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Abstract

A quantitative version of Minkowski sum, extending the definition of 6-
convolution of convex bodies, is studied to obtain extensions of the Brunn-
Minkowski and Zhang inequalities, as well as, other interesting properties on
Convex Geometry involving convolution bodies or polar projection bodies.
The extension of this new version to more than two sets is also given.

Keywords: Zhang inequality, Brunn-Minkowski inequality, Convolution
Body.

1. Introduction and motivation

The Minkowski sum of two sets A, B C R"™ is defined as the set
A+B={x€eR" : An(xz— B) # 0}.
The essential sum in terms of measure is defined as

A+.B={z€R":|ANn(z - B)| > 0},
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for A, B C R"™ measurable sets, when |-| denotes the Lebesgue measure in R”.
A quantitative version of this definition, involving the proportional measure
of the intersections, gives the following subset of A + B

A+gB={z € A+ B:|AN(z — B)| > 0M(A, B)}

for @ € [0, 1], whenever M(A,B) := sup |AN(x — B)| is finite. This set
r€A+B
is called the 6-convolution set of A and B. Note that A 4+¢ B is the usual

Minkowski sum A + B. This set is studied for symmetric convex bodies* in
[1, 2, 3, 4] and [5], where the term convolution body is first introduced. Howe-
ver, our notation differs from the one used there, in order to emphasize the
connection with the standard Minkowski sum. Properties of #-convolution
bodies are given in Section 2.

Recently, there is an increasing interest in finding extensions of the classical
integral geometry of the motion group in Euclidean spaces to the group
of translations (see [6] and the references therein), motivated by possible
applications to the stochastic geometry of homogeneous random geometric
structures.

Our purpose is to find volume estimates, from above and below, of the 6-
convolution of two sets. In what follows we will motivate our interest in
studying the volume of this family of sets.

The celebrated Brunn-Minkowski inequality states that
K +L|» > |K|" + L]

for two convex bodies K, L C R", with equality if and only if K and L are
homothetic. Recall that K and L are called homothetic it L = z + AK for
some z € R" and A > 0. Two classical references in this topic are [7] and [8].

Brunn-Minkowski inequility has been widely applied to solve a large number
of problems involving geometrical quantities such as volume, surface area,
and mean width. In the last thirty years the Brunn-Minkowski inequality
has become an essential analytical tool to develop the so-called Local Theory
of Normed Spaces and Convex Geometric Analysis [9, 8, 7, 10]. Extensions of
this inequality for non convex sets, even for non-measurable sets, have been
also studied. We refer only to [11] for details and references.

4A convex body is a compact convex subset of R” with non-empty interior.



In Section 3 a generalization of the Brunn-Minkowski inequality is studied.
Even though extensive work with this inequality as backbone has emerged
both within the class of convex bodies [12, 13, 14] and under other settings
[15, 16, 17, 18], we pursuit something closer in spirit to [19, 20]. See [21]
for a comprehensive survey on the Brunn-Minkowski inequality including
extensions, applications and its relation to other analytical inequalities.
Namely, we pose the problem of finding the best function ¢, () such that

1 1 1 1
[K +o LI = @n(0)"(IK]" + |L[") (1.1)

for any convex bodies K, L C R™. It is proved that ¢, (#) = (1—60 )" satisfies
(1.1). Some particular cases are also studied.

Following the work of Kiener [1], Schmuckensldger [2] proved that for any
convex body K of volume 1,

1
(1-0)II"(K) C K 49 (—K) C log 5H*(K) (1.2)
where IT*(K) is the polar projection body of K, the unit ball of the norm

|lz||m(x) = |z||P,L K|. Here P,. denotes the orthogonal projection on the
hyperplane orthogonal to z.

K —-K
These inclusions imply |K|II*(K) = lim K+ (=K)

in the Haussdorfl me-
0—1— 1— 9

tric for any convex body K.

In Section 4 we modify the argument to improve the estimate (1.2) (see
Proposition 4.1)

(1= 0)| K[TI*(K) € K +¢ (—K) € n(1 - 67)|K[IT"(K).

The most famous inequality concerning the volume of the polar projection
body of a convex body K C R" is Petty projection inequality,

mmmmm(%f

Wn—1

where w,, denotes the volume of the n-dimensional Euclidean ball. The equa-
lity is attained provided K is an ellipsoid (See [22]). A different proof using
convolutions can be found in [4].



In [23], Zhang proved a reverse form of this inequality

1 (2n
K" MIYK)| > — 1.3
) = (%) (13
for any convex body, with equality if and only if K is a simplex. Zhang
inequality can be written as

lim K+9—<_K)' > i(i’;) K. (1.4)

0—1— 1-6 nm

It is worth mentioning that Tsolomitis studies in [5] the behavior of limiting

convolution bodies KoL
lim ——— 1.5
A g (15)
for symmetric convex bodies K and L, and some exponent «, giving some
regularity conditions under which (for some specific ) the limit (1.5) is non-

degenerated, denoted by C'(K, L).
In [24], Rogers and Shephard obtained the inequality

I HWIE (1.6)

for any convex body K, with equality if and only if K is a simplex. Throug-
hout the proof it is showed that

K49 (—K) 2 (1—67)(K — K) (1.7)

with equality if and only if K is a simplex. They also showed in [25] the
extension for two different convex bodies

2
|K—MWmMs(”)me (18)
n

The last part of Section 4 is devoted to generalize the inclusions stated in
(1.2) and Zhang inequality (1.3) for limiting convolutions of different convex
bodies. This generalization is a consequence of Corollary 2.5, from which
(1.8) can be obtained (see Proposition 4.7).

Given that some classical geometric inequalities are recovered and extended
through the use of convolution bodies, it would be natural to consider the

4
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extension of the convolution body of more than two bodies in order to gene-
ralize these inequalities. In Section 5 we study such an extension obtaining
similar inequalities when we consider more than two bodies. Surprisingly,
it turns out when studying the equality cases, that these inequalities can
only be sharp when convoluting two convex bodies and not when considering

‘g@m more bodies.

J—

2. Properties of the 0-convolution of convex bodies

In this section we give some properties of the #-convolution of two convex bo-
dies, from which the Brunn-Minkowski-type inequality for the #-convolution

of convex bodies |K +¢ L|w > (1 — 0w) <|K\% + |L]%> will follow. However,
this bound is not sharp, as we will see below.

Lo LQ We now list some basic properties of M (K, L) and the f-convolution in the

following

sl eomansics f ( 1)

Proposition 2.1. Let K,L C R" be compact sets, A > 0, x € R" and
TeGL,(R)={T:R" - R" : T is linear}.

(a1) M(K,L)= M(L,K).

(a2) M(z+ K,L) = M(K, L).

(a3) M(AK,\L) = \"M (K, L).

(a4) M(TK,TL) = |det T|M (K, L).

(a5) If K = —L or K, L are symmetric, then M(K,L) = |K N (—L)|.
Let 0 € [0,1].

(b1) (AK) +5 (AL) = A(K +4 L).

(02) K44 L=L+g K.

(03) (t+ K)4+gL=a+ (K 49 L).

(b)) TK +9TL = T(K +4 L).



A first question about this #-convolution is its convexity, provided that K and
L are both convex. The affirmative answer is a consequence of the following
result. In what follows, using (b3) in Proposition 2.1 above, we will assume
without loss of generality, that

M(K,L) = |K N (~L)|. (2.1)

Proposition 2.2. Let K, L C R"™ be convez bodies satisfying (2.1). Then for
every 61,09, A1, Ao € [0, 1] such that Ay + Ay < 1 we have that

MK 4o, L)+ Xo(K 49, L) C K +4 L, (2.2)
where 1 — 0w = A (1 — 01%) + A(1 — 02%)
CUWT,I,O b(iuu,,Pmof. Let 1 € K +¢, L and 22 € K +¢, L. From the general inclusion
GAN wo w~e< KN (AAo+ MAL+XA42) DANK NAg+ MK NA + MK N A,

3\’ S‘\’a Md‘“ (3)Where K is convex and A\g + A\ + A2 = 1, and using the convexity of L, we
have

(2.3)
Taking volumes, using the classical Brunn-Minkowski inequality and the fact
that z; € K +4, L we have

which proves that \jx; + Axs € K 49 L for = [1 — A\ (1 — 01%) — A1 —

o3 )" y =
. i (2.2) no & P en enke CasD/'
-Hg Cm«\\f?r‘li\do Taking 6; = 05 and Ay =1 — \; we have (4) esta mnl

Jd Rewark en Corollary 2.3. Let K, L C R" be convex bodies and 6 € [0,1]. Then K +4 L

Gs Weaf\o ) CL) 1S convez.

The following result on K +; L will be used later on, and it is a consequence
of Proposition 2.2.

M}_’_QA. Let K,L C R™ be convex bodies. For any x € K +; L,
En (6>{'Q Q‘Fﬂee KN (x — L) is a translation of K N (—L).

px&«,fr-'{k

eSwloqm UhaA
f\(\/{_‘o& V\TfDSA [a.v\—’\ Remas k. 2 §> | .
bauaf]ﬁ»ez)l‘—f/'a Un gl:wn(-?— dge/\ojr'-o‘s\%a/]o*r Como Qv‘b’ea.»—’o.
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Proof. Taking 6, = 6, = 1 in Proposition 2.2, we get § = 1, and then Brunn-
Minkowski inequality (2.4, obtained from (2.3), stands as equality. Then (see
equality cases in Brunn-Minkowski inequality in [26]) the four sets involved
in (2.3),

Kﬂ(/\lxl—f-)\gxg—L), Kﬂ(—L), Kﬁ([L‘l—L), Kﬂ(l’g—L),

are all homothetic. As they all have the same volume (equals to M (K, L)),
homotheties are indeed translations. ]

Taking 0, = 05 leads us to the following

Corollary 2.5. Let K, L C R" be convez bodies satisfying (2.1). Then, for
every 0 < 6y < 60 <1 we have

K+oL K+ L
1—fpr  1—06n

Proof. Taking 6; = 0 = 6, in the above proposition, for any Aj, Ay € [0, 1]
such that A\; + Xy <1

AM(K +g, L) + Ao(K 44, L) C (A1 + A2) (K +4, L) € K +4 L,

. . 1—6n
with 1 — 0= = (A + Ag)(1 = p7). Since A\; + Ay = —,
1—-46p
1—0n
(K 44, L) C K +¢ L
1—-65
whenever Ay + Ay < 1, which means 0 < 0y, <60 < 1. O

The following extension of (1.7) from Rogers and Shephard’s work will be
used to get a first Brunn-Minkowski-type inequality.

Corollary 2.6. Let K, L C R" be convex bodies. Then
0w (K +1 L)+ (1—05)(K+ L) C K +¢ L. (2.5)

Proof. Take 6 =1, 0 =0, \; = 9%, and Ay = (1 — GTIL) in Proposition 2.2
to obtain the desired result. O



Lo anbeio

Note that the condition 0 € K +; L is equivalent to M (K, L) = |K N (—L)|,
and that is verified under the assumptions of Proposition 2.1 (a5).

We will use the following description of the boundary of K +4 L.

RﬁMﬁ-N’k 2L+ Lemma 2.7. Let K, L C R" be convex bodies, and 0 € [0,1). Then

(LSU\«L“J\O Conwno

Lewma (5)

Vi quueJuA
depnanadko
detallada, perd
Mo « fl»u'
frﬂw.

OK+9L)={ze K+L:|KN(x—L)|=0M(K,L)}.
In particular, for 6 =0,
OK+L)={re K+L:|Kn(x—L)| =0}

Consequently, for anyx € K+ L, x ¢ K+ L, there exists a unique 6 € [0, 1)
such that v € O(K +¢ L).

Groof. Let f: R" — [0,+00) be given by f(z) = |K N (z — L)|». Using

properties of the Lebesgue measure and Brunn-Minkowski inequality, it can
be deduced that f is continuous on R™ and concave on K + L. It is then
clear that K +4 L is closed.

The first assertion (K +¢ L) = {x € K+ L : f(x)" = OM(K,L)} is
equivalent to int(K +9 L) = {x € K+ L : f(z)" > 6M(K,L)}. Since the
right-hand set is open and it is contained in K +4 L, it remains to be shown
the inclusion C.

Let us take any x € K + L, with f(z)" = 6M (K, L). It is left to show that
x & int(K +4 L).

We will assume without loss of generality that (2.1) is satisfied. For any
A <1, writex = A(A'z)+ (1= A)-0. If A"z € K + L, using the concavity
of fon K+ L,

(OM(K, L))" = f(x) = A (A 0)+(1=A"1)f(0) = Af (A a)+(1-A"") M(K, L)

and therefore

fn — (1 — A\
f()\_l.CE)n S ( )
A
Then A 'z € K +4y L for any A < 1, even if \™'x ¢ K + L. Hence x ¢
int(K +¢ L).

M(K, L) < (0M(K,L))x.

|K N (x— L)

To obtain last assertion, just take 6 = M(K,L)

€ [0,1). O

1
n



Equality cases in Proposition 2.2 and Corollary 2.6 are stated in the following
result.

Proposition 2.8. Let K, L C R" be convex bodies. The following conditions
are equivalent.

(i) For every 01,05, A1, Ay € [0, 1] such that A\ + Ao = 1, we have

MK 4o, L)+ Xo(K 49, L) = K +¢ L,

1 1
where O = MO+ X207
(il) For every 6 € [0,1], 04 (K +1 L) + (1 — 65)(K + L) = K +¢ L.
(iii) K and —L are homothetic n-simplices.

For the proof, we will use the following result from [27] (we only state it here
as it will be used in this paper).

Queda vmall ?wu\»
Commo In Jema. — Theorem 2.9. (Soltan) Let K,L C R"™ be convex bodies. The following
(4) conditions are equivalent:

(i) K and L are homothetic n-simplices.

(ii) The n-dimensional intersections KN (z—L), z € R™ are all homothetic
to KN (—L).

Proof of Proposition 2.8. Using a translation we may assume that (2.1) is
satisfied.

Conditions (i) and (ii) are equivalent. Indeed, (i) trivially implies (ii).
Suppose (ii) holds. Then, using the equality for 6y, 5 and 0 successively, and
the convexity of the convolution sets,

Cwm?LaM,Lo MK 49, L)+ Ao(K +o, L)
6rdenes (3) =& (07 (K 1 L)+ (L= 6:7) (K + L))
+ A (92%@( L) (1= 0 ) (K + L))

— (MO + M8 (K 41 L) + (1= 07) + (1 — 63)(K + L)
=K+y L,

d (i) follows.



Suppose (ii) holds, and take x € K+ L, v € O(K + L). If x € K +1 L,
Corollary 2.4 shows that K N (x — L) is a translation of (so homothetic to)
Kn(-L).

If ¢ K+, L, by Lemma 2.7, there is a 6 € (0,1) such that 2 € 9(K +¢ L).
Using (ii), © = On ) + (1-— 0%)@, for some 1 € K +1 L, 29 € K + L.

Now, inclusion (2.3) and inequality (2.4) are both equalities (since |K N (x —
L) =0M(K, L)), and then KN(zx—L), KN(x;—L) and KN (zy— L) are all
homothetic (see equality cases in Brunn-Minkowski inequality in [26]). Since
x1 € K +1 L, they are all homothetic to K N (—L).

Then, all the n-dimensional intersections K N (x — L) are homothetic to the
same body K N (—L). Now it follows from Theorem 2.9 that K, —L and
K N (—L) are homothetic simplices.

Now suppose condition (iii) holds. After an affine transformation we may

assume that
K:{teR”:tiZO,Ztigl}

i=1
and —L = AK with 0 < A < 1. For any z € R",

Kn(x—1L)= {tE]R”:tj >z, Zti Smin{l,)\—l—in}},
i=1 i=1

where 7 = max{r,0}. Then, KN(z—L) = z(z)+ X(z)K, where z;(z) = =,
and

A(z) = min{1, \ + ixz} - ixj
i=1 i=1

whenever \(xz) > 0. For those z € R", we have |K N (z — L)| = A(z)"|K]|. It
is easy to see that A(x) < A, and equality holds if and only if z; > 0 for all
jand A+ > " x; <1. Then M(K,L) = X\"|K|, and K + L = (1 — M) K.

Using absolute values, A(z) can be rewritten as

1 n
)\(3:):§<1+)\— L=A=)
=1

5)

Then

i=1

K+9L—{xeR”; +Z|xiyg1+A(1—2ei)}.

i=1

10



In particular, letting § = 0, we obtain an expression for K + L. In order
to prove (ii), it is enough to prove the inclusion K +4 L C O n(K 4+ L) +

(1— 9%)(K + L) for every 6 € (0,1). Any x € K +4 L satisfies

=1

+Zn:|xi| <On(1—X)+ (1—07)(1+N). (2.6)

Recall that

1—X— Zaz

+Z]az|—1—)\foranya€K+1L Conse-

=1

quently, if ) )
x=0na+ (1—0n)b, (2.7)

with a € K +1 L, then b € K + L provided that the left hand side in (2.6)

a(l—A— Za, )1 = — Zb +Z|0nal 0 )bi|

equals

1—A— Zaz YL —A— Zb +6n Z’az‘-i- (1—07) " |bil-
i=1

Considering equality cases in triangle inequality, this happens provided that
1 —X—>"",a; has the same sign as 1 — A —>""" | b;, and for any j, a; has
the same sign as b; (here r, s have the same sign iff - s > 0).

If 8 (2 < 1— ), it is enough to consider a € K +; L in (2.7), so that
a; = ;. Then b; = (1 — 9%)_1% if x; <0 and b; = z; if z; > 0. In any
case, b; has the same sign as a;, and therefore b € K + L.

If Zl L > 1 — A, it is enough to take a € K +; L in (2.7), so that

)

=(1- )\)—w Then b € K + L provided that b; > 0 for those j so that

i=1 "3

xj > 0. But in that case

071

gt (1=2)

1
ST

x]-:

Then b; > 0 provided that



which is assumed to be true. In any case, we can find a decomposition as
(2.7), which proves (ii). O

Now we can deduce equality cases in Corollary 2.5.

Proposition 2.10. Let K, L C R"™ be convex bodies satisfying (2.1). The
following conditions are equivalent.
1 1
(i) Forany0 <6, <6<1, (1 —0n)(K 49, L) =(1—-65)(K 44 L).
(i) For every 6 € [0,1], (1 — 0%)(K + L) = K +¢ L.
(iii) K = —L is an n-simplez.

Proof. Again, conditions (i) and (ii) are easily seen to be equivalent.

Now, suppose (ii) holds; then K +; L = {0}, and consequently (ii) in Propo-
sition 2.8 holds. Then K and —L are homothetic n-simplices.

As in the proof of Proposition 2.8, we have K +1 L = (1—\)K, which implies
A =1, since K + L = {0}. Consequently, K = —L.

Condition (iii) implies (ii) in Proposition 2.8, and since K +; L = {0}, we
get (ii). O

3. Brunn-Minkowski type inequality for #-convolution bodies

From the previous study on convolution of two sets, the following natu-
ral question arises: what kind of Brunn-Minkowski-type inequality for 6-
convolutions

1 1 1 1
|K + LIn > 0 (0)n (| K|7 + |L]7). (3.1)
does it hold?

As in the classical case, the homogeneity allows one to formulate the inequa-
lity in different equivalent forms.

Proposition 3.1. The following statements are all equivalent:

(i) For K, L measurable sets in R™
[ o LI > ou(0)7 ([K]7 +|L|7).

(ii) For K, L measurable sets in R" and 0 < A < 1

3=

MK 44 (1= N)L|™ > ()7 (K |7 + (1= N)|L]7).

12



(iii) For K, L measurable sets in R™ and 0 < A < 1
MK 4o (1= ML > (@) (K- [L]F).
(iv) For K, L measurable sets in R™ and 0 < A <1
IAK +4 (1 = A)L| > ¢, (0) min{|K|, |L|}.
(v) For K, L measurable sets in R™ such that |K| = |L|=1and 0 < A <1
[AK o (1= A) L[ = @n(0)-

Proof. (i) — (i) and (#ii) — (iv) — (v) are immediate. The proof of

(17) — (i77) is obtained by taking logarithm and using its concavity.

J— 1 _ 1 S %
Finally, apply (v) with K = |K| %K, T = |L|"*L and A = ﬁ

use the homogeneity of the convolution (Proposition 2.1 (b1)) to get (). O

A first inequality in this direction for convex bodies is obtained from Coro-
llary 2.6.

Corollary 3.2. Let K, L C R" be convex bodies. Then
K+ L7 = (1= 6%)([K|» +|L|").
Equivalently, ©,(0) > (1 —603)" in (3.1).

Proof. Taking volumes in (2.5)

K +¢ L|n > (1—0)|K + L|» (3.2)

and applying Brunn-Minkowski inequality
(1—0%)|K + L[» > (1 — 07)(|K]» + |L|7) (3.3)
we obtain the desired result. 0

In order to have equality in Corollary 3.2, we need to have equality in (3.2)
and in Brunn-Minkowski inequality (3.3). However, by Proposition 2.10,
equality in (3.2) holds if and only if K = —L is an n-dimensional simplex,

13



and in that case there is not equality in Brunn-Minkowski inequality (unless
n = 1). See examples at the end of the section for details.

The following result improves the inclusion
(1—0)(K+L)CK+¢L (3.4)

providing a new set between them. A good estimate for the volume of this
new set would lead to a better estimate for |K +4 L|.

Theorem 3.3. Let K, L C R" be convex bodies such that M (K, L) = |K N (—L)|.
Then for all 0 € [0, 1],

|(1 = lal[x) K N (1 —|[b]|L)(=L)]
K LD b : K bel > @
+o _{a—l— a€ K, bel, |Kﬂ(—L)| >

O (1—0%)(K + L).

Proof. Let x € K 4+ L, then x = a4+ b with a € K and b € L. From the
convexity of K

a
(1 = lal[x) K + [la][x e € K.
llallx

Also, since || — b||_r = ||b]|r and L is convex

10l

Since x—b = a, we have (1—||a||x)K+a C K and (1—|[b||1)(—L)+a C x—L.
Thus,

(1= 1[bl[)(=L) + {10l +xCx—L

a+ (1 —|laf|x) K0 (L= [[bl[)(-=L) € KN (z— L)
and then |K' N (z — L)| > |(1 —||a||x) K N (1 —1]b]|z)(—L)|. Consequently,

(1 = Hallx) KO (1 — [1]])(=L)]
[Kn(=L)|

K+yL2>{a+b:a€K, bel, > 0}.

This set trivially contains the set
{a+b : inf{(1—lallx)", (1 = ]bl|2)"} > 6} = (1 — 67 )(K + L). O

In order to get a more accurate idea of how good the bound in Corollary 3.2
K +o L]

———— for some particular pairs of bodies.
| K[ + [ L]

is, we estimate the quotient

Examples:

14



1) For K, L cubes whose sides are parallel to the coordinate hyperplanes,
it is not hard to see that the quotient is minimized when K = L =
[—1/2,1/2]™, and its value equals

2) For K = L the unit Euclidean ball, the quotient equals R, (¢) given by
the equality

1 n—1
2wn_1/ (1 - 32)T ds = Ow,,
Rn(0)
where w,, denotes the volume of the n-dimensional unit Euclidean ball.

3) As it was mentioned above, in [24] it was proved that, for K = L the
simplex, the quotient equals

(1—6%) (2’2)“ ~2(1 = 6).

Comparing these three cases, it seems that the minimum value for the quo-
tient is attained in a different case depending on 6. This fact makes difficult
to find a family of bodies in which the minimum is attained.

4. A connection with projection bodies and Zhang inequality

This section is devoted to generalize the inclusions (1.2) and Zhang inequality
for convolution of different convex bodies.

The following result generalizes the right hand side inclusion in (1.2). We
extend the ideas used in [2]

Proposition 4.1. Let K, L C R"™ be convex bodies satisfying (2.1). Then,
Jor every 6 € (0,1)

d+
K—i-@Lg{JJERn ’$|

a0 (1)
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<n(l—6)M(K, L)}.

t=0



Proof. The concavity of the function x — |K N (x — L)|% implies

n

3=

KN (\x— L) > ((1—)\)M(K,L) FAKN(z—L \%)
|[KN(z—L %

M(K

)]
> M(K,L) 1+An<|Kﬂ e~ L) 1)]

= M(K,L) 1+>\<

M(K

for A € [0,1] and z € K 4 L. On the other hand,

G —L)‘dt
|z]

+
< M(K,L)+ x| max i ‘Kﬂ <t|—|—L)’
te x|] Y

Alz| g+

KN —L)| = M(K,L)+/O o

again using the concavity of = — |K N (z — L)|% Comparing these two
inequalities, and letting A\ — 0T, we obtain
KN (ti - L)
|z

KN (z— L)+ 1) d+
Since the lateral derivative is non positive, we get the desired inclusion. [J

nM(K, L) (

1 |:L“—
M(K,L)x» t=0
Remark 4.2.

1) If L = — K, then the right-hand side set is exactly n(1— 6= )|K|II*K which
improves the right hand side inclusion in (1.2).

is increasing with respect to

- n

K
2) From Corollary 2.5, the family of sets N i -

0, and using the equivalence 1 — 0 ~ n(1 — 9%), the existence of the limiting
convolution set with o = 1,

follows. However, there are cases in which this set is unbounded. For this we
refer to (Example 3.15 in [5]) where the author gives a detailed construction C%>
of an example where the limiting convolution is R™.
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3) The righten set in Proposition 4.1 is n(1 — 62)Cy(K, L). The previous
result can be deduced from Corollary 2.5 letting 6y — 1~ (see the proof of
Theorem 4.6 below).

3) Nevertheless, a general inclusion K +4 L C n(1 — 9%)0 , for some body C
independent from € can not be proved, since it was shown in [5] that the
limiting convolution body with o = 1 could be non compact.

The left-hand side inclusion in (1.2) is generalized with the following Propo-
sition. Recall that conv(A) denotes the convex hull of a set A.

Proposition 4.3. Let K, L C R" be convex bodies satisfying (2.1). Then,
for every 0 € (0,1)

K49 L2 (1—60)M(K, L) conv(II'K UTI*L).

Proof. In [3] it is proved that, given two convex bodies K, L, and u € S"7!,
the function f(r) = |K N (ru 4 L)| verifies f(0) = |CF(1,2)] — |C; (2,1)],
where

CH(1,2) = P(K N L)N{yf >0 > ¢ >4}

Cu(2,1) = P(ENL)N{Y] 2 vk >y =g}
with
Vi(y) =max{t : tu+y€ K}
and
Ye(y) =min{t : tu+y e K}.

Thus -%|K N (z — L)| > —|PyK N (z — L)| > —min{| P K|, |P}L|}. Con-
sequently,

KN (z—L)|=

||

M(K, L) +/ % ‘K N (t"”—‘ - L)‘ > M(K, L) — || min{| P} K|,| P} L|}.
0 T

Hence, if M(K, L) — || min{|P+ K|, |P+L]} > OM(K, L) then & € K +¢ L

and this holds if and only if min{||z||qx, ||z|lmr} < (1 — )M (K, L).

So, (1 =0)M (K, L)(II*K UIT*L) C K +4 L. The convexity of the set K +¢ L

yields the desired result. O]
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Remark 4.4. Taking L = —K and |K| = 1, we recover the left hand side
inclusion in (1.2).

Remark 4.5. Applying Zhang inequality we deduce that

minlc 2 | g 2 ()

which extends Zhang inequality (1.4). Nevertheless, a stronger extension of
Zhang inequality can be proved using Corollary 2.5.

Theorem 4.6. Let K, L C R™ be convex bodies such that M (K, L) = |K N (—L)|.

Then
o= () S (@)
Equality holds if and only if K = —L 1is a simplex.
Proof. From Corollary 2.5 we have that for every 0 < 0y <6 < 1
K +q, L - K44 L (4.2)

I 1
1—6y  1-0n

Thus, letting # — 1~ we obtain that for every 6, € [0, 1)

K+90LC lim 1—0 K+yL
1_90% _9%1_1—9% 1_9

= TZCl(K, L),

and taking volumes
1
| K +o, L| < n"(1—0g)"|CL(K, L)|

for 0y € [0,1). Integrating over [0, 1] yields

1 1 1 9 -1
/ | K+, L\d&ogn”\Cl(K,Lﬂ/ (1—65)"d60:n”|C’1(K,L)]< n> :
0 0

n

Integrating by parts and using Fubini’s Theorem, the first integral equals

1 1
|KN(z— L)
K L|dfy, = K+L:————— >0 do
A | +90 | ‘ A {x © - M (liaL) = ‘

18



SANO’\OY\@
2 rso B+

(4)

_[ EnG-pl, K
xern  M(K,L) M(K,L)

from which the desired inequality follows.
If equality holds in (4.1), then (4.2) holds also with equality for any 0 < 6, <
0 < 1. Letting 0y = 0,

(1—6)(K+L)=K+yL (4.3)
for any 6 € [0,1). Now Corollary 2.6 implies

On (K 41 L)+ (1 — 07 (K + L) CK 49 L = (1 — 6)(K + L).

A compactness argument shows that K +; L = {0}, so equality (4.3) holds
for every 0 < # < 1, and then (ii) in Proposition 2.10 implies that K = —L
is a simplex. O

Finally, Corollary 2.5 allows us to recover Rogers-Shephard inequality (1.8).
We also solve the problem of characterizing equality cases posed in [25].

Proposition 4.7. Let K, L C R"™ be convex bodies. Then
2n
s < () K,
Equality holds if and only if K = —L 1is a simplex.

Proof. By a translation we may assume that (2.1) is satisfied. A similar ar-
gument to that used in Theorem 4.6, taking 6y = 0 in Corollary 2.5, applying
volumes and integrating in #, shows the desired result.

If equality holds, then (ii) in Proposition 2.10 is satisfied, and therefore K =
—L is a simplex. O

5. Convolution of m bodies

In this section we will extend the definition of #-convolution bodies to more
than two sets. The f-convolution is not associative (as a simple computation
with Euclidean balls of different radius shows) so a definition of an m-fold
convolution can not be made inductively. Nevertheless, since |[KN(z — L) | =
Xk * xr(z) and the convolution is associative, it seems natural to make the
following extension of #-convolution bodies:
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Definition 5.1. Let Ky,..., K,, be m measurable sets in R™ and let 6 &€
[0,1]. We define their #-convolution as the set

Kitg - FoKpy = {x € Ki+- 4Ky @ XK, * - *Xk,, (1) = OM(Ky, ..., Ky)}

when M(Ky, ..., K,,) = maXgern XK, * -+ % XK, (¢) is finite.

For 6 = 0 the set K; +¢ - -+ +¢ K, is just the support of the function xx, *
-+ % Xk,,, the usual Minkowski sum Kj + - -+ 4+ K,,.

The commutative and associative properties of the convolution imply trivially
that

(al) XK, * % XKm = XK, * " *¥ XK, for any o permutation of {1,...,m}.

(42) Xerks %% Xaon(B) = Xai %+ % X (& — 2)

(a3) X7r, * -+ * XTK,, () = | det T|"xg, * -+ * X, (T 'x) for any T €
GL,(R).

Consequently we have the following result, analogous to Proposition 2.1.

Proposition 5.2. Let Ky,...,K,, be compact sets in R", A € R, 0 € [0, 1],
r€R" and T € GL,(R). Then:

(b1) (AK7) 49 +o (AKp) = MKy 4o -+ 49 Kin)

(bg) Ki+y - +o K,, = Kcr(l) 4 e +p Kg(m) for any o permutation of
{1,...,m}.

(b3) (x+ Ky)+o Koo +o Kpy=2+ (K149 49 Kpn)

(b4) TKy+¢- - +9TKy, =T(K; 49 +o Kpn)

The convexity is transmitted to the #-convolution of m convex bodies.

Proposition 5.3. Let K1, ..., K,, be convex bodies in R™. Then Ki+g---+y¢
K, 1s a convexr body.

Proof. The characteristic function of each convex body Kj; is log-concave.
The convolution of log-concave functions is log-concave, and the level sets of
log-concave functions are convex. O

Corollary 2.5 is proved by using that x g, * Xk, 1S %—concave in its support.
In order to generalize this result, we have to prove that the convolution of
more than two characteristic functions is s-concave for some s. We get this
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result for s7! = (m — 1)n by considering sets in dimension (m — 1)n. As in

the case m = 2, we may assume, without loss of generality, that
M(Ky, .. Kn) = Xr, %00 % Xk, (0)- (5.1)

Proposition 5.4. Let Ki,...,K,, C R" be convexr bodies satisfying (5.1).
Then, for any 01,05, A1, A\a € [0, 1] such that \; + Ay < 1 we have

M (K1 4o, o Fo, Kin) + Ao(Ki +o, -+ o, Kin) © K+ +p Ky (5.2)
1 . — .
where 1 — T=0m = A\ (1 —6"7") + Xo(1 — 6577,
Proof. First at all, notice that for any x € R",
XKy % XK, (2)

= / XKL * % XKt (tme1) X Ko (T — tim—1) b1
Rn

sk XKy (tme2) XKy (Bt — tm—2) X g (T — ti—1) db—o dt—y

:/n"'/WXKl(h)XKQ(tz—tl)...

c 'XKmq(tm—l - tm—Q)XKm (ZL' - tm—l) dtl .. .dtm_1
= [Qn—1(z)|

where
Q1 (z) = {(t1, .. . tmey) ERMV ot e Kty —t €Ky, ...
coitm1 =t 2 € Ky 1, @ —ty 1 € K}
The convexity of K1, ..., K,, gives
Q1M1+ 2022) O (1=A = A2)Qn—1(0) + A1 Q1 (1) + X001 (22) (5.3)

for any x1,z2 € R™ and A, Ay > 0 such that A\ + Ay < 1. In particular,
it 1 € Ky +¢, -+ +o, Ky, and 22 € Ky +¢, -+ +¢, K, Brunn-Minkowski
inequality in R~ D" implies

1 1
|1 (A1 + Aoa)| > (1= A1 — Ag) + )\191(7%1)" + )\292(7"71)" )(m_l)n|9m—1(0)|;
(5.4)
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which shows that \jz1 + \axy € Ky 44 - - - +9 K,,, with

| 9T = A1 — 05 ) 4 Ap(1 — 057, O
Remark 5.5. The concavity of the function
$€K1+"'+Km'_>XK1*"'*XKm(x)ﬁ
allows us to write, for any 0 € [0,1), the boundary of Ky +4 -+ +¢ K, as
O(Ki+e - +oKnm) ={x € K1+ +Kp : Xi % %Xk, () = OM(Ky, ..., Kny)}.
In particular, for 6 = 0,
oK1+ +Ky)={reKi+- -+ Kp: Xk, % % Xk, (x) =0}

That implies that for any v € Ky + -+ + K,,, * € Ki +1 -+ - +1 K., there
exists a (unique) 6 € [0,1) such that x € O(K; +¢ - -+ +9 Kpn).

Remark 5.6. Taking ¢; = 6, = 1, and following the proof of Proposition 5.4,
we get equality in the inclusion (5.3) and in the Brunn-Minkowski inequality
(5.4). Consequently, Q,,_1(x) are all homothetic to §2,,_1(0) for any = €
Ki+1---+1 K,,,. Using that they all have the same volume, we get that they
are translations of €, 1(0).

In particular, taking #; = 05 and Ay = 1 — Ay in Proposition 5.4, we get the
convexity of Ki +¢ -+ +¢ K,,. Also, taking 6; = 0y = 6, we get the version
of Corollary 2.5 to m bodies.

Corollary 5.7. Let Ky,...,K,, C R" be convex bodies such that (5.1) is
satisfied. Then for any 0 < 0y <6 < 1

K1 too - too K - Ko to - to Ky

1 — 1
1 o eo(m—l)n 1 _ e(m—l)n

We can easily get the Brunn-Minkowski type inequality for m bodies, a ge-
neralization of Corollary 3.2.

Corollary 5.8. Let Ky,...,K,, CR" be convex bodies. Then

Ky o+ 4o Kl > (1= 07007 ) (K7 + - K] 7).
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Finally, we get Zhang and Roger-Shephard type inequalities for m bodies.
For Ky,..., K,, CR", let

Kyt o Ko
Cl(Kla"'va):éHH - 01_90 :

As in the case m = 2, the existence of the previous limit follows from Coro-
llary 5.7.

Corollary 5.9. Let Ky,...,K,, CR" be convex bodies. Then

e e ()

M Ky = e G, Kl

n

Proof. The proof runs as in Theorem 4.6 and Proposition 4.7 resp., using
Corollary 5.7, instead of Corollary 2.5. m

Regarding the study of equality cases, we will show that equality never occur
in (5.2) for all Aj, Ay such that A\; + Ay = 1 unless m = 2 or n = 1. That im-
plies that extensions of Zhang, Roger-Shephard and Brunn-Minkowski type
inequalities are not sharp for m > 2 and n > 1.

The following result can be proved as in Proposition 2.8.

Proposition 5.10. Let K,..., K,, C R" be convex bodies satisfying (5.1)
and such that for any 61,09, A1, Ao € [0, 1] such that Ay + Ay = 1 we have

MKy o, - 4o, Kon) + XK Ho, - 4o, Ki) = Ky +o -+ +o0 Ko, (5.5)

where OT=Tn — MO 4 NV Then for every x € Ky + -+ + K,
Q—1(z) s homothetic to §,,—1(0) .

Then we will show that this consequence can not occur for m > 3.

Proposition 5.11. Let m > 3 and K,...,K,, C R" be convex bodies sa-
tisfying (5.1). Then it is not possible that 2,1 (x) is homothetic to ,,—1(0)
for every x € K1+ -+ K,,.

For the proof, we will use the following fact on sum of simplices, which is of
independent interest.
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Lemma 5.12. Let K, L C R" be n-dimensional convex bodies. If K + L 1is
an n-dimensional simplex, then K and L are both n-dimensional homothetic
simplices.

Proof. Denote by ho(z) = max{(z,y) : y € C} the support function of a
compact set C' C R".

Let us write K + L = conv{wy, ... w,}. We will show that L is a simplex.

Each w; is an extreme point of K 4+ L. Then w; = u; + v; where u; € K and
v; € L are extreme points of K and L resp. In particular, v; = w; —u; € L
and so conv{wgy — ug, ... w, —u,} C L. Also

hi(x) + h(v) = hiyr(r) = max (z, w;)

< hg(z) + Orglagl(x,wi — u;)

Thus hy(z) < ax (x,w; —wu;), so L C conv{wy — ug, ... w, — u,}, and L is
Stsn
a simplex.

Now, write K = conv{ug, ..., u,} and L = conv{vy,...v,}. We will prove
that they are homothetic simplices.

Let A; ={s€ S" ' : hg(s) = (z,u;)} and B; = {s € S"™ ' : hp(s) = (z,v;) }.
K and L are homothetic if and only if both partitions of S}

Sn_l - LnJAl - OBZ
1=0 =0

are identical. Assume they are not the same, then the partition S"~! =
n
U C;; where C;; = {s € S" ' : hgyr(s) = (z,u; +v;)} has more than

i,j=0
n + 1 elements, since

hiir(s) = hg(s) + hi(s) = ()Igiag;(x, w;) + Olgja%(x,vﬁ = Oglz}i(n(x, u; + vj).

Then K + L is not a simplex. O
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Remark 5.13. An argument similar to that used in the remark before Theo-
rem 3.2.3 in [8] leads to the same claim. However, we have included a direct
proof of it for the sake of completeness.

Proof of Proposition 5.11. Notice that

Qm_l(l’) = {(tl, - tm—l) S R(mil)n : (tl, e tm_g) c Qm_2<tm_1),
tm1 € (x — Kp) N (K + -+ Kpq) )

and that Q,,_o(t,,—1) is non-empty if and only if ¢,,_; € K1+ -- K,,_1. Then
the projection onto the t,, ; coordinate is

Pt (1 (2)) = (2 — Ko) (K + -+ + K1),

Suppose that €2,,,_1(x) is homothetic to €2,,,—1(0) for every z € K1+ -- -+ K,,.
Then their projections are also homothetic. Then (z—K,,)N(K1+- - -+ K1)
is homothetic to (—K,,) N (K1 + -+ K1) for any z € Ky + - -- + K,,, and
Soltan’s Theorem 2.9 implies that K; 4+ --- K,,,_1 and —K,,, are homothetic
simplices.

On the other hand, the projection onto the t¢,,_ 5 coordinate is

Pm—Q(Qm—l(x» - U Pm—2 (Qm—Q(tm—l))
tm_1€x—Kn,
== U (tm—l - Km—l) N (Kl + - Km—2)
tm—1€x—Km

=(x— (Kpa+ Kn))N (K + -+ Kipe2)

and so we have that for every 2 € Ky + -+ + K, (x — (K1 + Kp)) N
(K1 + -+ K,,_2) is homothetic to (—(K,—1 + Kn)) N (K 4+ -+ Kpa).
Soltan’s Theorem 2.9 shows again that Ky + -+ -+ K, o and —(K,,_1 + K,;,)
are homothetic simplices.

If K,, and K,,,_1 + K,, are both simplices, by Lemma 5.12, K,,,_; is also a
simplex homothetic to K,,. But (K; + - -+ K,,_1) + K,;, is a simplex, so
Lemma 5.12 shows that Ky +--- + K,,_; and K,, are homothetic. But then
K,, is a simplex homothetic to —K,,, a contradiction, unless n = 1. O
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