be
improved if they are supported by more reliable data. Nowa-
days databases used for segmentation and classification of
hyperspectral satellite images are fairly reliable in terms of
spectral and spatial resolution. Therefore, we can consider
that our feature space representation of the data is reliable.
However, training sets are often built by randomly picking a
percentage of samples. We suggest to make an unsupervised
selection of the training samples based on the analysis of the
feature space. This aims at providing an improved training set.
The whole classification scheme proceeds as follows:

1) A band selection method is used. With it the data set
is reduced to a smaller set of bands. This set is less
correlated than the original while it keeps as much
information as possible. We used the WALUMI band se-
lection method [9], but any other band selection method
that fulfils that requirement could be used instead.

2) A clustering procedure is applied over the reduced
dataset. The centers of the clusters found form the
selected training set. A non-parametric clustering tech-
nique is used and prior knowledge is not needed.

3) The expert is involved once, after the selection, to
provide the corresponding labels of the selected samples.
In this paper the expert will be simulated by checking
the corresponding labels on the groundtruth.

4) A classifier is built using the training set defined before.
Although the clustering is performed using spectral



features, we test that the selection obtained can be
used independently to the type of features used for
classifying.

A. Mode seeking clustering

Mode seeking clustering is a well known clustering princi-
ple for image segmentation. Based on a given set of objects, in
case of images these are the pixels, a non-parametric estimate
of the probability density function (pdf) is made. The modes
of this pdf correspond to the clusters. In a gradient search all
objects are used as a starting point and objects ending up in
the same mode belong to the same cluster. Neither the number
of clusters nor their shape has to be predefined.

The most popular mode seeking procedure is the mean
shift algorithm [10] [11]. It is based on a Parzen kernel
density estimate of the pdf. In contrast to the classic K-means
clustering [12], or the more advanced Mixture-Of-Gaussian
density estimates there are no embedded assumptions on an
underlying Gaussian distribution of the data [10] [8]. In the
mean shift algorithm the direction of the local gradient is found
by a shift of the mean of the local mean when the distances
to the objects in a local neighborhood are weighted by the
chosen kernel. This procedure works well for the segmentation
of color images, especially when some spatial information is
included in features representing the pixels [8]. Problems with
mean shift are that the modes as well as the convergence are
not sharply defined. Thereby, separate nearby modes may be
found that are erroneously not merged. Moreover, formally all
pixels have to be used as a starting point, which is very time
consuming.

Another algorithm based on mode seeking is ANN mode
seeking. Instead of the Parzen kernel density estimate it is
entirely based on the distances to the k-th neighbor. It can be
traced back to a proposal by Koontz et al. in 1977 [13]. It has
been around in the Matlab toolbox PRTools [14] for 20 years.
Recently it has been redefined [15] and compared with mean
shift. The procedure can be summarized as:

Do for all objects:

1) Find its k nearest neighbors.

2) Use the distance to the k-th neighbor as a measure for
the density (in fact one over the distance).

3) Define a pointer to the object with the highest density
in the k-neighborhood.

4) Follow from all objects the pointers until objects are
reached that point to themselves: the modes.

Various implementations are studied. We used one that is
based on an approximate nearest neighbor search [16]. It
performs the above algorithm for clustering 10366 objects in
5 dimensions with k=100 in 1.4 seconds and with k=10 in
less than a second (0.7) on a standard PC (Intel Core Duo
2GHz, with 4GB of RAM). Its computational complexity is
about O(kn?) for data sets with n objects. The dependency
on the dimensionality is heavily problem dependent due to the
approximate nearest neighbor. Advantages of this algorithm
over mean shift are that it is much faster and converges exactly
to modes that correspond with objects (pixels). Moreover it can
handle high dimensional spaces and finds solutions for sets of

k-values in almost the same time as needed for the largest
k-value in the set.

B. The role of spatial coordinates

The specific task targeted here is the classification of land
cover images. In this type of images, the samples are pixels
and the classes the different areas in the image. Thus, samples
within the same class are spatially connected (class connection
principle or smoothness). This is an advantage because it
adds extra information to the spectral information provided
by sensors. However, it can happen that a class is located in
more than one spatial location. In such a case, even being the
same class, the characteristics of their samples can differ due
to different lighting or soil conditions in the different locations.

The clustering algorithm chosen searches for local density
maxima where the density function has been calculated using
the distances for each sample in its k neighbourhood. A
smaller k£ results in a higher number of clusters, that is
helpful if we aim to select more samples from different
areas. However, unique large areas would also have many
samples selected within the same region that are unnecessary
(redundant training data). On the contrary, bigger & would
provide fewer selected samples for big areas but smaller areas
or different locations of the same class would be missed
instead.

We suggest to incorporate spatial information to the selec-
tion algorithm. Like this the clustering will also take into ac-
count their spatial connectivity. This has already been done in
literature [17] by simply adding the spatial coordinates to the
feature vector of each pixel. By adding the coordinates within
the distance computation, samples nearby will have a higher
probability of being clustered together and the opposite for
spatially remote samples even if they belong to the same class.
Note that coordinates are only used for this clustering step
and only the spectral information (without the coordinates) or
features derived from the spectral information are used in the
classification step. This allows a fair comparison with several
methods proposed by other authors and the random selection
method included in the paper. That is, the features used in
the classification step for the mode selection method and for
the random selection method are exactly the same. The only
difference lies in how the training set is built.

C. Spectral-spatial features

The contribution of this paper is a training selection method.
Such a method should point out which samples are significant
for training independently of the features used for classi-
fication afterwards. To that end, we suggest to switch the
features for classification, using the same selected samples for
training in order to show that this selection still outperforms a
random pick selection. We choose a different type of features,
spatial features extracted by filtering suggested in [18]. These
are obtained by filtering the input image with a set of two-
dimensional Gabor filters. The outputs of each pixel in the im-
age forms its feature vector. Each Gabor filter is characterized
by a preferred orientation and a preferred spatial frequency
(scale) so this features characterized the texture contained in
the image.



III. DATASET

The dataset used in the experiments is widely known in the
field. Hyper-spectral image 92AV3C (Fig. 1) was provided by
the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
and acquired over the Indian Pine Test Site in Northwestern
Indiana in 1992. From the 220 bands that composed the image,
20 are usually ignored because of the noise (the ones that cover
the region of water absorption or with low SNR) [19]. The
image has a spatial dimension of 145 x 145 pixels. Spatial
resolution is 20m per pixel. Classes range from 20 to 2468
pixels. In it, three different growing states of soya can be
found, together with other three different growing states of
corn. Woods, pasture and trees are the bigger classes in terms
of number of samples (pixels). Smaller classes are steel towers,
hay-windrowed, alfafa, drives, oats, grass and wheat. In total,
the dataset has 16 labeled classes.

Fig. 1. AVIRIS database color composition and groundtruth.

IV. RESULTS

For all experiments, clustering is carried out using different
values of the parameter k to get different sizes of training sets
(selected samples). Notice that this is not an iterative process.
The clustering is performed once and, as a consequence of the
value of the parameter %, a number of samples is selected. The
expert labels these samples and the classification is performed
using only that labeled data as training and the rest as test.
Plots in Fig. 2, 3, and 4 are represented in terms of error
rate versus number of labeled samples provided for training.
They represent the improvement of the classification when
increasing the amount of labeled data.

A K-NN with K = 1 classifier has been used (not to
be confused with the k-NN mode seeking procedure used
for clustering). This is not an arbitrary choice. Because the
clustering procedure used is based on densities determined
by distances, the local maxima (the pixels used for training)
correspond to samples which have many objects in their direct
neighborhood. Small classes, or uni-modal classes may be
represented by a single training point, so larger values of K
are not possible.

The dataset was reduced to different number of selected
bands using WaLuMi band selection method. The bands
selected used for the experiments carried out are presented
in Table 1.

A. Classification results

In Fig. 2 the learning curves for a different number of
spectral bands are presented in both cases, selecting samples

[ no. of bands | selected bands |

3 4, 67, 87
10 4,24, 51, 67, 78, 87, 99, 118, 129, 182
20 4, 15, 24, 33, 35, 36, 41, 51, 67, 77
79, 87, 95, 99, 111, 118, 129, 172, 182, 204
TABLE I

SELECTED BANDS USING WALUMI FOR AVIRIS DATASET.

with the method and picking the same amount of samples
at random. It is noticeable that in all cases, when selecting
the training set, the classification rate outperforms the result
obtain when the same amount is picked at random. When a
small training set is used the difference between the the error
rate selecting and not selecting is 0.3, whereas it decreases
to 0.15 when the training set grows. This happens because
the higher the number of samples is picked, the chances of
randomly select samples from all classes are bigger. Also
when the number of samples to select is very small random is
very unstable. Note that no advantage is obtained in involving
a higher number of spectral bands in the process. However,
the difference between using 10 and 20 bands is an increase
of 10 features in the feature vector. The main reason for
selecting information is that, once known which are the most
informative bands for a given sensor, further repetitions of the
same task can be performed dismissing information that was
proved to be redundant for that task using that sensor.

mode selection over 10 bands ——s—
mode selection over 20 bands
random selection over 10 bands —s—

random selection over 20 bands
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Fig. 2. Learning curves for different number of spectral features comparing
the result selecting the training set with the corresponding number of training
samples picked at random.

For the next experiment, the spatial-textural type of features
is also used for classification. Note that the selection is the
same and the target is to validate that the same training
selection result improves the random selection being indepen-
dently of the features used. These other features are computed
from each band independently and 8 features are obtained per
band. In Fig. 3 we show the learning curves obtained for the
experiments that use 3 and 10 bands. Despite the difference
between the size of the feature vector (24 for 3 bands and 80
for 10), no performance increase is noticed. As a summary also
the difference in the error rate caused by changing the features
for classifying (10 spectral and 24 spectral/spatial features) can
be observed in Figure 4. Note how in both cases the error rate
obtained using the random selection stays above the classifica-



tion including the training selection method. It is remarkable
that both sets of features start around the same error rate but
the difference is quickly introduced when more samples are
included. When using spectral/spatial features the error rate
decreases considerably. The characterization improvement that
these features introduce, together with providing representative
labeled data, obtains a fairly good well classified area with a
relatively small amount of labeled data.

08 mode selection and sper‘:trah‘spat\a\ features over 3 bands —s—
07 mode selection and spectral/spatial features over 10 bands
random selection and spectral/spatial features over 3 bands —=—
05 andom selection and spectral/spatial features over 10 bands —+—
4

error rate

50 100 150 200 250 300
number of training samples
Fig. 3.  Learning curves for different number of spectral bands using

spectral/spatial features. Results selecting the training set are compared with
the same amount of samples picked at random.
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Fig. 4. Comparison between two types of features. Learning curves for the
classification results using selection of the training and random pick.

B. Analysis per class

Note that because classes are highly unbalanced, an in-
crease in the performance is wanted when it represents an
improvement for all classes and, in this case, large classes
have a higher impact on the overall accuracy. In Table II
the error rate per class is shown. The results obtained with
3.5% of labeled samples are comparable, in terms of per class
accuracy, with results obtained in other scenarios using 10%
of random labeled samples for training [1] or a fixed number
of labeled samples per class (50 samples per class, 15 for
small ones) [20]. This last approach favors small classes in
comparison with the unsupervised selection method presented
here. The number of samples per class used in the training
set is here unsupervised and no prior knowledge is used.

Despite this disadvantage, the accuracy for very small classes
is better than experiments where the training selection is not
used. Stone-steel towers, alfalfa, grass/pasture-mowed have
error rates around 0.10 with only one or two samples for
training. Other classes usually dismissed in the classification
experiments because of their size [2] [21] like wheat, corn
and Bldg-Grass-Tree-Drives have error rates of 0.07, 0.14 and
0.01 using only six, nine and ten labeled samples.

| 0.6% of training data | 3.5% of training data

classes | training/total | error [ training/total | error
Stone-steel towers 1/95 0.04 2/95 0.05
Hay-windrowed 4/489 0.03 19/489 0.03
Corn-min till 6/834 0.33 27/834 0.17
Soybeans-no till 7/968 0.10 29/968 0.11
Alfalfa 1/54 0.07 2/54 0.11
Soybeans-clean till 4/614 0.40 21/614 0.12
Grass/pasture 4/497 0.14 14/497 0.21
‘Woods 9/1294 0.08 47/1294 0.04
Bldg-Grass-Tree-Drives 4/380 0.002 10/380 0.01
Grass/pasture-mowed 0/26 1 1/26 0.04
Corn 1/234 0.38 9/234 0.14

Oats 0/20 1 0/20 1
Corn-no till 8/1434 0.25 44/1434 0.13
Soybeans-min till 11/2468 0.21 90/2468 0.04
Grass/trees 5/747 0.11 28/747 0.06
Wheat 2/212 0.15 6/212 0.07
Overall error 0.26 0.12

TABLE II

ACCURACY PER CLASS FOR THE 16 CLASSES CLASSIFICATION OF THE
AVIRIS DATASET SELECTING THE TRAINING SET OVER THE SPECTRAL
FEATURES CONCATENATED WITH THE SPATIAL COORDINATES AND
CLASSIFYING USING SPATIAL-SPECTRAL FEATURES.

For an overview of the per class result, observe in
Fig. 5.(a)(c) the selected training set (white points represented
on the groundtruth) and the corresponding per class results
Fig. 5.(b)(d)(where the color areas are well-classified pixels
and the white ones miss-classified pixels). Both cases result
from selecting training data by clustering over 10 spectral
features plus two spatial coordinates, label the samples se-
lected and use them as training set for a KNN classifier,
replacing the spectral features by 24 spatial-spectral features
for classification.

The case of a reduced number of training samples,
Fig. 5(first row), demonstrates that one sample is needed to
recognize a class (those areas where a mode is not found are
dismissed in the classification). Leaving aside the misclassified
areas, observe that those where a sample is labeled provide a
well-classified region around them with 23 samples of training
(only a 0.22% of the dataset). In a scenario with a very reduced
amount of labeled data, it should be considered the possibility
that the expert corrects the loss by adding training samples of
a region that has not been detected. For the bigger training set
size, Fig. 5(second row) with only 104 samples, fulfils that
classes distributed in different regions have samples for each
of those regions and big regions have several labeled samples
distributed along the fields, maximizing the classified area.

V. CONCLUSIONS

A method for selecting the training set has been suggested
to replace the common random pick selection. This is useful
when no prior knowledge is available and expert collaboration



(c) (@

Fig. 5. Classification results using 24 spectral/spatial features derived from
3 bands. (a) 23 selected training samples shown in white. (b) representation
of misclassified pixels in white, error rate was 0.41. (c) 104 selected training
samples shown in white. (d) representation of misclassified pixels in white,
error rate of 0.147.

is limited. Thanks to the selection of the training set, only
relevant samples can be shown to the expert to be labeled. In
this sense, expert collaboration is reduced while performance
has shown to be raised in comparison with random selection.
The method is based on an unsupervised study of the data
by a clustering technique. Besides, a spatial improvement
was suggested to avoid redundant training data by including
spatial coordinates in the clustering process. This forced
clusters to merge or split according to the class connection
principle. Thus, the training set is representative and free
of redundancies. The selection has shown to be valid for
building a classifier even if the features are changed. It was
shown that textural-spatial features can also benefit from this
selection scheme and achieve same results with less training
data. Indeed, results shown outperform results of classification
methods in literature that use a random selection of their
training set. On the top of that, the process does not need
large amounts of data since it has been shown that not all
spectral bands and not a high number of features were needed
in our experiments.
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