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ANALYTIC INTEGRABILITY OF THE BIANCHI CLASS A
COSMOLOGICAL MODELS WITH 0<k <1

ANTONI FERRAGUT!, JAUME LLIBRE? AND CHARA PANTAZI®

ABSTRACT. There are many works studying the integrability of the Bianchi class A cos-
mologies with k = 1. Here we characterize the analytic integrability of the Bianchi class
A cosmological models when 0 < k < 1.

1. INTRODUCTION

Bianchi models describe space-times which are foliated by homogeneous (and so we have
three dimensional Lie algebras) hypersurfaces of constant time. Bianchi [2, 3] was the first
to classify three dimensional Lie algebras which are nonisomorphic. There are nine types
of models according to the dimension n of the algebra:

(a) n=0: type I;

(b) n=1: types II, III;

(¢) n=2: types IV, V, VI, VII;
(d) n = 3: types VIII, IX.

If we consider X7, X9, X3 an appropriate basis of the 3-dimensional Lie Algebra, then
the classification depends on a scalar a € R and a vector (n1, ng,n3), with n; € {+1,—-1,0}
such that

(X1, Xo] =n3Xs, [Xo, X3] =mX1 —aXe, [X3,X1]=noXo+aXy,

where [, ] is the Lie bracket. In particular for a = 0 we obtain models of class A and for a # 0
we obtain models of class B. A good reference for the Bianchi models is Bogoyavlensky [4].

In a cosmological model Einstein’s equations connect the geometry of the space-time
with the properties of the matter. The matter occupying the space-time is determined by
the stress energy tensor of the matter. In our study we follow [4] and we consider the
hydrodynamical tensor of the matter. We will work with an equation of state of matter
of the form p = ke, where ¢ is the energy density of the matter, p is the pressure and
0<k<1.

Following [4] the Einstein equations for the homogenous cosmologies of class A without
motion of matter can be formalized as a Hamiltonian system in the phase space p;, q; for
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1 =1,2,3 with the Hamiltonian function

1
H=— (T(pig v ).
= < (pq)+ c(q ))

Here T is the kinetic energy (not positive defined) and Vi is the potential. According to
[4] (Section 4 of Chapter II) the kinetic and the potential energy are given, respectively, by

3
T(pigi) = 23 pipjdidj — Z Piq7,
Z<j
VG’(QZ') = 2 Z nin;qiq; — Z n qz y
1<J

for i,j € {1,2,3}.
Consider the time 7 defined by dr = (qlngg)*k/ 2dt, where t is the synchronous time.
The Hamiltonian system in the new time 7 is written as
OH ) OH
op;” T T og,

G =
or equivalently as
2q1(q1q2q3) = ( P1q1 + P2q2 + D3qs),
G2 =202(192q3) = (P11 — p2ga + Pags),
(

2q3(<11q2q3) T (p1g1 + p2gz — psgs),

) k—1 1 1-k
p1=—(q1q2q3) > <2p1(—p1Q1 +p2g2 +psgs) + gr(—naqy + naga + TlsQ3)) + TH’
1
. k—1 1 1-k
P2 =— (q1q2g3) = (2p2(p1q1 — p2g2 + p3gs) + inz(nlql —n2q2 +n3q3) | + S H,
2
. k=1 1 k
p3 = — (q192q3) 2 2p3(p1q1 + p2g2 — p3gs) + §n3(n1ql + n2g2 — nags) | + TH

Note that the constants ni,no,ng determine the type of the model according to Table

1. After the change of coordinates ds = (qlngg)%dﬂ qi = Ti, pi = Tiys/(2x), 1 =1,2,3,
we obtain the quadratic homogeneous polynomial differential system

1 = x1(—24 + 25 + T6),

.5'62 = xg(x4 — 5+ LUG),

i3 = x3(z4 + x5 — T6), 1
T4 = nixi(nix; —nowe — n3x3) + kTF (1)
Ts5 = ngxg(—nlxl “+ Noxo — N3x3 ) %F

Tg = 7%3:133( nixr1 — N9 + ngl‘g) — F

[Type [T 11 VI, [ VII, [ VIII | IX |
a 0[]0 O] 0] 070
ni JO|1] 1 | 1 | 1 |1
ns 0|0 -1 1 | 1T |1
ng 0|0 0| 0 | =11

TABLE 1. The classification of Bianchi class A cosmologies.
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where
F =n2g2 2.2 2,2 _ 9 9 9
=niT] + N5T5 + N3x3 — 2N1N2x1T2 — 2NIN3T1T3 — 2NaN3T2T3

2

+ xi + x% + :U% — 2x45 — 20506 — 2T4T6. @

Note that system (1) is a homogeneous polynomial differential system of degree 2. The
Hamiltonian H becomes after the changes of variables the first integral

H :(xlxzxg)%F
:(xlxgxg)%(n%x% + n%x% + n%x% — 2n1noT1x2 — 2N1N3T1L3 (3)
— 2n2n3x2x3 + $421 + :L‘g + Ig - 23341‘5 - 2])5%6 — 2x4x6)
of system (1).

Let U be an open and dense subset of RS. Then we recall that system (1) has a first
integral # : U — R if H is a non-constant C'-function such that

. OH . OH
Many authors have studied some models of Class A for the case k£ = 1 considering different
types of integrability, see for exemple [5, 6, 7, 8, 9, 11, 12]. In this work we study the
analytic integrability of all Bianchi models of class A in the variables (x1, 2, x3, x4, x5, T¢)

for 0 < k < 1. The following result is well known, see for instance [10].

Proposition 1. Let F' be an analytic function and let F' =", F; be its decomposition into
homogeneous polynomials of degree i. Then F is an analytic first integral of the homoge-
neous differential system (1) if and only if F; is a homogeneous polynomial first integral of
system (1) for all i.

A Hamiltonian system with n degrees of freedom is completely integrable if it admits n
independent first integrals in involution, see for more details [1]. A differential system of n
variables is completely integrable if it admits n — 1 independent first integrals.

According to Proposition 1 the study of the analytic first integrals of the homogeneous
system (1) is reduced to the study of its polynomial homogeneous first integrals. The main
result of this paper is the characterization of the polynomial first integrals of the Bianchi
models of class A. Section 2 provides three technical lemmas that we will use in Section 3
to prove the following theorem.

Theorem 2. For 0 < k < 1 the following statements hold.

(a) The Bianchi type 1 model is completely integrable.

(b) The Bianchi type 11 model has the polynomial first integral K = x5 —x¢. This model
does not admit any additional polynomial first integral independent from H and K.

(¢) The Bianchi type V1 and VIIy models have no polynomial first integrals.

(d) The Bianchi type VIII and IX models have no polynomial first integrals.

2. SOME AUXILIARY LEMMAS
In order to prove Theorem 2 we shall use the following three lemmas.

Lemma 3 (see [9]). Let xp be a one-dimensional variable, k € {1,...,n}, n > 1 and
let f = f(x1,...,2) be a polynomial. For |l € {1,--- ,n} and ¢y a constant let f; =
f(1,.. ., 2n)|ey=co- Then there exists a polynomial g = g(x1,...,x,) such that f = fi +
(z; —co)g.
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Lemma 4. Let g = g(x4,x5,x6) be a homogeneous polynomial solution of the homogeneous
partial differential equation

k—1 dg dg dg
(@124 + agzs + azze)g + 1 fs ((%4 + . + B , (4)
where Fio3 = x2 + x% + x% — 2(xg4x5 + T46 + T576) and ay,az,a3 € R are such that
(a1 — a2)2 + ((Il — a3)2 7& 0. Then g = 0.

Proof. The general solution of equation (4) is

g(xa, x5, 06) =f (x4 — 25,24 — T6)
Ao

A1+As Ay —
(—x4 —T5 — Tg + 2@) (:c4 + x5 + 26 + 2\/E) ,

where Ay = 2(a1 + az + a3)/(3(k — 1)), Ag = ((2a1 — a2 — az)zg + (—a1 + 2a2 — a3)zrs +
(—a1 — ag + 2a3)x6)/(3(k — DVA), A = 22 + 22 + 2% — 2425 — v476 — 2526 and [ is an
arbitrary function. We note that g is a polynomial if and only if A; € N, Ay =0 and f is
a polynomial. In particular, the relation As = 0 is equivalent to the linear system

2 -1 -1 a1 0
-1 2 -1 as | =1 0
-1 -1 2 as 0

The solution of this system is a; = as = a3. This cannot happen by assumption. Therefore
g is not a polynomial unless g = 0. (]

Lemma 5. Let g = g(x4,x5,26) and h = h(x4 — 5,24 — x6) be homogeneous polynomials
of respective degrees n — 2 and n such that

-1 0 0 0 Ooh
F123<g+g+g>+_07 (5)

k
(s —
(4 — 25 + 76)g + 4 0 Oxs  Oxg oxs

where Fiog = 13 + 22 + 22 — 2(z425 + 1476 + 2526). Then h = h(x4 — x6) and g = 0.

n .
Proof. Let h = Zoai(m —x5) (14 — 26)" " and g = Zobw%méfﬁg 2777 Suppose that
i= i+J
g # 0. Forcing that the solution of (5) be a polynomial, Mathematica (see [13]) shows that
g is of the form

g(x4, w5, 26) = /Fdx4+f(1’4—$5,$4—906)
123

where f is a homogeneous polynomial, hs = D2r and the integral is to be a polynomial.
5

Let Ay = \/x5—/%¢ and Ay = /T5+./T6. Under this notation Fia3 = (:L‘4—A%)($4—A%).

The fraction inside the above integral can be written as
h5 1 Xl X2
5 _ X —
Fiag o A} — A3 <UU4—A% 334_A%) ’
where Xo = X0(1‘4,A1,A2), X1 = Xl(Al,Ag) and X2 = XQ(Al,AQ) are homogeneous

polynomials. The integrals of the fractions in the right hand side with respect to x4 are
X;log(zg — A?), 1 = 1,2; hence X; and X5 must be identically zero. X; = 0 and X5 =0
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have the same solutions aq, .. ., a, because of symmetry. Indeed X; = 0 (or Xy = 0) reduces
to S, = 0, where

Sn = 2(3141 - A2)n_i(A1 + Ag)n_i(?)Al + Ag)i_l(Al — Ag)i_li a;.

i=1
We note that we have the recursive equality

Sn = (3A1 — A2)(A1 + AQ)Snfl + (3A1 + A2)n—1(A1 — Ag)"_ln (175

On A; = — Ay (or equivalently on x5 = 0) we have n4”*1A§”_2an = 0, and hence we have
an, = 0. Induction arguments prove that S, = 0 implies a; = --- = a, = 0. Therefore
hs = 0, which means that equation (5) is a particular case of equation (4) and then by
Lemma 4 we get ¢ = 0 and then we are finished. O

3. PROOF OF THEOREM 2

In this section we prove the four statements of Theorem 2.

3.1. Proof of statement (a) of Theorem 2. According to Table 1 the Bianchi cosmo-
logical model I is obtained for ny = ngs = ng = 0. System (1) becomes

&1 =x1(—24 + x5 + 26),
&g =x2(x4 — 25 + T6),

&3 =x3(x4 + 5 — T6),

. k—1

T4 :TF’ (6)
k—1

T5 4 )

. k—1

T6 :TF,

where F = (:Ui + x% + x% — 2x4w5 — 2x5w6 — 2247¢). Straightforward computations show
that system (6) has the five first integrals x4 — x5, x4 — z6, H defined in (3),

<w1>12k Ty + x5 + 36 — 2VA | VA
T4+ 5+ 26 + 2VA

Z2

and

1—k 5226
(w2>2 za+as+as—2VA) VA
T4+ 5+ 26 + 2VA ’

z3

with A = xi—kx%—kx% —x425—T5T6—T4xg. Note that the five first integrals are independent.
Statement (a) is proved.
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3.2. Prove of statement (b) of Theorem 2. The Bianchi cosmological model II is
obtained for ny = 1 and ny = ng = 0. System (1) writes as

&1 =x1(—24 + 5 + 76),

Ty =x9(14 — 25 + T6),

T3 :.CC3($4 + x5 — .TG),
k—1

i421'%"‘TF, (7)
. k—1
x5 :TFa
k—1
rp =—F
Te A 3

where F' = x% + 1’?1 + :rg + x% — 2x4x5 — 2T5206 — 2X4T6.

Let h = h(x1,x9, x3, x4, T5,26) be a homogeneous polynomial first integral of (7). Using
Lemma 3 we can write h = hy(x2, 23,24, x5, 26) + 2] 91(21, T2, T3, T4, T5, T6), With j € N
and h; and g; homogeneous polynomials such that z; { g1. On z; = 0 system (7) becomes

Ty =x2(24 — X5 + T6),

&3 =x3(x4 + 5 — T6),

k-1
Ly = F
T4 4 1 (8)
. k-1
T =—, Fy,
. k-1
T — 4 F1

where F} = F|;,—0. System (8) admits the two polynomial first integrals x4 — x5 and x5 —x¢
and the two non-polynomial first integrals

Tg—2z5+T6
%(k—l) T4+ x5 + 26 — 2VA VA
Zy F1
T4+ x5 + 26 + 2VA

and
TgtT5—2T6

3 (k—1) x4+ x5 + 26 — 2VA va
.’B3 F1 )
T4+ x5 + 26 + 2VA

where A = xi + xg +x% — x4T5 — 426 — T5xe. As these four first integrals of system (8) are
independent and h; is a polynomial first integral of (8), we have h; = hy(z4 — x5, x5 — x6).

The following lemma ends the proof of statement (b) of Theorem 2.
Lemma 6. For system (7) we have that hy = hi(xs — x¢) and g1 = 0.
Proof. Suppose that g; Z 0. As h is a first integral of (7), we have

| dg1 I
] ](—374—1—965—1—966)91+x1(—x4+x5+x6)8—gl+x2(w4—a:5+w6)8—i2

891 2 891 k—1 891 8g1 891 ) 8h1
— -z T 2 (= Tt Tl
+x3(xg + x5 366)8:(:3 + z7 s + 1 s + Dis + Die +x
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We distinguish three cases depending on the value of j. If j = 1 then equation (9)
becomes

og

8{[}2
0 k—1_/(0 0 0 oh
2991 ( 91+ 91 g1>+ 1

dn
J— —_— ~ 7F a.. o
+ x3(z4 + x5 $6)8x3 Ty 0z, + 4 Ory  Ozs Oz

Let g1 = g1|z,=0 # 0. Equation (9) on z; = 0 can be written as

991

(—z4 + x5 + x6)g1 + 1(—24 + 25 + xﬁ)a
1

+ zo(z4 — x5 + 6)

— =0.
e a$4

om

Oxo
dg1  Og1 , Og1\ _
(9.1‘4 + 6$5 + 81’6 =0

(—z4 + x5 + x6)G1 + 2(T4 — x5 + T6)

0g k—1
+ x3(xg + x5 — $6)87i; + TFl (

Write g1 = 2hgo # 0, with [ € NU {0} and x3 { go. We get

0
((—xq 4+ x5 + x6) + (x4 — x5 + 6))92 + 2 (24 — T5 + :U6)8—iz

992 k—lF (892 ) é792)_
1

+ z3(Ts + 5 — 1‘6)67% + 1

Let go = g2|zy—=0 Z 0. On x5 = 0 we have
(=24 + 25 + 26) + (24 — 25 + 76)) G2

@ k_lp @ @ @ =0
12 Ors Oxs Oxg ’

+ z3(vs + 5 — x6)8x3 + 1

where Fia = Fi|z,—0. Now we write go = 25'g3 # 0, with m € NU {0} and z3 1 g3. We
obtain
(=24 + 25 + 26) + (74 — T5 + T6) + M(T4 + 5 — T6))g3

dgs k- 1F12 (393 d93 393) _o.

st as 20 p P Gy Bey T B

Let g3 = g3|z3=0 # 0. On x3 = 0 we have
((—x4 + x5 + .’EG) + l(:c4 — x5 + a:(;) -+ m(:v4 + x5 — x(;))gg
k—1 g3 | 9g3 | 0gs
F == 4 =4+ 22 =0
* 4 123 <8:U4 + 8%5 + 8.756 ’

where Fiog = Fia|z,—0. Applying Lemma 4 we get g3 = 0, which is a contradiction. Hence

h
we have g1 = 0 and therefore a—l = 0. The lemma follows in this case.
T4

oh oh
—1, and then —~ = 0. Now we can proceed in a similar way as in
Oxy O0xa

the case 7 = 1 to prove that g = 0 by using Lemma 4.
If 7 = 2 then equation (9) becomes

If 5 > 2 then

991 991
oxy Oz
0 0 k—1 0 0 0 oh
91, 209 <91+91+gl>+ 1

e )22 —+—F Oy
—|—x3($4+$5 x6)8x3+x13$4+ 4 0xa oxs Oxe Oy

2(—x4 + x5 + x6)g1 + x1(—T4 + T5 + X6) + xo(zy — x5 + )

=0.
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Let g1 = g1|2z,=0 # 0. Equation (9) on x; = 0 can be written as

g1

(91’2

dg1 | k— og1  Og1  Og; Ohy
F gt | Y91 i

ox €T3 + 4 (a$4 + 61’5 81‘6 0.1‘4

Write g1 = 2bgs # 0, with I € NU {0} and 3 { go. We get

2(—z4 + x5 + 26) g1 + v2(T4 — 5 + T6)

=0.

+ z3(zs + x5 — 26) =—

g2

(2(—.2134 + x5 + 1‘6) + l(:L’4 — 5+ xg))gg —+ x2(£C4 — x5 + xﬁ)&m

dga k-1 dg2 | Og2  Ogo ohy
— =4+ =+== — =0.
+ x3(zg + 75 xg)a s + 1 <8x4 + D + Birg + 924
If I > 0 then ghl = 0. Similar arguments to those used above lead to the desired result
Ty

after applying Lemma 4. If | = 0, let g2 = g2|z,—0 Z 0. On x2 = 0 we have
g2 k-1 dg2 | 092 02 Ohy
Fo (222 4 992 Y52 gl
ox T3 + 4 12 (83}4 * 8.7}5 + 8376 + 61‘4
where Fio = Fi|z,—0. Now we write go = z§'gs # 0, with m € NU {0} and z3 { g3. We
obtain
(2(—24 + x5 + 26) + m(24 + 75 — 6)) g3

dgs  k—1 dgs | Ogs | Ogs oh
_ Y93 F — —_— a3 .
+ x3(xq + 25 x6)8x3 + 4 12 (8904 - Oxs * Oxg * 04

2(—$4+$5—|—$6) 2+I3(£L’4—|—$5 —IEG) :0,

=0.

oh
If m > 0 then 8—1 = 0. Again the usual arguments lead to the desired result after applying
T4

Lemma 4. If m =0, let g3 = g3]z3—0 Z 0. On z3 = 0 we have

k
2(—w4 + x5 + 26)g3 +

-1 073 073 dgs Ohy
Figg (282 4 295 995 ) L 2
4 123 (8 + 8955 * 8:66 + 81’4 ’
where Fio3 = Fia|z,—0. Applying Lemma 5 swapping x4 and z5 we get g3 = 0, which is a
oh
contradiction. Hence we have g = 0 and therefore 8—1 = 0. The lemma follows also in
T4

this case.
O

After Lemma 6, h = h(zs — x¢). Hence statement (b) of Theorem 2 follows.

3.3. Proof of statement (c) of Theorem 2. According to Table 1, system (1) in cases
VI and VIIy can be written as

1 = z1(—24 + x5 + 6),

.562 = $2($4 — XI5 + 1,‘6)

563—1‘3 $4+SU5—1,‘6)

(
(

k—1
=x1(x1 — n2$2) + TF, (10)
. k —
Ty = n2$2(—$1 + n2332) + TF,
k—1
'i'fi = 7F7

4
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where F' = (21 — n2x2)2 + a:?l + :Bg + x% — 2x4x5 — 20516 — 22476 and n% = 1. Suppose that
system (10) has a homogeneous polynomial first integral h(z1,...,x6). From Lemma 3 we
can write h = hy(z2,...,26) + x}g1(x1,...,26), with j € N and h; and ¢g; homogeneous
polynomials such that z; { g;. System (10) on z; =0 is

i’g = x2($4 — X5 + 336),

&3 = x3(24 + 25 — T6),

E—1
Ty = Fr,
4 1 (11)
Ty = Ty + Fl,
4
. k-1
Te = 4 Fl)
where F; = F|;,—0. We note that h; is a first integral of system (11). From Lemma 3 we
can write hy = ha(zs,...,z¢) + a:égg(xg, ...,xg), with [ € N and hy and go homogeneous

polynomials such that xg { g2. System (11) on zo = 0 writes

&3 = x3(24 + 25 — T6),

. k—1

Ty = — o, )
. k—1 12
T5 =~ Fio,

. k—1

L6 = — Fig,

where Fig = Fi|z,—0. We note that hy is a first integral of system (12). Straightforward
computations show that system (12) has the three independent first integrals x4 —x5, x5 — ¢

and
Tp+T5—2T6

$3(k 1)F $4+$5+x6—2\/Z VA
’ 2 T4+ x5+ 26+ 2VA ’

where A = 23 + 22 + 22 — 2425 — 2426 — v526. Therefore hy = ha(ry — 25,4 — T4).
Lemma 7. For system (11) we have that ho = ho(xg — x6) and g2 = 0.

Proof. Suppose that g» # 0. As hy = hy + 2bgs is a first integral of system (11), we can
write

992

092
.7312 l(.%'4 — x5 + 1’6)92 + x2($4 — 5+ xg)i + .%'3(1'4 + 5 — x6)87x3

8:62

(13)
2092 k-1 P <392+392 392>]+ 5 Ohy

=0.

t 28 xIs + 4 8%4 8$5 81‘6 28 xI5
We distinguish three cases depending on the value of [. If [ = 1 then equation (13) becomes

092

g
(x4 — x5 + x6)92 + T2(4 — x5 + xﬁ)— + x3(zg + 5 — xﬁ)a s

0z
k — g2~ O0ga 092 Ohs 22 092
F 792 o2
4 ! (8904 + 6&35 * ome 8336 o

+ = 0.

ox 5+ 283?5
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Let g2 = g2|z,=0 # 0. On z9 = 0 we have
($4—$5+SE6)92+$3($4+$5—306)673:34- 1 8764%-8?65%—87%

Write go = 25'g3 # 0, with m € NU {0} and z3 { g3. Then

_ 1 ~ ~ ~
0g2  k Fiy (692 092 392) _o.

0
(24 — x5 + 26) + m(24 + 75 — 76)) g3 + v3(24 + T5 — T6) =22

8903

k-1 dgs | Og3  Ogs

Pro (293 4 998 L 993 ),
* 4 12 (83}4 + 8335 + 81’6

Let g3 = g3|zs=0 0. On x3 = 0 we get

4 81'4 (9:65 (91'6

where Fio3 = Fl2|z3=0. Applying Lemma 4 we obtain gz = 0, which is a contradiction.

kE—1 g 0q 0q
(x4 — x5 + 26) + M(24 + 75 — 76)) g3 + Fios <g3+gg+gg> =0,

Hence g = 0. Back to equation (13) we have Ohs = 0. Then the lemma follows.

8x5

h h
If [ > 2, then from equation (13) we have that z» 22 and thus 22 = 0. Therefore

xIs5 xIs
he = ha(x4 — x6). Now we can proceed in a similar way as in the case [ = 1 to obtain the
equation

k-1 dgs  0gs  0gs
— - F o Or= Oz -
(l(za — 25 + w6) + m(zs + 25 — 26)) g3 + 4 1 (83:4 * Oxs * O0xg ’

Applying again Lemma 4 we arrive to contradiction and hence go = 0.
If | = 2, then equation (13) writes as

992
+ x3(zy + x5 — xﬁ)aizg

992
8:62
k-1 692 692 892 2 agg 6h2
224+ 224 2 2242 =0.
4 ! <al‘4 81‘5 87;6 + 72 833‘5 8%5
Let go = g2|zy—=0 Z 0. On x5 = 0 we have

2(x4 — x5+ xﬁ)gz + 302(564 — 5+ 336)

+

_ 0go k—1 0go 0go 0go Ohs
2(xy — —xg)— + —Fo | =— + — + = — =0.
(v4 — o5 + 26)g2 + w3(74 + 75 376)8333 + e <8x4 + D + D + e
Write go = 25'g3 # 0, with m € NU {0} and x3 { g3. Then
0
g’ [(2(954 — x5 + x6) + m(r4 + 25 — 26)) g3 + 23(T4 + T5 — 906)(%2
k‘ —1 893 8g3 ahz
Fo| =4+ == d — =0.
+ 4 12 <a$4 * 8565 + pagste + 61'5
e . Oho
We distinguish two cases depending on the value of m. If m > 0 then z3 el Hence
T5
oh
8—2 =0 and hg = ha(z4 — x6). Now let g3 = g3|z3=0 Z 0. On x3 = 0 we obtain
5

o k-1 dgs | 0g3 073
2(xq — - Fuos G0 ¥ o T on ) =V
(2(x4 — x5 + w6) + m(xs + x5 — 26))J3 + g 1 (am + dxs + Oxg 0

Applying Lemma 4 we get a contradiction and hence g5 = 0.
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If m=0,let g3 = g3|lzs=0 # 0. On 3 = 0 we obtain

~1 9gs  0gs 0gs\ Oh
F123<93+93+93>+2
8%5

4 0 Oxrs Ozg =0

2(:1:4 — x5+ x6)g3 +

Oh

Applying Lemma 5 we get 872 =0 and g3 = 0, hence the lemma follows.
x5

All the subcases are finished and therefore the lemma is proved. O

After Lemma 7 we have that h = hao(z4 — x6) + x{gl(xl, ..., 26), with j € N and 21 1 ¢g1.
We recall that h is a first integral of system (10). Thus

T 0
z) |j(—x4 + x5 + 26)91 + T1(— $4+x5+x6)8g1
g1 og1 0
+ xo(xy — x5 + :EG)i + x3(zg + 5 — :UG)— + x1(x1 — nowe) =— 91 (14)
Oxo O3 0xy

oh
):| —i—a:l(xl — 77,21'2)8 i 0.

—ngxa(x] — NoTe) =—

dg1  k—1_(0g1  0O0g , Og
A A e T f AT
ox xIs + 4 (81’4 + 81'5 8:136

Lemma 8. For system (10) we have that ho =0 and g1 = 0.
Proof. Suppose that g1 #Z 0. We distinguish two cases depending on the value of j. If j > 1

then from equation (14) we have that z; and hence hg = 0. Therefore equation (14)

o
0xy’

can be written as

) g1 dg
J(—x4+ x5 + 26)91 + 21(—24 + 5 Jrﬂca)i + zo(zy — x5 + x6) 7— I

0x1 O
+ z3(zg + x5 — 1“6)ai + z1(z1 — n2$2)£ — noxa(r] — 7121‘2)%
Ox3 x4 Oxs
k— 091  Oq1  Oq
7F 2+ 2] =0.
+ 4 <8x4 + Oxs + Oxg 0

Let g1 = g1|zy=0 Z 0. Equation (14) on x; = 0 becomes

091

. _ Og
J(—x4+ 5 + 26) g1 + v2(24 — 5 + 556)7 + x3(xs + x5 — 966)(%3

0xo

dg1 k- dg1 |, 9q1 | O¢
2
Flp G999 ),
T 28 5+ 4 <8x4+8x5+8x6
Write g1 = 2bgs # 0, with I € NU {0} and 2 { g2. We get
0
(j(—=24 + 25 + 26) + U(T4 — 25 + 26)) g2 + T2(T4 — 75 + 956)892

g ,092  k—1 dg2  0g2 092
+ x3(xq + x5 176)8 T3 t+x 2(91;5 - 4 ! Ory Oxs  Owg
Let g2 = g2[z,=0 # 0. Then, on x5 = 0 we have
. g 8_
(j(~@4 + 5 + x6) + U@s — &5 + 76))G2 + 3(24 + 25 — 26)

85[33
k—1 agg 892 892
Fo| ==+ 2=+ ) =0
+ 4 12 (8334 + 81‘5 + 81’6 0
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Now write g2 = x5'g3 # 0, with m € NU {0} and z3 1 g3. We get
(j(—=w4 + 25 + 26) + l(74 — 25 + 26) + M(T4 + T5 — 76))93
0 k—1 0 0 0
g3 F12<93+93+ 93>:0.

+ $3($4 + x5 — 1‘6)7 + 81‘4 (9.%5 81’6

8$3 4
Let g3 = g3|zs—0 # 0. Then, on x5 = 0 we have
(j(—xa+ 25 + 336) +(zs — 25 + 26) + M(T4 + T5 — 26)) 73
k— dgs  0gs = 0g3
F —— 4+ =] =0.
* 4 123 (8 4+a$5 +al’6

Applying Lemma 4 we obtain g3 = 0, a contradiction. Hence g1 = 0 and the lemma follows
in this case.

If j = 1 then equation (14) becomes

og

0
(—xa+ 25 +26)91 + 21(—24 + 25 + xe)ﬂ + zo(zs — x5 + 336)67@

0r1
+ $3(x4 + x5 — 336)23 + x1($1 — ngl’g) gii
091 k=15 (9 99 99
ox XI5 4 8954 8(135 8a:6
Let g1 = g1|zy=0 Z 0. On 21 = 0 we have

oh
) -+ (1'1 — 7121‘2) 2 _ =0.

— naxa (T — Nowe) =— B4

oq 0g
(—xg + x5 + 26)g1 + x2(4 — 25 + 376)% + z3(xa + 5 — 16‘6)8913

o1 k— 0g1 , 01 | O; Ohs
2 I —J I — - =
T 23x5 + 4 F <8x4 + Ozs + Oze 122 04 0.

Write g1 = 2hgo # 0, with [ € NU {0} and x3 { go. We get

992
Oz

agg 2 agg k — 892 892 8g2
_ 94 e -Je , ZI2 15
Frs(@at 25— 26) 5 S0y -+ i 9za " Oz | Omg (15)

ah | (—x4 + x5 + 26) + (24 — 25 + 26)) g2 + To(Ts — T5 + 26)

— Nox 8h2—0
2 28%4_ )

% . Hence

8904

We distinguish three cases depending on the value of [. If [ > 1 then xo
he = 0. Thus, from (15),

992
Oxa

2 0g2 k‘—F<0gz 092 092>:0‘

((—.1’4 + x5 + x6) + l(:L‘4 — x5 + xﬁ))gz + :1:2(1'4 — x5+ .1‘6)
+z3(wa + )8 +a +
r3lx xry —
sl g ox T3 26$5 4

Similar arguments to those used before lead to an equation of type (4) and hence applying
Lemma 4 we get a contradiction. Therefore g; = 0 and the lemma follows.

o915 Oms | Bug

If [ = 0 then we can use the same arguments to arrive from equation (15) to an equation
of type (4), and hence applying Lemma 4 we get a contradiction. Therefore g; = 0 and
hs = 0, so the lemma follows.
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It only remains to consider the case | = 1. Let g2 = ¢2|z,—0 #Z 0. From equation (15) on
zo9 = 0 we have

=0.

dg k — dg dg dg Oh
2x6g2 + v3(r4 + x5 — T6) = 92 I Fm( g2 992 92> _ 2

ox T3 + ox X4 + 81‘5 (971'6 28%4
Write go = 28'g3 # 0, with m € NU {0} and x3 { g3. We get:

093

zy’ [(2$6 +m(zs + x5 — 6))g3 + v3(T4 + 25 — 1‘6)8363

k-1 (dgs 8935 O oh
F12<93+93 93)]_ 2

4 8.%'4 8.2135 81‘6 81’4 =0

_|_

If m > 0 then x3 , and hence hg = 0. Therefore we obtain an equation of type (4) and

ha
Ory’
hence by Lemma 4 we get g1 = 0. If m =0, let g3 = ¢3|z53=0 # 0. On z3 = 0, we have
k— dgs 093 073 Ohs
F 293 “r2

4 123 (3 T4 * 81‘5 * e a$6 281'4

2673 + = 0. (16)

As hg = ha(z4 — xg) is a homogeneous polynomial of degree n, we have hy = ag(z4 — z¢)".

h
Thus =2 = aon(xy — x6)" 1. On 26 = 0 equation (16) writes

0x4
( 4 5)2 ( g3 93 .93)

n—1
— NaagnT =0.
4 81’4 8335 (‘9x6 4

6=0

Therefore we must take ag = 0 and hence ho = 0. Now equation (16) is of type (4) and
hence by Lemma 4 we get g; = 0 and the lemma follows. U

After Lemma 8 statement (c) of Theorem 2 is proved, as it follows that A = 0.

3.4. Proof of statement (d) of Theorem 2. According to Table 1, Bianchi cases VIII
and IX correspond to ny = ny = ng =1 and can be written into the form

T, = $1(—ZB4 + x5 + x(j),
T = x2(T4 — 75 + T6),
i3 = x3(24 + 75 — Tp),
k—1

Ty = 171(331 — Ty — 7131'3) + TF (17)
. k-1

T5 = xg(—xl + 19 — ngxg) + TF7

. k—1

Tg = ngacg(—xl — X2 + n3:c3) + TF,

where F = x% + :U% + x% — 22120 — 2n3x123 — 2Nn3T9x3 —I—xi + x% + x% —2x475 — 20506 — 224X
and n = 1. Let h = h(z1,---,7¢) be a homogeneous polynomial first integral of degree
n of system (17). Write h = hy(xa, -+ ,x¢) + @jg1(x1,- - ,26), with j € N, hy and ¢
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homogeneous polynomials and x1 1 g1. System (17) on ;3 = 0 becomes
.j:‘g = .%'2(1‘4 — XI5 + .CL'G),

T3 = x3(24 + 25 — T6),

k-1
Gy = P,
4 1 (18)
. k—1
&5 = x2(v2 — n3w3) + 1 Fy,
. E—-1
tg = —ngw3(r2 — n3r3) + 1 Fy,
where Fy = Flg—0. System (18) admits h; = hj(xa, -+ ,x6) as first integral. Write
hi = ho(zs, -+ ,26) + l‘égg($2, -+, x¢), with [ € N, hg and g2 homogeneous polynomials
and 2 { g2. System (18) on x2 = 0 becomes
T3 = I3(£E4 + x5 — 566),
. k-1
Ty =— Fia, o)
. E—1 19
5 = — Fia,
k-1
g = 13 + Fia,

where Fig = Fi|z,—0. We note that hy = ha(xs, -+ ,26) is a first integral of system (19).
Write he = hs(z4, x5, 26) + 5'g3(x3, 4, 25,26), with m € N, hy and g3 homogeneous
polynomials and z3 { g3. System (19) on z3 =0 is

. k—1

Ty = — Fyo3,

. k—1

T5 =~ Fia3, (20)
) k—1

6 = — Fia3,

where Fla3 = Fla|z4=0. Note that hz is a polynomial first integral of system (20). Since
system (20) admits the two independent first integrals x4 — x5 and x5 — xg, any polynomial
first integral of (20) must be a polynomial in the variables x4 — x5 and x5 — z¢. Therefore
hs = hs(x4 — x5, 25 — x¢).

The next three lemmas end the proof of statement (d) of Theorem 2. The first one shows
that hy = hg(x4 — 1'5).

Lemma 9. For system (19)we have that g3 =0 and hz = hg(z4 — x5).

Proof. Suppose that g3 # 0. We recall that hy = h3(x4 — x5, 5 — x6) + 25 g3(23, 24, 5, T6),
where m € N and z3 { g3. As hg is a first integral of system (19), we have

0 0
x5 [m(m + x5 — 26)93 + x3(T4 + T5 — ;pG)aTgEz + xga%z
(21)
k— 1F12 (893 093 8gg>] N 5 Ohs3 o

+ xgaixﬁ =

1 91y | Ozs | Ouwg

We distinguish three cases depending on the value of m.
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If m =1 then
(x4 + x5 — 26)g3 + x3(T4 + 25 — 1’6)7893 + 37:%7893
8%3 8:116

k— 0 15) 15) oh
F12 993 L 993 L 993 | 908
4 Oxg

ox T4 + a$5 6$6 =0

Let g3 = g3|zs=0 # 0. On 3 = 0 we have

_ dgs  O0gs | 0gs\ _
(x4+x5 xﬁ)gg+ 1 F123<a4+3$5+8l‘6 =0.

oh
Applying Lemma 4 we get g3 = 0 and hence g3 = 0. Consequently 873 = 0 and the lemma
Te
follows in this case.

oh

8—3 and so hy = h3(z4 — x5). Now from equation
Te

(21) on x3 = 0 we get an equation of type (4), hence applying Lemma 4 we get g3 = 0 and

the lemma follows in this case.

If m = 2 then from (21) we have

If m > 2 then from (21) we have x3

dg3 )
2(z4 + @5 — 26)93 + 23(24 + 25 — :r&;r +a %aii
k dgs  dgs  0Ogs Ohs
o - Ry}
12 <3 T4 * Oxs + Oxg + Oxg

Let g3 = g3|z3=0 # 0. On x3 = 0 we obtain

k—1 <393 093 593) Ohs
F123 A A a_

=== =0.
4 81’4 + a:(}5 + 8.%‘6 81‘6

2(x4 + x5 — 26)G3 +

Ohs

Applying Lemma 5 swapping x5 and xg we get ot = 0 and g3 = 0. Hence hg = hg(x4—x5),
Z6

g3 = 0 and the lemma follows in this case. ([l

The second lemma shows that hy = 0.
Lemma 10. For system (18) we have that g =0 and hy = 0.

Proof. Suppose that ga # 0. We recall that hy = ha(z4 — x5) +:I:12g2, with [ € N and z2 1 g.
As h;y is a first integral of system (18), we have

0 dgo 0
9312 (x4 — x5+ x6)92 + T2(T4 — T5 + 3:6)% + x3(zg + 5 — xﬁ)a—g + x990 — n3$3)6iz
dg2 k-1 O0ga  0g2  Ogo Ohs
- - izl (92 992, 992 . .
n3zs(re — n3ws) g +— 1 <8:C4 + Dz + Dz + x2(x2 ngazg)a% 0

h
a— and hence

81‘5

= 0, which means that hy = 0. Substituting in the equation above we have

We distinguish two cases depending on the value of I. If [ > 1 then x»

Ohy
81‘5

0go g
l(xg — x5+ x6) 92 + x2(T4 — T5 +x6)— + x3(xg + x5 — 26) =— 2

Ox Z2 ox T3
892 8g2 k— 892 892 892
+ - CE — 992 (Kk—1p (092, 092 092 _,
xo (20 n3$3)8x5 nsrs(xs ngxg)a% + I <8x4 + P + For 0
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The usual arguments lead to equation (4), hence we obtain go = 0 by Lemma 4.
If [ =1 then we have

(x4 — x5 + 6) g2 + x2(T4 — 5 + xG)gzz + x3(xg + x5 — 966)23952 + x9(x9 — n3$3)§zz
dga k-1 g2 0g2  0ga Ohs
- ~ ngzy) 22 P (992 992, 992 - 7 _ o,
ngl‘g(l‘g n3x3) 8176 * 4 ! <6:L’4 + 81‘5 81‘6 + (:EQ n3$3)8:175
Let g2 = g2|zy—=0 Z 0. On x5 = 0 we have
0g 0g
(.%'4 — x5 + wﬁ)gg + .%'3(1'4 + x5 — .Tﬁ)ﬂ + x%ﬂ
a$3 8%6 (22)
k-1 8@2 8_9_]2 6?]2 Ohs
P (292 992 992 0902 2,
+ 4 12 <83§‘4 + 01‘5 * 8.7}6 18Ls 01‘5
Write go = 25'g3 # 0, with m € NU {0} and x3 { g3. Then
0
3" [((M — x5 + x6) + m(xs + x5 — x6))g3 + x3(Ts + 25 — 966)872
dgz k-1 dg3 | dg3 | Ogs Ohs
2
O3 B i, (28 993 9B, 92
B Oxg + 4 12 <8x4 Oxrs  Oxg 133 Oxs 0

Now we distinguish three cases depending on the value of m. If m = 0 then we are in (22)
again and the usual arguments lead to go = 0 and ho = 0.

% and hence % = 0, which means that ho = 0. Then we have
8:155 xTs5

If m > 1 then z3

15)
(x4 — x5 + x6) + m(T4 + 5 — T6)) g3 + x3(Ta + 25 — 336)&

81'3
+x§(§£+k;1F (593 d93 393)

The usual arguments finish the proof in this case.

Finally if m = 1 then we have

dg3
2x493 + x3(24 + 25 — x6)a—x3 + 3;38?6 + TF12
Let g3 = g3|z3=0 # 0. On x3 = 0 we have
k=1, (995 093  0g Oh
P (93 93 | 93)_ 2 _,

2093 k-1 (893 393+393>_n8h2

2247 22 4 2 —= =
T49s + 3$4 8$5 8566 "3 8935

As hy = ha(z4 — x5) is a homogeneous polynomial of degree n, we have hy = ag(z4 — x5)".

Hence
k—1 P (393 Jdg3  0g3
1 123\ 5— N

22493 + ) + ngaon(x4 - 335)”_1 =0.

(9:174 + 871’5 85116
On z4 = 0 we have
k—1 o (Ogs  Ogs 073

4 (1'5 xG) <al‘4 + 81‘5 + 8:136
which means that ag = 0. Therefore hy = 0. The equation is now of type (4) and leads to
g2 = 0 by Lemma 4.

All the subcases are considered and the proof of the lemma is finished. O

+ ngaon(fxg,)"_l =0,

xr4=0
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The last lemma shows that g = 0 and therefore that h = 0.
Lemma 11. For system (17) we have that g1 = 0.

Proof. Suppose that g1 # 0. We recall that h = x{gl, with j € N and x1 1 ¢1, is a first
integral of system (17). Then

. Og1 0
J(—za+ 5+ 26)g1 + 21(—24 + 25 + 1'6)% + zo(zg — x5 + xﬁ)ag;
0g1 0
+ x3(24 + 25 — $6)873 + @1 (21 — 22 — ”35“3)32
0
+ xo(—x1 + 22 — n3x3)8—i; + nzzg(—x; — 2 + ngazg)a—z;
k— dg1  0g1  Oq
Flp 29 .

T (8374 T o5 x5 * Oxe

Let g1 = g1|zy=0 0. On 21 = 0 we have
(=24 + 25 + 26)g1 + x2(T4 — 25 + )a——i-w (x4 + a5 —2 )8g1
J 4 5 6)91 2(Z4 5 6 o1y 324 5 6 O3
991 og | k— g1 | Og1 | Oq
_ o9 Lr G ~o.
+ xa (o 7%3:133)83:5 + nzxz(—x2 +n3$3)8 e +— ey T ows T o
Write g1 = 2hgo # 0, with [ € NU {0} and x5 { go. We get
0
(j(—xa + x5 + 26) + l(za — 25+ 26)) g2 + T2(2s — 75 + xﬁ)aiz
Ogo g
+ x3(xq + x5 — 906)8% + x9(xo — n3x3)6mi

0 k—1 0 0 0
+ nzxz(— $2+n3933)87i26+ 1 Fy (aiiwLangraiZ):O.

Let g2 = g2|zy—0 # 0. On x9 = 0 we have

092

(j(—z4 4+ 25 + x6) + [(24 — 25 + 6)) g2 + 23(T4 + 75 — 556)8 s

0go k-1 0go  0ga O
e gangr : F12< 92 092 | gz)_

Write go = 25'g3 # 0, with m € NU {0} and x3 { g3. We get

(J(—za+ o5+ 26) + (24 — 25 + 26) + M(T4 + 5 — T6))g3
1
893 2 8g3 k‘ F12 <8g3 893 693) -0

+.’L‘3($4+l‘5—$6)87x3+ 38$6+ 1 87@4_87554_8756

Let g3 = g3|zs—0 # 0. On 3 = 0 we have
(j(—24 + 25 + $6) + (x4 — x5 + 26) + m(xs + x5 — T6)) 73
k— gz  0gz  0gs3
F 224+ =2 ) =0.
+ 1 125<04+8335+8x6

We can apply Lemma 4. Hence the lemma follows. O

After Lemma 11, we get h = 0. Thus the proof of statement (d) of Theorem 2 is finished.
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