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ABSTRACT

Context. The International Astronomical Union (IAU) recommendations regarding the International Celestial Reference Frame
(ICRF) realizations require the construction of radio sources catalogs obtained using very-long-baseline interferometry (VLBI) meth-
ods. The improvement of these catalogs is a necessary procedure for the further densification of the ICRF over the celestial sphere.
Aims. The different positions obtained from several catalogs using common sources to the ICRF make it necessary to critically revise
the different methods employed in improving the ICRF from several radio sources catalogs. In this sense, a revision of the analytical
and the statistical methods is necessary in line with their advantages and disadvantages. We have a double goal: first, we propose
an adequate treatment of the residual of several catalogs to obtain a homogeneous catalog; second, we attempt to discern whether a
combined catalog is homogeneous.
Methods. We define homogeneity as applied to our problem in a dual sense: the first deals with the spatial distribution of the data over
the celestial sphere. The second has a statistical meaning, as we consider that homogeneity exists when the residual between a given
catalog and the ICRF behaves as a unimodal pure Gaussian. We use a nonparametrical method, which enables us to homogeneously
extend the statistical properties of the residual over the entire sphere. This intermediate adjustment allows for subsequent computation
of the coefficients for any parametrical adjustment model that has a higher accuracy and greater stability, and it prevents problems
related with direct adjustments using the models. On the other hand, the homogeneity of the residuals in a catalog is tested using
different weights. Our procedure also serves to propose the most suitable weights to maintain homogeneity in the final results. We
perform a test using the ICRF-Ext2, JPL, and USNO quasar catalogs.
Results. We show that a combination of catalogs can only be homogeneous if we configure the weights carefully. In addition, we
provide a procedure to detect inhomogeneities, which could introduce deformities, in these combined catalogs.
Conclusions. An inappropriate use of analytical adjustment methods provides erroneous results. Analogously, it is not possible to
obtain homogeneous-combined catalogs unless we use the adequate weights.

Key words. astrometry – celestial mechanics – methods: data analysis

1. Introduction

The International Celestial Reference Frame (ICRF; Ma 1998)
was officially adopted to replace its predecessor, the FK5 Frame,
as the realization of the International Celestial Reference System
(ICRS; Arias 1995) at the 23th International Astronomical
Union (IAU) General Assembly in 1997. Catalogs of radio
source positions (RSC) derived from VLBI observations have
been used by the IAU to establish the ICRF since 1998.
The first realization of the ICRF, the ICRF1, consisted of
608 extragalactic radio sources and 294 candidate sources to
make future improvements possible and 102 additional unstable
sources.

Definitions of the ICRF are no longer related to the equinox
or equator, but the IAU has recommended that the new reference
frame should be consistent with the former FK5 system for the
sake of continuity. The principal plane should be close to the
mean equator at J2000.0 and the origin of right ascension should
be close to the dynamical equinox at J2000.0. Feissel 1998 con-
cluded that the final orientations of the ICRF axes were coinci-
dent with those of the FK5 J2000.0 system within the uncertain-
ties of the latter catalog.

In 1999, the first extension of ICRF1, the ICRF-Ext1 (IERS
1999) was released with 59 new sources as candidate sources.

The positions and errors of the ICRF1 defining sources remained
unchanged. The second extension of the ICRF1, the ICRF-Ext2
(Fey et al. 2004), added 50 new sources, and the positions of
ICRF candidates and other sources were revised. The positions
of the 212 defining sources were kept the same as those obtained
in the ICRF1. It should be pointed out that both ICRF1 exten-
sions were similarly obtained to the first realization, as a result
of analysis of the VLBI observations at a single analysis cen-
ter. The orientations of the ICRF-Ext2 axes and their uncertain-
ties, however, still remained at the same level as for the original
ICRF1.

The second realization of the ICRF, the ICRF2 (Fey et al.
2009) has 3414 objects (295 defining) and presents some advan-
tages with respect to the previous realizations of the ICRF. The
sky distribution of radio sources is improved by 1383 sources in
the southern hemisphere, and the source categorization is sub-
ject to a more rigorous criterion. Only 97 defining sources of
the ICRF1 remain as ICRF2 defining sources, and 39 unstable
sources, some of which were ICRF1 defining sources, are iden-
tified as requiring special handling with their positions treated
as arc parameters in VLBI data analysis. Statistical informa-
tion on the evolution of the realization of the ICRS is given in
(Yu 2013).
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We focus our interest in the ICRF-Ext2, which is widely used
for astrometrical measurements; thus, its accuracy and stability
should be assured. This requires continuous maintenance as time
elapses. First, the ICRF-Ext2 needs to be more densely defined
because it includes a total of 717 sources and has a largely non-
uniform distribution over the sky. Second, the defining sources
have to be monitored to verify whether they are still proper and
stable to be used in a future realization of the ICRS.

With regard to the first question above, attempts were made
to improve the accuracy of the celestial reference frame by con-
structing combined catalogs after the appearance of the first
VLBI radio sources catalog. Different methods were used to ob-
tain a combined RSC with (Arias et al. 1988) being the first of
them, and others were proposed by Walter (1989a, 1989b) and
Yatskiv (1990). In accordance with Sokolova (2007), appropriate
use of individual catalogs with common sources provides an im-
provement of each individual catalog. Among the general aims
regarding this subject, we can point out the comparative study
between catalogs and ICRF defining sources by considering a
rigid frame (only rotations), avoiding deformations, and consid-
ering the densification of the ICRF in a twofold sense: the in-
creased amount of defining sources and the densification in its
wider sense of the catalog.

In all Cat-ICRF comparison processes, we intend to separate
the residuals into two components: systematic errors (signal) and
random errors (noise). During the study process of each individ-
ual catalog and the subsequent process of obtaining a combined
catalog, we may find some problems that could provide unsatis-
factory results. To study systematic errors, a parametrical model
is a common choice and then the least squares method is indis-
criminately used to obtain the coefficients of the chosen model,
either geometrical (rotation or rotation plus deformation) or an-
alytical (spherical harmonics development of Fourier-Legendre,
for instance). Related to this, it may be extremely important that:

a) The nonhomogeneity in the spatial distribution since it
causes functional orthogonality does not turn into algebraical
orthogonality in the discrete case. This problem is especially
serious when we estimate high order harmonics.

b) The mean quadratic error is the sum of the mean squared bias
and the variance. An artificial decrease of the bias (If the in-
formation is biased, the model must consider this possibility)
implies an increase in the variance, and this could introduce
artificial and undesirable deformations.

For suitable treatment of these possible complications, we use
a double meaning for the word “homogeneous”. A first mean-
ing refers to the spatial distribution of the data. Another one
is applied to the remaining “remainder” after the geometric ad-
justment of the Cat-ICRF residuals that must behave as a uni-
modal Gaussian distribution with null mean. A detailed study of
the first sense was developed in our papers (Marco 2004a) for
H-FK5, (Marco 2004b) for H-Tycho2 and
(Martínez 2009) for the estimation of the H-FK5 spin.
All these works were carried out in the context of a complete
adjustment between catalogs with many common stars. In our
present case, there are differences in the number of reference
positions, because we have defining sources with higher quality
and the rest are common objects. In the case of few common
sources, the previously mentioned problems are worse, and we
must be especially careful if we want to obtain the aims proposed
above.

Let us go back to the decomposition for every catalog of the
residual in the signal with the random part that must be normally

distributed. A combination of catalogs take us generally to a ran-
dom part that consists of one Gaussian mixture, which indicates
the origin of the different sources used in the compilation. This
shows that a combined catalog is not generally homogeneous in
the second sense given to the word.

As we establish later, there is a specific assignment of
weights that provides a residual that is a pure Gaussian distri-
bution after the adjustment. This problem itself is very difficult
to study. We have been able to make use of several procedures,
such as a Gauss-induced by least squares or search, using min-
imization of the distance, as in Sfikas (2005). We consider the
result given by the (not necessarily the most efficient) method,
where homogenization is (at least) assured in a radius equal to
the standard deviation and is centered in the mean. This prob-
lem would not be complete if we do not provide an answer to
the inverse problem: given a nonhomogeneously combined cat-
alog, how can we find the different populations from which it
originates? The answer is not evident. We respond to another
problem that may answer the former one: given one Gaussian
mixture, how could we obtain the summands in which it decom-
poses? This part deals with the study of the random component
of the residuals. These two questions are considered in the fol-
lowing section. The presentation of the problem is covered in
greater detail and more suitable terminology and answers are
provided to both previous questions. In the Appendix, a rigor-
ous proof is included regarding the convergence of methods in a
more general case.

Concerning the previously mentioned decomposition of the
mean-quadratic error in the mean-squared bias and the variance
from a statistical point of view, several approaches to this prob-
lem exist. The usual one consists of minimizing empirical errors,
choosing a parametrical adjustment model. In this case, the coef-
ficients of the model are very susceptible to changes in the initial
data, being sensitive to spatial distribution and to the individual
errors that they contain. On the other hand, we propose an ap-
proach to the problem with better stability properties. It implies
the use, as an intermediary, of a non parametrical adjustment. We
see some additional advantages of using this approach, which
is the aim of the third section. In the fourth section, we give a
summary of the parametrical approach. In the fifth section, we
consider all the previous considerations for the use of two quasar
catalogs to improve the ICRF. This paper concludes with a brief
summary of conclusions and a final Appendix.

2. Homogeneity and errors in combined catalogs

Let {xi, i = 1, 2, ...n} be the ICRF positions, and let
{
x1

i , i =
1, 2, ...n

}
,
{
x2

i , i = 1, 2, ...n
}

be the corresponding values in the
two other catalogs. We work with the original positions {xi, i =
1, 2, ...n} and the residuals {yi, i = 1, 2, ...n} and {zi, i = 1, 2, ...n}
for Catalog1-ICRF or Catalog2-ICRF. Suppose that we have

yi = m[1](xi) + ε
[1]
i , zi = m[2](xi) + ε

[2]
i , (1)

where each ε[
j]

i , j = 1, 2 is a normal random variable with
N

(
0,σ2

1

)
, N

(
0,σ2

2

)
respectively and m[1],m[2] models of adjust-

ment. In general, any linear combination of random variables
(RV henceforth) is not a pure Gaussian, but a Gaussian mixture.
In the particular case of being a pure Gaussian, we say that we
have a homogeneous combined catalog.

Thus, we want to find a new RV U and a model m from the
RV Y, Z and the models m[1],m[2] so that the residual U − m(X)
verifies that it is a pure Gaussian RV with null expectation and
that σ2

U < σ
2
X + σ

2
Y .
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Taking m (X) = α1m[1] (X) + α2m[2] (X) and U = α1Y + α2Z,
it is evident that

U − m(X) = α1

(
Y − m[2] (X)

)
+ α2

(
Z − m[2] (X)

)
, (2)

and this is generally a Gaussian mixture.
In a first step, the usual procedure employed to obtain a den-

sified catalog from others that are referred to a main catalog
(with few but very good points from a qualitative point of view)
is based on this briefly explained method. Two questions arise
from this point:

(Question 2.1.) There are many ways to consider the models
m[1], m[2], and the weights. If we have chosen the models,
which are the optimum weights to account for the two previ-
ous conditions?
(Question 2.2.) We consider the word homogeneity applied
to our problem in a dual sense: the first deals with the spatial
distribution of the data over the celestial sphere. The second
has a statistical meaning as we consider that homogeneity
exists when the residual between a given combined catalog
and the ICRF behaves as a unimodal pure Gaussian. If we
have a catalog obtained from another two catalogs, is it pos-
sible to know if its construction has been homogeneous?

In the following subsections we try to answer these two
questions.

2.1. Compiling an accurate catalog from other catalogs

Question 2.1 can be solved in the desired sense: if we want to
obtain a Gaussian residual by supposing Y is independent of Z,
we have

σ2
U = α

2
1σ

2
Y + α

2
2σ

2
Z . (3)

If we take

α1 =
σ2

U

2σ2
Y

,α2 =
σ2

U

2σ2
Z

, (4)

then, we obtain the first property with σ2
U =

√
2

1
σ2

Y
+ 1
σ2

Z

:

U − m (X) =
1√

2πσU

exp

−

1
2σ2

U

x2


 . (5)

It can be shown that the previous properties are satisfied, because
we have obtained a normal residual (at least in a radius equal to
the typical deviation and centered in the mean), and the variance
σ2

U verifies the desired second property:

σ2
U < σ

2
X + σ

2
Y . (6)

2.2. A compiled catalog and its homogeneity

To obtain a new compiled catalog, two or more catalogs are lin-
early combined so that the errors generally propagate to the final
catalog as a Gaussian mixture. We now deal with the inverse
problem: how can we find the weights and the variances of a
sum of Gaussians?

To this aim, we take the function f defined as a linear combi-
nation of the Gaussian probability density function with different
variances and null expectations (this is not necessary, but it is the
norm for these kinds of problems). Now, we ask ourselves if a

residual is a sum of Gaussians and, in this case, how can it be
determined. Let a two-Gaussian mixture distribution be

f (x) =
c1√
2πσ1

exp

−

1
2σ2

1

(x − µ1)2




+
c2√
2πσ2

exp

−

1
2σ2

2

(x − µ2)2


 , (7)

where σ2
1, σ2

2 are the variances, µ1, µ2 the mathematical expec-
tations and c1, c2 the weights, and where we suppose σ1 < σ2.
In addition, the most usual situation in catalog problems is
µ1 = µ2 = 0, and so, we make this assumption (Even when
we consider a more general case, the method is still valid as we
show in the Appendix). If we define φ0 (x) = 1√

2π
exp

(
− 1

2 x2
)
,

then the kth-derivative is

φ(k)
0 (x) = (−1)k Hk (x) φ0 (x) , (8)

where Hk is the kth-Hermite’s polynomial (Ayant 1971). (The
sign is included for convenience.) If we denote hk as the corre-
sponding kth-Hermite function, we obtain the following for the
derivatives of the Gaussian mixture:

f (k) (x) =
c1

σk+1
1

hk

(
x
σ1

)
+

c2

σk+1
2

hk

(
x
σ2

)
· (9)

We consider the properties of the Hermite functions:

h2r+1 (0) = 0
h2r (0) < 0 for r odd
h2r (0) > 0 for r even. (10)

For k = 2r, we see that the summand containing the least vari-
ance dominates:

f (k)(x)
c1
σk+1

1
hk

(
x
σ1

) = 1 +
c2
c1 h( x

σ2 )
(
σ2
σ1

)k+1
h
(

x
σ1

) ⇒

f (k)(0)
c1
σk+1

1
hk(0)
= 1 +

c2
c1(

σ2
σ1

)k+1

k→∞−→ 1.
(11)

Since we assumed µ1 = µ2 = 0 and σ1 < σ2, then it follows that
f (2r) has a local extreme (also absolute) at x = 0. To compute the
estimation of the least variance, it suffices to apply

σ̂2
1 ≡

∣∣∣∣∣∣
ak+1

ak

f (2k) (0)
f (2k+2) (0)

∣∣∣∣∣∣ , (12)

where ak is the independent term of H2k. The computation of ĉ1
follows from

ĉ1 ≡
f (2k) (0)

φ(2k)
0,σ̂1

(0)
, (13)

where φ(2k)
0,σ̂1

(x) = 1√
2πσ̂1

exp
(
− 1

2σ̂2
1
x2

)
. If we apply the previous

formulas to the new function,

f [1] (x) = f (x) − 1√
2πσ̂1

exp

−

1
2σ̂2

1

x2


 , (14)

then we obtain σ̂2, ĉ2
Though the method used to deduce the different summands

of a two-Gaussian mixture is intuitive, we have introduced a
brief formal proof of the most general case (considering any µ1
and µ2, being them null or not) in the Appendix.
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3. Parameter estimation with intermediate
nonparametric regression

In this section, we first consider a decomposition of the error es-
timation in two terms: a first term involving the mean squared of
the bias and a second term with the variance. For a more com-
plete exposition of this subject, see Cucker & Smale (2002).

The second subsection deals with nonparametric estimation
of the coefficients belonging to an developing approach. One can
conclude that different coefficients could be computed with dif-
ferent bandwidths. We can also observe that it is possible to com-
pute different integrals, while evaluating them over a small set of
points (for example in a Gaussian quadrature). Thus, the recon-
struction of the required function (its finite development adding
the total energy of the function) may be carried out using differ-
ent bandwidths to compute nonparametric approximations in a
reduced set of points, where integral evaluations are required. If
a predetermined minimum total energy is not reached, the coef-
ficient is rejected, and the next coefficient is tested. Obviously,
higher harmonics could not be computed depending on the prop-
erties of the initial data set. These properties of the method may
be used to take advantage if a development in a certain functional
basis is required. It is also useful for the case of a geometrical
expression of the signal, as we see in Sect. 5.

3.1. Decomposition of the error of the signal function

Let X, Y be random variables that we suppose are defined in a
real compact interval such as I1 and I2, respectively. We suppose
that we are searching for a model y = f (x). The least squares
error of the model is given as ε( f ) = ερ( f ) =

∫
Z
(y − f (x))2dρ,

where Z = I1 × I2 and dρ is a measure of probability for the
bidimensional RV(X, Y). We suppose that we work with func-
tions ϕ(x, y) to whom Fubbini’s Theorem is applicable. Thus,
we name dρX , dρ(y|x) the marginal measure for X and the condi-
tional of Y with respect to X. We can apply
∫

I1×I2
ϕ(x, y)dρ =

∫

I1

[∫

I2

ϕ(x, y)dρY |X = x

]
dρX . (15)

We return to RV and denote

mρ(x) =
∫

I2

ydρY |X = x = E[Y |X = x]. (16)

Obviously, the residual y−mρ(x) has a null mathematical expec-
tation, and its variance is given by

σ2(x) =
∫

I2

(y − mρ(x))2dρY |X = x. (17)

We denote the integral of this variance as σ2
ρ =

∫
I1
σ2(x)dρX =

ε(mρ). That is, it represents the least square error of the regres-
sion function (with respect to the density ρ). It is clear that we
obtain the decomposition of the error that is associated with an
approximation m̂ of f , which provides the following after some
algebraic operations:

ε(m̂) =
∫

I1

(
m̂(x) − mρ(x)

)2
dρX + σ

2
ρ. (18)

In this identity (18), we see that the first term depends on the re-
gression function mρ and the approximation m̂. The last term is
independent of the unknown; it depends only on the measure ρ
and is the lower bound of the error, since it does not depend on

the approximation as it is stated. In general, one can suppose
that mρ belongs to some functional space that admits a devel-
opment in the appropriate convergent series. On the other hand,
different approaches to the estimated function m̂ are possible.
The main question that appears concerns the bias. One can make
many assumptions about mρ and try different methods to find m̂.
We get mρ approaching the different densities by means of a non-
parametrical method. Nevertheless, other choices are possible.
This selection requires a consideration regarding bias and vari-
ance in the approximation process (see following subsection).
For the function m̂, we select a complete Hilbert space (in such
a way that it has a functional basis) or Banach space with a basis
or dictionary (not necessarily free with a possible redundant gen-
erator system. An infinite series may be expressed in more than
one way. This is not our case, because we work with a finite sum
of terms) to consider a nonlinear, m-term approximation (sum
of the m terms of the basis or the dictionary, depending on the
situation). The method to obtain the coefficients is considered
below, and we get a rule to diminish statistical bias.

The classical approach to the regression problem may
be considered a particular case of the previous one. After
selecting the working functional space H, we consider

min
m∈H

1
n

n∑

i= 1

(m(xi) − yi)2, where (xi, yi), 1 ≤ i ≤ n represents the

finite sample. The decomposition formulas are theoretically sim-
ilar, but the implementation is different, and there are very im-
portant differences between both methods. We prefer the former
approach and we explain its advantages in the following section.
In addition, we can mention other advantages, such as a) a more
robust approach; b) the lack of need to choose an a priori model
and c) an approximation of the density function (which general-
izes the assignment of weights). It is interesting to remark that
the classical method may provide wrong results, if the abscises
are, for instance, inhomogeneously distributed. Another problem
consists of requiring the recomputation of the coefficients in a
model of adjustment when its order is increased, because the co-
efficients of lower orders are not preserved. The main problem of
nonparametrical methods is related with the bandwidth selected
value. Nevertheless, there are very accurate methods to solve
this problem, considering the complete statistical information of
the data. Another problem is the missed geometrical-analytical
sense. The earlier problem is overcome when we take the non-
parametrical method as an intermediate adjustment, because it
contains complete statistical information of the data by means
of estimating the density function.

3.2. Mixed methods

The range of the covariant values (the sample of the RV X in this
Sect. 3) could be an inhomogeneous distribution. If we never-
theless take a nonparametric adjustment, it is possible to use it to
compute the estimation of the function in an arbitrary point. This
implies that we could extend the function values regularly over
the complete domain. To highlight its advantage, we consider a
simple example: if we suppose, for example, that the function f
belongs to a separable Hilbert space with a complete orthonor-
mal basis {φi > 0, i ≥ 0}, then we have a unique expansion

f (x) =
∑

i≥ 0

aiφi (x). (19)

The computation of each coefficient could be performed using
ai =

〈
f̂ |φi

〉
with 〈|〉 being the inner product in the space and
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f̂ the nonparametric (intermediate) estimation. The inner prod-
uct could be approximated by a numerical integration method
to be as accurate as necessary. If we consider, for example, a
Gauss-type method, we must estimate the value of the function
in a few number of points. Furthermore, there are different meth-
ods, which are specially prepared to estimate the optimal band-
width for each point, which must be taken. For more informa-
tion about nonparametrical methods, see Wand & Jones (1995).
As previously mentioned, it is equally possible to estimate the
coefficients of a geometrical model of adjustment, as we see in
Sect. 5.

There is another advantage when a coefficient of a harmonic
must be computed. Not only is this due to the former property
but also this procedure does not make any supposition regarding
the order of the actual expansion. In this sense, our method is
not linear and it is possible to expand it to a great number of
problems.

3.3. Nonparametrical estimation of coefficients of minimum
energy in the Fourier case

We suppose developments m(x) =
∑

ckϕk(x) and m̂(x) =∑
ĉkϕk(x). Along this subsection we neglect, unlike the previ-

ous section, the dependence of the density ρ. The mathematical
expectation of the coefficients is given by

E [̂ck|X1, ...., Xn] =
∫

Rn
ĉk f (x1, ..., xn)dx1, ...dxn, (20)

where X1, ...., Xn is a set of independent random variables dis-
tributed identically like X, and f is its joint density function.
We apply the relation between the coefficients, the basis, and the
function:
∫

Rn

{∫

R
m̂(x)ϕk(x)

}
f (x1, ..., xn)dx1, ...dxn =

∫

R

{∫

Rn
m̂(x) f (x1, ..., xn)dx1, ...dxn

}
ϕk(x)dx, (21)

where we have applied Fubbini’s theorem. By definition, we
have this transformation:
∫

R
E[m̂(x)|X1, ..., Xn]ϕk(x)dx =

ck +

∫

R
E[m̂(x) − m(x)|X1, ..., Xn]ϕk(x)dx. (22)

If we take a local polynomial kernel regression of third order and
a Fourier series is considered, then we have

E [̂ck|X1, ...., Xn] = ck

(
1 + α

(kh)4

24

)
, (23)

where α is a constant depending only on the used kernel, h is the
bandwidth, see Fan & Gijbels (1992), and k is the order of the
considered harmonic. This expression makes it clear: if h1 is a
good selection for the c1 term, then (kh)4 . h4

1 can be used to
approach the ck coefficient with the same reliability, h . h1

k . For
numerical purposes, this property may be of interest.

4. Parametrical regression methods

The different adjustment methods have been widely described in
other papers and we do not repeat them here. We only mention

that different parametrical methods provide different adjustment
models, following different hypotheses:

a) Geometrical model: there is an infinitesimal rotation
between the initial and the final positions (Walter &
Sovers 2000) if we denote ∆α = α[1] − α,∆δ = δ[1] − δ:
∆α cos δ = −εx cosα sin δ − εy sinα sin δ + εz cos δ

∆δ = εx sinα − εy cosα. (24)

b) Rotation plus deformation model: the vector field of
the residuals may be developed in vectorial spherical har-
monics using first order truncation; see Marco (2004a).
∆α cos δ = −εx cosα sin δ − εy sinα sin δ + εz cos δ

+d1,1 cosα − d1,−1 sinα
∆δ = εx sinα − εy cosα − d1,1 sinα sin δ

−d1,−1 cosα sin δ + d1,0 cos δ. (25)

c) Surface spherical harmonics model: the residuals
come from a function of integrable square over the uni-
tary sphere. Then the residuals allow the widely used
surface spherical harmonic developments, see Heiskanen
(1967).

∆α cos δ =
∑

n,m

an,mYn,m (α, δ)

∆δ =
∑

n,m

bn,mYn,m (α, δ) . (26)

These methods present some advantages and some problems.
The main advantage is that they provide a (primary) qualitative
explanation for the errors, and it is also possible to include other
parameters with physical meaning.

In contrast, there are some initial problems: in many cases,
the selected model is not representative of the problem and even
more importantly, an inhomogeneous spatial distribution of the
set of data implies instability to compute the parameters directly.
Even using high orders, the results are not realistic if we have
few stars. If higher order harmonics appear in the spherical har-
monics case, the usual method could be wrong.

5. Using two different quasar catalogs to improve
the ICRF-Ext2

As a numerical application of the previous sections, we have
considered two input catalogs: the USNO and JPL, which con-
tain 189 common defining sources from the ICRF-Ext2 cata-
log. They were submitted by JPL (Caltech/NASA Jet Propulsion
Laboratory, USA), and USNO (US Naval Observatory, USA).
A brief description of the input catalogs is given in Table 1
(Sokolova & Malkin 2007).

This section is divided into two subsections. The first one
concerns the process of building a combined catalog from the
two chosen input catalogs. In the second subsection, we propose
a procedure of acceptation from candidate sources to reference
sources. We check that the candidate sources selected using our
method from the ICRS-Ext2 are indeed included in the ICRF2
as defining or non defining sources.

5.1. The use of JPL and USNO catalogs to build a combined
catalog

In this study, we considered only the sources which have at least
15 observations in two sessions. We have not included some
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Table 1. Input catalogs.

Center Software Time Span month/year N. delay N. sources

JPL MODEST 10/1978 01/2005 3 575 847 734(2)
USNO Calc/Solve 09/1979 01/2005 4 252 684 943(207)

Notes. The last column shows the number of sources in the catalog and the number of reference sources used to tie the orientation of the catalog
to the ICRF.

Table 2. Rotation and deformation parameters for the USNO and JPL
in µas.

USNO JPL

εx 105.90 34.54
εy −1.19 6.87
εz −13.04 −82.02
d1,−1 0.21 −19.73
d1,1 35.09 −29.33
d1,0 10.18 10.28

reference sources in our calculus that present oddly high resid-
uals. All values are given in µas. The values of the initial arith-
metic mean µ and standard deviation σ are as follows: for the
USNO catalog, they are µα = 10.2 and σα = 246.8, µδ = −5.2
and σδ = 307.5. For the JPL catalog they are µα = −32.6 and
σα = 341.5, µδ = −12.1 and σδ = 354.4. It seems that JPL is
not completely homogeneous as defined in Sect. 2 and it could
require a more careful study. We have included it in our adjust-
ment, because it serves to show the strength of our method.

With respect to the study of the residuals, we have chosen
to carry out a preliminary kernel nonparametric (KNP hence-
forth) adjustment for the ∆α cos δ and ∆δ in both catalogs and
a vectorial spherical harmonics (VSH henceforth) of first or-
der for the adjustment model (25). Then, we apply our mixed
method as it has been explained in Sects. 3.1 and 3.2 by taking
mρ = [∆α cos δ,∆δ]t , m̂ = [mα,mδ]t for each catalog in the first
summand of the expression (18). The existence of deformations
has required the use of a correction for each catalog given by

min
Ci

∫
S 2

{[
(∆α cos δ)(i) − m[i]

α (α, δ)
]2
+

[
(∆δ)(i) − m[i]

δ (α, δ)
]2

}
dS ,

(27)

where Ci are the coefficients of the models m[i]
α and m[i]

δ with
i = 1 (USNO) and i = 2 (JPL). The results for the coeffi-
cients of the VSH of first order are listed in the Table 2, where it
can be seen that JPL provides high coefficients for the deforma-
tion. This must be considered in future studies. The coefficients
listed in Table 2 are obtained by applying condition (27) and
solving the resulting normal equations. They consist of different
integrals, which are evaluated over a grid of equidistant points
over the sphere where the KNP values for ∆α cos δ and ∆δ are
computed.

Next, we consider only the rotations. We subtract the cor-
rections provided by the rotations to the initial position to ob-
tain the intermediate catalogs US NO1 and JPL1: Cat1 = Cat −
correction, where these corrections depend only on the rota-
tions. The adjustment itself is given by

cat1
1 − (ICRF − Ext2) = m[1,1] + ε[1,1]

cat1
2 − (ICRF − Ext2) = m[2,1] + ε[2,1]. (28)

Table 3. Mean squared errors over the sphere after rotation adjustment.

USNO JPL Combined catalog
Initial Final Initial Final

µα 7.4 7.4 −1.4 −1.4
σα 61.1 36.4 99.5 53.7 35.6
µδ −14.7 −14.7 −8.3 −8.3
σδ 113.9 41.5 87.3 77.0 41.0
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Fig. 1. Differences in (ICRF-Ext2)-USNO for ∆α cos δ (in µas). The
clear surface represents the initial differences, the dark surface repre-
sents the differences after the correction given by the rotations. Notice
the rank for differences in ∆α cos δ.
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Fig. 2. Differences in (ICRF-Ext2)-USNO for the ∆δ (in µas). The clear
surface represents the initial differences, the dark surface represents the
differences after the correction given by the rotations.

We use now the term WRMS that denotes weighted root mean
squared. In our case, the function uses the weights assigned by
the KNP adjustment. With regard to the WRMS in the entire
sphere where we have used numerical integration and a KNP
adjustment, the initial WRMS in right ascension is 61.1 and the
final value is 36.4. The initial WRMS in declination is 113.9,
and the final value is 47.9 for the USNO. The initial WRMS in
right ascension is 99.5, and the final value is 61, while the initial
WRMS in declination is 87.3, and the final value is 78.7 for the
JPL. A clear summary of these data may be seen in Table 3.

The residual noise obtained after the adjustment (for each
∆α cos δ, ∆δ) may be observed in Figs. 1 to 4.

Prior to proceeding with the proposal of a combined catalog,
we consider an example to show that our method detects inho-
mogenities (in the second sense given in Sect. 2) in building a
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Fig. 3. Differences in (ICRF-Ext2)-JPL for the ∆α cos δ (in µas). The
clear surface represents the initial differences, the dark surface repre-
sents the differences after the correction given by the rotations.
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Fig. 4. Differences in (ICRF-Ext2)-JPL for the ∆δ (in µas). The clear
surface represents the initial differences; the dark surface represents the
differences after the correction given by the rotations.

combined catalog. Taking 0.5m[1,1] + 0.5m[2,1] only for ∆α cos δ
residuals belonging to the USNO and the JPL catalogs, the cor-
responding error is 0.5ε[1,1] + 0.5ε[2,1], which distributes as a
Gaussian mixture with weights c1 = c2 = 0.5, standard devi-
ations σ1 = 36.4, σ2 = 53.7, and mathematical expectations
µ1 = 7.4, µ2 = −1.4. We use the procedures described in Sect. 2.
As the use of high orders derivative has been necessary, we have
introduced some variations. To ensure the results, we build a
third order local KNP over equally spaced points and consider
this function over more points to progressively increase the or-
der of the local KNP (depending on the required precision to sta-
bilize the desired decimal digit). Alternatively, we have applied
formulas (12) and (13) for k = 0, 2, 4, 6 and an Aitken approx-
imation to obtain µ1 = 7.4, σ1 = 36.3, c1 = 0.5, µ2 = −1.4,
σ2 = 53.7, and c2 = 0.5. This means that we have obtained the
two populations used in the compilation of the combined cata-
log. We conclude that the construction of the compiled catalog
has not been homogeneous in the second definition as given in
Sect. 2.

Returning to the aim of compiling a combined catalog, we
take the weights proposed by (4). The final residuals may be seen
in Figs. 5 and 6. The final WRMS for the residuals are 35.6 for
the right ascension and 41 for the declination.

5.2. Method to densify the reference

Finally, we propose a procedure to densify the reference frame.
We work with the candidate sources of the ICRF-Ext2, but it
could be also applied to other sources. For this purpose, we ap-
ply a simple test to discover if a source belongs to a determined
population. The procedure is as follows: the obtained combined
catalog provides residuals for ∆α cos δ and ∆δ distributed as
N(0, 35.6) and N(0, 41.0) respectively. The corresponding den-
sity functions are Gaussians, and we can consider, for example, a
30% of the area centered on the corresponding mean (the radius
of each interval is determined by each standard deviation). This
area is bounded by the function and two abscises that represent
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Fig. 5. Residuals in the final combined catalog for the ∆α cos δ (in µas).
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Fig. 6. Residuals in the final combined catalog for the ∆δ (in µas).

errors in µas. If the expected error for a candidate source is com-
prised in the mentioned interval, it is reasonable for this candi-
date to be considered as a new reference source. In any case, a
more strict condition is considered in the next steps.

Considering the previous guidelines, each final function of
residuals for ∆α cos δ and ∆δ is a surface. Thus, we can project
its contour lines in the XY plane. In particular, we focus on the
contour lines signaled by the extremes of the intervals mentioned
in the previous paragraph. This may also be applied individually
for each catalog, and each individual candidate source of the cat-
alogs. The steps to follow are

Step 1: we compute catC1 −(ICRF−Ext2)−m[1]
G1

, where the
C refers to the candidate sources and G1 is the rotations
provided by the USNO catalog (in ∆α cos(δ) and ∆δ).
As previously mentioned, each function of residuals is
represented by a surface. The valid surface levels from
the point of view given in the previous guidelines are the
ones included in the interval (−29,44) µas for ∆α cos δ
and (−55,27) µas for ∆δ.
Step 2: we compute catC2 − (ICRF − Ext2) −m[2]

G2
, where

C refers to the candidate sources and G2 is the rotations
provided by the JPL catalog. For this catalog, the result-
ing intervals are (−55,52) µas for ∆α cos δ and (−85,68)
µas for ∆δ.
Step 3: now, we include the candidate sources in our con-
tour map and we take the ones that are included in the in-
tersection of the areas determined by all the contour lines
as preliminary new reference sources.
Step 4: finally, we substitute the selected sources in the
final residual function associated with the combined cat-
alog. All the results are on the order of the correspond-
ing typical deviation in right ascension and declination.
Only the second source presents an error that is 1.5 times
the final standard deviation in α, and the fifth source
is twice the final standard deviation in declination. We
must consider that the selection criteria has been very
strict, taking sources that simultaneously accomplish the
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Table 4. Selected candidate sources.

α δ ICRF designation IERS name

Source 1 00h 06 m in 13.892889 s −06◦23′ 35.33532′′ ICRF J000613.8−062335 0003−066
Source 2 01h 13 m in 43.144949 s 02◦22′ 17.31635′′ ICRF J011343.1+022217 0111+021
Source 3 01h 49 m in 22.370886 s 05◦55′ 53.56866′′ ICRF J014922.3+055553 0146+056
Source 4 10h 24 m in 44.809590 s 19◦12′ 20.41561′′ ICRF J102444.8+191220 1022+194
Source 5 18h 00 m in 24.765366 s 38◦48′ 30.69753′′ ICRF J180024.7+384830 1758+388

condition given in the previous steps in both right ascen-
sion and declination and for both catalogs at the same
time. This is why the results of both discrepancies are not
relevant when we consider the final residual conjunctly
in ∆α cos δ and ∆δ.

The verification using new catalogs may lead to the definitive
choice of the source. In our case, we obtain the candidate sources
listed in Table 4, where the names and the proposed position are
given. It is remarkable that sources 1, 2 and 3 have been included
among the 922 ICRF2 non-defining sources, while sources 4
and 5 have been included among the 295 defining sources of
the ICRF2 (Fey et al. 2009).

6. Conclusions

The compilation of a large quasar catalog from other input cat-
alogs is an important trend in the astronomical context. In this
sense, it is interesting to study the initial catalogs, compared to
the main catalog (in our case, the ICRF-Ext2 Catalog), to deter-
mine its inner homogeneity. To obtain a homogeneous combined
catalog, it is necessary to use adequate weights. Reciprocally, it
is possible to determine if a combined catalog has been obtained
homogeneously or not. To this aim, we have studied both sub-
jects in Sect. 2, which have been applied in Sect. 5.

A mixed method using nonparametrical regression to build
an intermediate catalog presents many advantages to obtain ac-
curate parameters. These advantages are as follows: a) a more
robust approach in the sense that the computation of the coeffi-
cients is carried out by means of functional scalar products over
the sphere. The homogeneous grid selection preserves the func-
tional orthogonality in the process of discretization. b) There
is no need to choose an a priori model. c) The approximation
of the density function by means of a KNP (which generalizes
the assignment of weights). These subjects have been studied
in Sect. 3, and we can remark that different parametrical meth-
ods (geometric or analytic) may be employed to study global
and local properties of the used catalogs to obtain a very good
compiled catalog. In Sect. 4, we have briefly described the most
currently parametrical models of adjustment.

The mixed method with an adequate weights selection has
provided us a combined catalog with little final residuals, as seen
in text.

We have also proposed a method to decide if a given can-
didate source may be coherently accepted as a new reference
source with the obtained results for the combined catalog. The
five sources proposed using our method have been included in
the ICRF2, which includes two new defining sources and sup-
ports the reliability of our methods. Further studies may be car-
ried out to explore other cases. For example, one can conduct
a deeper study using surface or vectorial spherical harmonics of
high orders. We can also include other input catalogs in the com-
putation, which would not affect the method.
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Appendix A:

Lemma 1: let f , g be continuous and derivable in a given interval
with the possible exception of a finite number of points. Let us
assume that f (a) = g(a) and f ′(a) = g′(a), which verifies:

f ′′(x) + α(x) f (x) = 0 (A.1)
g′′(x) + β(x)g(x) = 0. (A.2)

If we suppose that α(x) > β(x), then

a) For every subinterval [a, c] where f (x), g(x) > 0, we
have f (x) < g(x).
b) For every subinterval [a, c] where f (x), g(x) < 0, we
have f (x) > g(x).
c) Let the interval [a, d] contain point c , where f (c) = 0.
We suppose that f (x) > 0 if x < c, f (x) < 0 if x > c,
g(x) > 0 for x > a, f ′(d) = 0 and g′(x) < 0 if x > a.
Then −g(x) ≤ f (x) ≤ g(x) for a < x < d.

Proof of a):
If we multiply the first equation by g(x), the second by f (x),

and then we subtract, we get

f ′′(x)g(x) − g′′(x) f (x) = (β(x) − α(x)) f (x)g(x). (A.3)

Given any x where a < x ≤ c, we integrate both members of the
equality:

∫ x

a

[
f ′′(x)g(x) − g′′(x) f (x)

]
dx =

∫ x

a
(β(x) − α(x)) f (x)g(x)dx < 0 (A.4)

and we obtain:

f ′(x)g(x) − g′(x) f (x) < 0. (A.5)

Thus, f (x)
g(x) is a strict decreasing function that reaches a value one

for x = a. It is then necessary that f (x) < g(x) for x > a , because
both functions are positive in the subinterval.

Proof of b) We follow the development of Lemma 1 until we
arrive at

0 <
f (x)
g(x)

< 1, (A.6)

since we assume that g(x) < 0, then g(x) < f (x).

Note: let us suppose the differential equation g̃′′(x) + β(x)̃g(x) =
0, where g̃(a) = −g(a), g̃′(a) = −g′(a). Then g̃(x) = −g(x) in the
interval of definition. It is evident that this result is equally true
for function f .
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Proof of c) For the subinterval [a, c] we can apply a). For
the subinterval [c, d], we consider function g̃(x) from the former
note. Following the steps of the proof given in a), we have for
each x, where c < x < d:
∫ d

x

[
f ′′(x)̃g(x) − g̃′′(x) f (x)

]
dx =

∫ d

x
(β(x) − α(x)) f (x)̃g(x)dx < 0. (A.7)

In (c, d), we have f (x) < 0, g̃(x) < 0. Therefore,
[
f ′(d)̃g(d) − g̃′(d) f (d)

] − [
f ′(x)̃g(x) − g̃′(x) f (x)

]
< 0. (A.8)

Hence,
[
f ′(x)̃g(x) − g̃′(x) f (x)

]
> −g̃′(d) f (d) > 0, (A.9)

because f (d) < 0 and g̃′(d) > 0. With this, we deduct that f (x)
g̃(x)

is decreasing in (c, d) with the quotient null in x = c and both
expressions are negative, reaching the maximum at x = d. Thus,
f (x)
g̃(x) > 0 for c < x < d. In addition, if f (x)

g̃(x) ≥ 1, then f (x) ≤ g̃(x),
and we would obtain g̃(c) ≥ 0, which is absurd. Consequently,

0 <
f (x)
g̃(x)

< 1→ f (x) > g̃(x) for c < x < d. (A.10)

Thus, function f (x) verifies −g(x) ≤ f (x) ≤ g(x) between two
consecutive extremes of f . This argument may be extended to
all real domain.

Corollary 1: we assume the same general conditions about f
and g from the former Lemma. If the first differential equations
have been verified with β > 0, g > 0, and β ≤ α and we have
the additional conditions f (a) = g(a), f ′(a) = g′(a) or f (a) =
−g(a), f ′(a) = −g′(a) then | f (x)| ≤ g(x) for x ∈ [a, b].

Lemma 2: let zn(x) = exp(− 1
4 x2) Hn(x)

Hn(0) ≡
hn(x)
hn(0) exp( 1

4 x2) where
n = 2r (which includes the particular case n = 4r). Then, it is
verified that

z′′n (x) +
(
n +

1
2
− 1

4
x2

)
zn(x) = 0 con zn(0) = 1, z′n(0) = 0.

Proposition 1: let g(x) = exp
(
− 1
α x2

)
with α > 0. Then we

have for any x that
∣∣∣∣ hn(x)
hnre(0)

∣∣∣∣ ≤ g(x) for a certain α > 0. For ex-

ample, α = 2
√

5. The value of α may be provided with more
accuracy: α is a value such that the inflection point of h2(x), as

indicated in (
√

3 + 6
√

3)/2 . 3.3165, is a common point for
both functions, which provides α ≈ 4.4234, a very close value
to 2
√

5 . 4′4721.....
Proof: considering that function g verifies that

g′′(x) +
(

2
α
− 4
α2 x2

)
g(x) = 0 (A.11)

and g(0) = 1, g′(0) = 0, we apply corollary 1 if

2
α
− 4
α2 x2 ≤ 1

2
+ n − 1

4
x2 , n = 2r, r ≥ 1. (A.12)

The least value of the second member of the inequality is ob-
tained for n = 2, (when x is fixed), and we obtain the sufficient
condition:

2
α
− 4
α2 x2 ≤ 5

2
− 1

4
x2. (A.13)

This may be immediately verified: if we take, for example, α =
2
√

5, the inequality verifies for x ≤ 41. For higher values of x,
g(x) and zn(x) are negligible for any desired accuracy.

Proposition 2: let h2r,1 the first positive zero of the Hermite
function h2r(x). We have that (Ayant 1971)

0 < h2r,1 <
π√

8r + 2
· (A.14)

Theorem 1: let

f (x) = c1 exp
(
−0.5x2

)
+

c2

σ
exp

(
−0.5

( x − µ
σ

)2
)
, (A.15)

c1 + c2 =
1√
2π
, c1 > 0, c2 > 0

and let us suppose that σ > 1. Then if we denote ξr as the point
on the x-axis where the higher relative extreme is in absolute
value of the 2r-th derivative of f , we have that

lim
r→+∞
ξr = 0. (A.16)

Proof: to enable the proofs, we take 4r, instead of 2r, because
we can work with positive maximum without loss of generality
in this case. Let us suppose that f (4r)(ξr) > 0 and also that ξr > 0.
First, note that

f (4r)(x) = c1h4r(x) +
c2

σ4r+1 h4r

( x − µ
σ

)
(A.17)

and, dividing by c1h4r(0), we have

f (4r)(x)
c1h4r(0)

=
h4r(x)
h4r(0)

+
c2

c1

1
σ4r+1

h4r(
x−µ
σ )

h4r(0)
· (A.18)

With this, we have the following boundary for any x:
∣∣∣∣∣∣

f (4r)(x)
c1h4r(0)

∣∣∣∣∣∣ ≤ 1 +
c2

c1

1
σ4r+1 → 1 para r → +∞, (A.19)

because σ > 1 and h4r(x) reaches the absolute maximum at x =
0. This indicates that the first summand in the decomposition of
f (4r)(x) is dominant. We see that this idea is confirmed in the
announced asymptotic result. Given the former considerations,
it is immediate that, there is a r1 for any given ε1 > 0 such that
∣∣∣∣∣∣∣∣

c2

σ4r+1

h4r

(
x−µ
σ

)

h4r(0)

∣∣∣∣∣∣∣∣
< ε1 (A.20)

for r ≥ r1 with an independence of x. In particular, we have
∣∣∣∣∣∣
f (4r)(ξr)
h4r(0)

− c1
h4r(ξr)
h4r(0)

∣∣∣∣∣∣ < ε1. (A.21)

We have f (4r)(ξr) > 0, and the previous bound assures that the
quotient h4r(ξr )

h4r(0) is positive. Considering the first proposition, we

know that h4r(ξr )
h4r(0) ≤ exp

(
− 1
αξ

2
r

)
for a certain α > 0, so

f (4r)(ξr)
h4r(0)

− c1
h4r(ξr)
h4r(0)

≥ f (4r)(ξr)
h4r(0)

− c1 exp
(
− 1
α
ξ2r

)
. (A.22)

Now, let us suppose that ξ2r > h2
4r,1 with h4r,1 being the first posi-

tive zero of h4r(x). Then

ξ2r > h2
4r,1 → exp

(
− 1
α

h2
4r,1

)
> exp

(
− 1
α
ξ2r

)
(A.23)

→ −c1 exp
(
− 1
α
ξ2r

)
> −c1 exp

(
− 1
α

h2
4r,1

)
.
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From (A.22) and (A.23),

c2

σ4r+1

h4r

(
ξr−µ
σ

)

h4r(0)
=

f (4r)(ξr)
h4r(0)

− c1
h4r(ξr)
h4r(0)

(A.24)

>
f (4r)(ξr)
h4r(0)

− c1 exp
(
− 1
α

h2
4r,1

)
.

Because we suppose that ξr is the absolute positive maximum of
f (4r)(x), we can deduct that there is a ε(r) value such that:

ε1 >
c2

σ4r+1

h4r

(
ξr−µ
σ

)

h4r(0)
> Ξr ≡

f (4r)(ξr)
h4r(0)

− c1 exp
(
− 1
α
ξ2r

)
>

ε(r) >
f (4r)(h4r,1)

h4r(0)
− c1 exp

(
− 1
α

h2
4r,1

)
≡ Γr , (A.25)

where we have applied (A.24). The ε(r) value separates the dif-
ferent values of Ξr and Γr. Two contrasting situations may ap-
pear: either lim

r+∞
ε(r) = ε0 ! 0 or lim

r+∞
ε(r) = 0, which corre-

sponds, as we see, with the case 0 < ξr < h4r,1 for r > r1. Let
us check that we already have the desired result. The first case is
incompatible with the free choice of ε1, which could be taken as
ε1 < ε0. Thus, it should accomplish that

lim
r+∞
ε(r) = 0 (A.26)

and then

lim
r+∞

(Γr − Ξr) = 0 (A.27)

with the limits being finite in both expressions. Consequently,
we consider Proposition 2 and we have:

lim
r→+∞
Γr = lim

r→+∞

[
f (4r)(h4r,1)

h4r(0)
− c1 exp

(
− 1
α

h2
4r,1

)]

= lim
r→+∞

[
f (4r)(0)
h4r(0)

− c1

]
, (A.28)

which implies that lim
r→+∞

f (4r)(0)
h4r(0) is finite, and

[
lim

r→+∞
f (4r)(0)
h4r(0)

]
− c1 = lim

r+∞
Ξr (A.29)

= lim
r→+∞

[
f (4r)(ξr)
h4r(0)

− c1 exp
(
− 1
α
ξ2r

)]
.

The existence of finite limits allow us to rewrite them as

0 ≤ lim
r→+∞

f (4r)(ξr) − f (4r)(0)
h4r(0)

(A.30)

= lim
r→+∞

c1

[
exp

(
− 1
α
ξ2r

)
− 1

]
≤ 0.

The limit on the left is equal or greater to zero because it is finite,
the denominator is positive, and ξr is the point where f (4r)(x) is
maximum (and positive). The second member of the equality is
equal to or less than zero, because exp

(
− 1
αξ

2
r

)
≤ 1 y c1 ≥ 0. In

conclusion, only one possibility remains:

lim
r→+∞

exp
(
− 1
α
ξ2r

)
= 1→ lim

r→+∞
ξr = 0 (A.31)

which we wanted to prove.
Theorem 2: let

f (x) = c1 exp(−0.5x2) +
c2

σ
exp

(
−0.5

( x − µ
σ

)2
)

(A.32)

c1 + c2 =
1√
2π
, c1 > 0, c2 > 0,

and let us suppose that σ < 1. If we denote ξr as the point on the
x-axis where the higher relative extreme is in absolute value of
the 2r-th derivative of f , we have that:

lim
r→+∞
ξr = µ. (A.33)
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