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ABSTRACT 

In this work, we demonstrate that NH4
+ nutrition in citrange Carrizo plants acts as an inducer 

of resistance against salinity conditions. We investigated its mode of action and provide 

evidence that NH4
+ confers resistance by priming abscisic acid and polyamines, just as 

enhancing H2O2 and proline basal content. Moreover it observed a diminished Cl- uptake as 

well as an enhanced PHGPx expression after salt stress. Control and N-NH4
+ plants have 

shown optimal growth, however it was  observed that N-NH4
+ plants have displayed greater 

dry weight and total lateral roots than control plants, but that differences are not seen for 

primary roots length. Our results reveal that N-NH4
+ treatment induces a similar phenotypical 

response to the recent stress-induced morphogenetic response (SIMRs). The hypothesis is that 

N-NH4
+ treatment triggers mild chronic stress in citrange Carrizo plants, which might explain 

the SIMR observed. Moreover, we observed modulators of stress signaling, such as H2O2 in 

N-NH4
+ plants, which could acts as an intermediary between stress and the development of 

the SIMR phenotype. This observation suggests that NH4
+ treatments induce a mild stress 

condition that primes the citrange Carrizo defense response by stress imprinting and confers 

protection against a subsequent salt stress.   
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AOS, allene oxide synthase; DAB, diaminobenzidine; DW, dry weight; FW, fresh weight; 
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INTRODUCTION 

Nitrate (NO3
-) and ammonium (NH4

+) are the main inorganic nitrogen (N) resources 

absorbed by the roots of higher plants. Nitrogen is used to form glutamine, a precursor of 

many amino acids, like nucleic acids, alkaloids and polysaccharides, as well as secondary 

metabolites like PAs (Bagh et al.,, 2004). It is generally accepted that many plants display 

optimal growth and development if nitrogen is available in the form of NO3
- (Coruzzi and 

Bush, 2001). Although NO3
- uptake consumes more energy than NH4

+, only a few plant 

species display optimal growth when N is available in only the NH4
+ form (Marschner, 1995). 

Camañes et al., (2009) demonstrated that citrus plants prefer to absorb NH4
+ more than NO3

- 

when both N forms are present in the nutrient solution, which is probably due to less energy 

in the assimilation ion process. NH4
+ is a paradoxical nutrient ion because, despite being a 

major N source and an important intermediate in many metabolic reactions, there are reports 

that high concentrations of this ion in either soil or the nutrient solution may lead to an 

“ammonium syndrome”. This may include leaf chlorosis, lower plant yield production and 

root/shoot ratio, lower cation content, acidification of the rizosphere and changes in several 

metabolites levels, such as amino acids or organic acids (Britto and Kronzucker, 2002). In 

spite of the information available about the appearance of toxic symptoms due to NH4
+ 

nutrition, different studies have produced contradictory results. This could be explained by 

each plant’s specific and varietal characteristics, and by experimental conditions. Thus, there 

is a wide range of plant responses to NH4
+ nutrition; there are some species that are tolerant to 

high NH4
+ doses, such as rice (Wang et al., 1993), and some very sensitive species which 

practically cannot survive under NH4
+ nutrition, such as tomato or barley (Britto et al., 2001).  

Salinity is amongst the most significant environmental factors responsible for substantial 

losses in agricultural production worldwide and it is one of the serious problems confronting 

sustainable agriculture in irrigated production systems in arid and semiarid regions 
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(Marschner 1995; Ravindran et al., 2007). Nearly 20% of the world’s cultivated area and 

about half of the world’s irrigated lands are affected by this stress (Munns and Tester, 2008). 

This is a critical problem especially in citrus since they are one of the most globally important 

horticultural crops considered salt sensitive (Al-Yassin 2005).  Salinity causes several injuries 

in citrus such as tissue burning, loss of yield, leaf abscission and finally plant death (Romero-

Aranda et al., 1998). Identifying successful strategies that enhance salinity resistance to this 

plant species is of both agronomic and economic interest. This complex environmental stress 

presents three different components: an ionic component linked to the accumulation of ions, 

which become toxic at high salt concentrations (mainly Na+ and Cl-) in the cytoplasm, leading 

to ionic imbalance; an osmotic component due to the compartmentalization of this toxic ion in 

the vacuole. When this compartmentalization occurs in cells, the cytosol water potential must 

be lowered to balance the low-external water potential, thus ensuring water intake in the plant 

cell and avoiding macromolecule damage (Ellouzi et al., 2011). Apart from the toxic and 

osmotic effects of salinity, a high cellular NaCl concentration causes enhanced formation of 

reactive oxygen species ROS (Hernandez and Almansa, 2002). ROS are highly reactive and, 

in the absence of any scavenging mechanism, they can provoke major alterations in normal 

metabolism through oxidative damage to lipids, proteins and nucleic acids (Foyer and Noctor, 

2005). However, transient ROS formation apart from causing oxidative damage when present 

at high concentrations can play a signaling protective role in the short term (Dat et al., 2000). 

The role of some ROS, such as signal molecules in biotic or abiotic stress, is of biological 

significance because the production of these molecules could benefit the plants brought into a 

state of acclimation (Foyer et al., 1997, Jubany-Marí et al., 2009). Similarly, plant hormones 

play an important role in response to unfavorable environmental conditions. They are 

involved in signaling response to drought and salinity by the activation of acclimation 

processes such as stomatal closure, regulation of hydraulic conductivity and regulation of 
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developmental processes that affect stress tolerance, such as senescence abscission (Sakamoto 

et al., 2008). Plants are sessile organisms that have developed an extensive array of defensive 

responses. An important aspect related to response to a range of biotic and abiotic stress is the 

phenomenon of priming (Van der Ent et al., 2009). Preliminary stress exposure or stress 

imprinting is indeed necessary to induce priming, which makes the plants more resistant to 

future biotic or abiotic stress (Conrath et al., 2006; Bruce et al., 2007; Galis et al., 2009). 

Priming state can be induced by different biological or chemical stimuli. Some quemical 

inducers are 2,6-dichloro isonicotinic acid (INA), benzo-(1,2,3)-thiadiazole-7-carbotionic acid 

S-methyl ester (BTH), β-aminobutyric acid (BABA) (Oostendorp et al., 2001; Conrath et al., 

2002) and hexanoic acid, which by root treatment protects tomato plants and Arabidopsis 

against Botrytis cinerea (Vicedo et al., 2009; Kravchuk et al., 2011). Regarding abitotic 

stress, BABA has been shown to confer plant protection against salinity and drought (Jakab et 

al., 2005; Macarisin et al., 2009). Moreover, stress can also boost plant stress tolerance 

through induction of acclimation responses. Tolerance can be linked to an array of 

morphological, physiological and biochemical responses which lower the stress exposure 

limit and damage, or facilitate the repair of damaged systems (Mittler 2002). After exposure 

to stress, various changes take place, leading to different phenotypes depending on the type of 

stress, its duration or experimental conditions. However, a common response in all these 

responses occurs, which is known as "stress-induced morphogenic responses” (SIMRs). 

Exposure of plants to mild chronic stress could cause induction of these specific SIMRs. 

These responses are characterized by blockage of cell division in the main meristematic 

tissues, inhibition of elongation and redirected outgrowth of lateral organs. Furthermore, it is 

believed that this process brings about a rise in ROS species and alters different hormones 

(Potters et al., 2007). The induced resistance against abiotic stress in citrus and other woody 

species has not been explorer, and understanding the molecular mechanisms beneath this 
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process will provide the necessary insights to exploit this phenomenon in sustainable 

agriculture. 

In this work, we demonstrate that NH4
+ nutrition in citrange Carrizo plants enhanced 

resistance to salinity conditions. We investigated its mode of action, and provide evidence 

that NH4
+ primes citrange Carrizo’s defenses by enhancing abscisic acid (ABA), PAs and 

potentiating H2O2 and proline basal content as well as diminished Cl- uptake.   

 

MATERIAL AND METHODS 

Plant material, growth conditions and nutrition treatments 

citrange Carrizo seeds (Citrus sinensis L. Osbeck × Poncirus trifoliata L.) (Beniplant, 

Valencia, Spain) were allowed to germinate in vermiculite in a growth chamber under the 

following environmental conditions: light/dark cycle of 16/8 h, temperature of 20/24°C, light 

intensity of 200 µmol m-2 s-1 and relative humidity of 70%. Seeds were irrigated twice a week 

with distilled water. After 6 weeks, seedlings were irrigated for two months with Hoagland 

solution lacking nitrogen (Hoagland and Arnon, 1950) complemented with 1 mM NH4NO3  

(control treatment) and 5 mM of N-NH4
+ [(NH4)2SO4)] (NH4

+ treatment). Then 1.5 mM 

K2SO4 and 3 mM CaSO4 were added to compensate for the absence of K+ and Ca2+. The pH 

of the nutrient solution was adjusted to 6.0 with 1 mM KOH. 

Prior to the experiments, 3-month-old plants with a single shoot were selected for 

uniformity of size, and transferred to an aerated complemented Hoagland solution for 7 days 

in hydroponic culture devices.  

To salt stress, 90 mM NaCl were added to the hydroponic solution and renewed twice 

weekly. Samples were taken for individual analysis at 2 h and 14 d after addition of salt to the 

hydroponic solution. At the end of the experiment, the phenotype was determined by the 

percentage of leaves with symptoms of necrosis or burns.  



7	
  

	
  

Growth and damage of salt values 

The DW and length primary roots were measured at each sampling. The lengths of the 

individual primary roots of individual seedling were measured directly. Dry weight refers to 

the total roots (primary, secondary and tertiary) of the individual seedlings.  

To measure the damage provoked by high salinity in the medium soil, we also established 

three damage levels: healthy leaves, chlorotic leaves (level 1), leaves with necrosis (level 2) 

and burnt leaves (level 3).  

 

Quantitative RT-qPCR analysis 

Gene expression by quantitative real-time PCR (RT-qPCR) was performed using RNA 

samples extracted from leaf tissue using the Total Quick RNA cells and tissues kit (Talent; 

http://www.spin.it/talent). Citrus leaves tissue samples for RNA isolation were collected at 2 

h and 14 d after NaCl treatment. Leaf tissue was collected from treated and untreated plants. 

The RT-qPCR conditions were those described by Flors et al. (2007). A list of the primers 

used in the RT-qPCR is shown in Table 1, using GAPDH gene expression of citrus how an 

internal standard.  

 

Chromatographic analysis. 

Hormone extraction and quantification were performed as described in Flors et al. (2008). 

Briefly, fresh material was frozen in liquid nitrogen. Before extraction, a mixture of internal 

standards containing 100 ng [2H6]-ABA and 100 ng [2H4]-SA was added. Dry tissue (0.05 g) 

was immediately homogenized in 2.5 mL of ultrapure water. After centrifugation (5000 g, 40 

min), the supernatant was recovered and adjusted to pH 2.8 with 6% acetic acid, and 

subsequently partitioned twice against an equal volume of diethyl ether. The aqueous phase 

was discarded, the organic fraction evaporated in a Speed Vaccuum Concentrator (Eppendorf; 



8	
  

	
  

www.eppendorf.com) at room temperature, and the solid residue re-suspended in 1 mL of a 

water/methanol (90:10) solution and filtered through a 0.22 µm cellulose acetate filter. A 20 

µl aliquot of this solution was then directly injected into the HPLC system.  

For PAs analysis, fresh material was frozen in liquid nitrogen. Before extraction, 

according to the method of (Sánchez-López et al., 2009) a mixture of internal standards 

containing 13C4-putrescina and 1,7-diamineheptane, was added. Dry tissue (0.02 g) was 

homogenized in 2 mL of 2% perchloric acid. After centrifugation (5000 g, 40 min), the 

supernatant was separated 2 mL of 2% perchloric acid were add to the pellet and 

centrifugation was repeated. Then both supernatants were collected and a mixture of 10% 

MeOH and HFBA 25 mM was added until 6 mL. Next 1 mL of the mixture was taken and 

filtered through a 0.45 µm cellulose acetate filter. A 20 µl aliquot of this solution was directly 

injected into the HPLC system. Analyses of hormone and PAs sample were carried out using 

a Waters Alliance 2690 HPLC system (Milford, MA, USA) with a nucleosil ODS reversed-

phase column (100 x 2 mm i.d.; 5 mL; Scharlab, Barcelona, Spain; http:// www.scharlab.es). 

The chromatographic system was interfaced to a Quatro LC (quadrupole-hexapole-

quadrupole) mass spectrometer (Micromass; http://www.micromass.co.uk). The MASSLYNX 

NT software version 4.1 (Micromass) was used to process the quantitative data from 

calibration standards and plant samples. 

 

Chloride analyses 

Chloride measurements were taken by automatic titration using a chloridemeter (Model 

926, Sherwood Scientific Ltd., Cambridge, UK), as described in López-Climent et al. (2008). 

Briefly, ground plant material was incubated overnight in a mixture of 0.1 N HNO3 (Panreac, 

Barcelona, Spain) and 10% glacial acetic acid (Panreac) under continuous shaking. The 
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supernatant was filtered through Whatmann #1 filter paper and 0.5 mL used for 

determinations. 

 

Proline analyses 

Leaf proline content was determined by a spectrophotometric assay, as described in Bates 

et al. (1973). Briefly, 50 mg of frozen plant material was extracted in 5mL of 3% 

sulphosalicylic acid (Panreac). After centrifugation at 4000×g and 4 ºC, 1 mL of supernatant 

was combined with 1 mL of glacial acetic acid (Panreac) and 1 mL of ninhydrin (Panreac) 

solution. The combined solution was incubated at 80 ºC in a water bath for 1 h and the 

resulting mixture was partitioned against 2 mL of toluene after a cooling period. Absorbance 

at 520 nm was read in the organic layer against a blank. Determinations were performed using 

commercial proline as a standard (Sigma-Aldrich, Madrid, Spain). 

 

DAB staining and H2O2 quantification. 

N-NH4
+ and control plants were exposed to 90 mM NaCl for 2 h, and the salt-stressed 

leaves were stained in 1 mg of DAB per milliliter at pH < 3 for 24 h in the dark and were 

subsequently destained in 95% ethanol. Later, samples were rehydrated with distilled water. 

DAB staining intensities were quantified from digital photographs by the number of dark-

brown DAB pixels in relation to the total pixels corresponding to plant material, using GIMP2 

program. 

 

Statistical analysis 

Statistical analysis was carried out using the Statgraphics software support. Data are 

expressed as means and standard error. Mean values were compared by an LSD (least 

significant difference) test. All experiments were repeated at least three times. 
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RESULTS 

Development of the citrange Carrizo plants grown under the NH4
+ condition 

Three-month-old citrange Carrizo plants were grown for 2 months with Hoagland 

solution lacking nitrogen, but complemented with 1 mM NH4NO3 (control plants) and 5 mM 

(NH4)2SO4 (N-NH4
+plants). Although other studies have shown that some species develop 

toxic symptoms when only NH4
+ nutrition is applied (Gerendás et al., 1997; Lasa et al., 2001), 

the citrange Carrizo N-NH4
+ plants displayed optimal growth, estimated on the basis of 

biomass production (Fig. 1A). Moreover, we observed that N-NH4
+ plants developed a darker 

green color, and their chlorophyll content was 13.12% higher than in the control plants (data 

not shown). Likewise, the N-NH4
+ plants showed vigorous root growth, estimated on the basis 

of the DW of total roots, which was higher in the N-NH4
+ plants if compared with the control 

plants (Fig. 1C). However, primary root length did not differ between the control and the 

NH4
+ treated plants (Fig. 1B). The secondary and tertiary lateral roots of the N-NH4

+ plants 

developed more than control plants. NH4
+ treatment increased the number of lateral roots per 

DW of the total roots of the individual seedlings, as well as the number of total roots per 

primary root length (Figs. 1D and E).   

 

NH4
+ treatment enhances citrange Carrizo resistance to salt stress. 

The increased levels of NaCl in the watering solution led to different levels of damage in 

plants. To achieve salt stress, 90 mM NaCl were added to the hydroponic solution to the 

control and the N-NH4
+ plants over a 14-day period. In order to check how NH4

+ nutrition 

could affect the response of citrange Carrizo plants to salt stress, necrosis and burns on leaves 

were estimated. The result was expressed as percentage of damaged leaf in relation to the total 

leaves per plant by establishing the following damage levels: healthy leaves, chlorotic leaves 

(level 1), leaves with necrosis (level 2) and burnt leaves (level 3) (Fig. 2). In this case, 
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significant differences between the control and the N-NH4
+ salt-treated plants were noted as 

the N-NH4
+ plants displayed 30% more healthy leaves than the control plants. Both the 

control and the N-NH4
+ plants had a similar percentage of chlorotic and necrotic leaves but, 

interestingly, the level of burnt leaves was higher in the control plants.  

 

NH4
+ treatment reduced citrange Carrizo toxic and osmotic stress 

Salinity tolerance in Citrus is strongly related to leaf chloride accumulation. It is well-

known that Cl− toxicity, rather than Na+ toxicity, is the primary factor involved in the 

molecular responses of citrus plant leaves to salinity (Brumós et al., 2009). We observed that 

the Cl- concentration in leaves increased in both treatments, in the control and the N-NH4
+ 

plants upon salt stress (Fig. 3A). The highest leaf Cl- concentration occurred in the control 

plants at 14d, at which time the Cl- concentration noted for the leaves of the N-NH4
+ plants 

had reduced by 24% when compared with the control plants leaves.   

It is well-known that soil with high salt concentrations is virtually dry because the available 

water is trapped by ions. Proline has been considered to play an important role in plant 

response to salinity (Gaspar et al., 2002) since it acts as a compatible solute that adjusts the 

osmotic potential in the cytoplasm (Bartels and Sunkar, 2005). In order to assess the 

effectiveness of N-NH4
+ treatment against osmotic stress induced by NaCl, we tested proline 

content in leaves. The basal proline content differed between the control and the N-NH4
+ 

plants (Fig. 3B). The N-NH4
+ plants had higher proline content at 2 h and 14 d in the absence 

of salt if compared with the control plants. Interestingly the proline content of both treatments 

significantly increased after salinity, with no statistically significant differences between the 

control and the N-NH4
+-treated plants. Proline content increased by 19.53% in the control 

plants upon salinity treatment, while it increased by only 9.30% in the N-NH4
+ plants.   
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NH4
+ treatments enhance H2O2 accumulation 

In this work, we used DAB staining to establish how NH4
+ treatment affects cellular 

oxidative stress. The H2O2 staining based on the in vivo reaction of H2O2 with DAB allows a 

rapid estimation of H2O2 accumulation in leaves (Thordal-Christensen et al., 1997). Our 

results indicate that the N-NH4
+ plants show higher initial levels of H2O2 accumulation than 

the control plants in the absence of salt stress. Increased H2O2 accumulation was noted 2 h 

after treatment with 90 mM NaCl. Although higher H2O2 accumulation was seen in the 

control plants in response to salt stress, the highest levels of H2O2 accumulation were 

observed for the N-NH4
+ plants treated with NaCl (Fig. 4) 

 

NH4
+ treatment induces the main hormone signaling pathways 

In order to establish whether enhanced resistance of NH4
+ is mediated by the induction of 

the ABA-, salicylic acid- (SA)  and jasmonic acid - (JA ) signaling pathways, the RD22, PR5 

and AOS marker genes expressions were analyzed by RT-qPCR (Fig. 5). These genes have 

been previously reported to be salt stress inducible in different species (Zhu et al., 1995; 

Nylander et al., 2001; Pendranzani et al., 2003). We observed that NH4
+ treatments induced 

RD22 mRNA accumulation in the absence of salt stress and that RD22 mRNA accumulation 

in response to salt stress lightly increased after salinity in both treatments (Fig. 5A). NH4
+ 

treatment induced PR5 mRNA accumulation in the absence of salt stress, however, upon 

salinity stress both treatments induced the PR5 expression at 14 d, but greater inductions were 

observed in the control plants than in the N-NH4
+ plants (Fig. 5B). We also checked JA-

dependent signaling pathway transduction after NH4
+ treatment in citrange Carrizo plants. 

NaCl treatment induced AOS mRNA accumulation in both treatments, but the N-NH4
+ plants 

exhibited greater accumulation upon salinity when compared with the control plants (Fig. 

5C). The expression patterns of the markers genes for the ABA, SA and JA pathways indicate 
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that all the pathways were more induced in the NH4
+ treated plants than in the control ones. In 

order to further confirm the possible role of the different signaling pathways in NH4
+ 

resistance, we analyzed the hormonal levels in both the control and the N-NH4
+ treated plants 

at 14 d after salinity stress. The basal ABA levels differed between control and the N-NH4
+ 

plants in the absence of salt, but were higher in the N-NH4
+ plants (Fig. 6A). The control 

plants revealed increased ABA accumulation 14 d after salt stress, as expected, but no such 

increase was observed in the N-NH4
+ plants upon salt stress. These initial ABA accumulations 

suggest that the resistance induced by NH4
+ treatment could be mediated by this hormone, 

which plays a role in defense signaling in osmotic and salt stresses (Jakab et al., 2005). The 

basal SA levels did not differ between the control and the NH4
+-treated plants before salinity, 

but ranged between 25 ng g-1 and 38 ng g-1 FW (Fig. 6B). Interestingly, the control plants 

displayed a significant increase in SA accumulation at 14 h after salinity which was not 

observed in the N-NH4
+-treated plants upon salinity. No differences in JA levels were 

observed in either the control or the NH4
+-treated plants in the absence or the presence of salt 

stress (data not shown).  

 

NH4
+ treatments reduced the oxidative damage caused by salt stress. Polyamines content 

and PHGPx expression  

PAs play a key role in plant responses to salinity. These compounds have been tested not 

only as antioxidants, but also as osmoprotectors under salinity conditions (Groppa et al., 

2001; Chattopadhayay et al., 2002; Kakkar and Sawhney, 2003). In order to determine 

whether NH4
+ treatment affects PAs content, leaf samples were analyzed at 14 d in the control 

and the N-NH4
+ plants, and also in these plants after salt stress. In the N-NH4

+ plants, the 

concentrations of Put, Spd and Spm were higher than in the control plants in the absence of 

salt. It is interesting to note that the Put titer increase was especially important. The Put 
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concentration in the control plants was 6.16 ng mg -1 FW, while it was 146.98 ng mg -1 FW in 

the N-NH4
+ plants. However, the Put, Spd and Spm contents remained unaffected in the 

control and the N-NH4
+ plants after salt stress (Table 2). Put accumulations in N-NH4

+ plants 

suggest that the resistance induced by NH4
+ treatment could be mediated by this polyamine, 

which reduces salt-inducible oxidative damage (Groppa and Benavides, 2008). 

In order to establish whether the enhanced resistance of N-NH4
+ treatment to salt stress is 

mediated by the induction of antioxidant activity pathways, the PHGPx gene expression was 

analyzed by RT-qPCR. It has been previously reported that PHGPx is a unique intracellular 

antioxidant enzyme that directly reduces phospholipid hydroperoxides produced in cell 

membranes under salt conditions, and has been considered the main line of enzymatic defense 

against oxidative biomembrane damage in mammalian cells (Chun-Juan et al., 2009). 

Although the PHGPx expression was unaffected in the absence of salt, N-NH4
+ treatment 

enhanced this expression at 14 d after salt stress.   

 

DISCUSSION 

In this study, we have analyzed influences of NH4
+ nutrition on citrange Carrizo plants 

undergoing 90 mM NaCl. citrange Carrizo plants were grown with 1 mM NH4NO3 (control 

plants) and 5 mM de N-NH4
+ (N-NH4

+ plants), they showed optimal growth in both 

treatments. However, we observed that the N-NH4
+ plants had greater DW and total lateral 

roots than the control plants; yet these differences were not noted for primary roots length. It 

is commonly accepted that the root system is critical for nutrient and water uptake from soil, 

and that it displays considerable plasticity in response to development and environment 

signals (Li et al., 2010). Primary root growth is often diminished in stressful soil 

environments, such as those deficient in phosphate (Svistoonoff et al., 2007) or with excess 

aluminum (Jones and Kochian,  1995). Previous results have shown that stunted root systems 
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are a significant symptom of NH4
+ toxicity and confirmed that NH4

+ in soil inhibits primary 

root growth, being cell elongation but not cell division, the principal target in NH4
+ inhibition 

(Li et al., 2010). We have demonstrated that NH4
+ treatment induces lateral root development 

in citrange Carrizo plants. This is supported by the findings of Yang et al. (2011), who 

observed that NH4
+ stimulated root hair branches in Arabidospsis which may be directly due 

to a response to NH4
+ toxicity or NH4

+-induced stress signals. Moreover, it has been 

suggested that ROS may be an NH4
+-induced stress signal leading to the formation of hair 

branching. Moreover, it demonstrates that citrange Carrizo plants grown under N-NH4
+ 

conditions are more resistant to salinity stress. Salinity stress was induced by the addition of 

90 mM NaCl for 14 d to the control and the N-NH4
+ plants. After checking for any damage 

induced by salinity, we found a differential response to salt stress, and the N-NH4
+ plants 

presented less damage than the control plants. These data suggest that N-NH4
+ treatment 

produces some response mechanism which benefits citrange Carrizo plants to better tolerate 

exposure to 90 mM NaCl. Salinity is a complex environmental stress that presets three 

different components: an ionic component linked to the accumulation of ions, mainly Cl- in 

citrus plants (Brumós et al., 2009); an osmotic component due to compartmentalization of this 

toxic ion in the vacuole, which triggers accumulation of low molecular-weight osmolytes 

(Zhu et al., 1998); and increased ROS formation, which is considered the primary event under 

a variety of stress conditions (Hernandez and Almansa, 2002). N-NH4
+-treated plants are 

capable of reduced Cl- leaves accumulation after 14 d of salt exposure. The high shoot Cl- 

level in the salt-treated control plants indicates this ion’s poor capacity to prevent 

translocation to shoots. However, N-NH4
+ treatment helps avoid leaves from accumulating Cl-

, probably by the inhibition of chlorid channel-like (CLC) proteins, as observed in barley 

(Lopes and Araus, 2008). Moreover, soil with high salt concentrations is practically dry 

because ions trap any available water. To overcome this problem, citrus responds by 
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overproducing compatible osmolites such as proline (Bañuls and Primo-Millo, 1992). For a 

long time, proline has been considered an inert compatible osmolyte which protects 

subcellular structures and macromolecules upon osmotic stress (Kishor et al., 2005). Several 

studies have shown that proline is a potent ROS scavenger associated with the prevention of 

apoptotic-like PCD (Chen and Dickman, 2005). Proline content in the N-NH4
+ plants at 2 h 

and 14 d in the absence of salt is higher than in the control plants. Yet under salt conditions, 

both treatments showed an increased proline accumulation. The highest basal proline content 

in the N-NH4
+ plants could confer initial protection to salt stress since proline accumulation in 

stressed plants has been associated with enhanced tolerance to abiotic stress conditions 

(Szabados and Savouré, 2009). Furthermore, it is well-known that salinity increases cellular 

ROS accumulation (Hernandez and Almansa, 2002). Although ROS can induce severe 

cellular damage, these molecules are important in signaling, since control, among others, the 

expression of stress tolerance (Foyer and Noctor, 2005). Control and N-NH4
+ citrange 

Carrizo plants display considerably increased H2O2 accumulation 2 h after salinity stress. It is 

noteworthy that the initial H2O2 levels were higher in the N-NH4
+ plants than in the control 

ones. This result supports the idea that H2O2 could act as a stress signal in the N-NH4
+-treated 

plants.  

Several studies have suggested that NH4
+ nutrition induces a stress response in several 

species (Lasa et al., 2001). Here, we confirmed that N-NH4
+ treatment enhance resistance to 

salt stress. Moreover, it also found that N-NH4
+ treatment induced a similar phenotypical 

response to the recently stress-induced morphogenetic response (SIMRs) (Potters et al., 2007, 

2009). We hypothesize that N-NH4
+ treatment triggers mild chronic stress in citrange Carrizo 

plants which may account for the SIMRs noted. SIMRs is part of a general acclimation 

strategy characterized by blockage of cell division in main meristematic tissues, inhibition of 

elongation, redirected outgrowth of lateral organs (Potters et al., 2009), increase in 
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antioxidants that prevent damage caused by ROS, and accumulation of foliar molecules which 

act as modulators of stress signals (Gould and Lister, 2006). This work demonstrates that the 

N-NH4
+-treated plants clearly provoke an increase in lateral organs by augmenting the weight 

and number of lateral roots. N-NH4
+ plants do not increase primary root length, however these 

plants showed an increase of modulators of stress signaling, such as H2O2, which could be 

intermediated between stress and the development of the SIMRs phenotype (Potters et al., 

2007). This observation suggests that NH4
+ treatment results in an enhanced resistance to 

salinity, possibly due to plants being previously exposed to mild stress which could be the 

prime citrange Carrizo defenses by stress imprinting, thus conferring plants resistance (Bruce 

et al., 2007).  

On the one hand, we also investigated the effect of NH4
+ nutrition on the expression of 

the RD22, PR5, and AOS marker genes involved in the stress response. We noted that N-NH4
+ 

treatment increase the accumulation of the three marker genes. These results may indicate that 

the N-NH4
+ plants have a more active defense pathway than the control plants. Moreover, salt 

treatment mainly increased PR5 accumulation in the control plants, but the expression of the 

other marker genes in the control and the N-NH4
+ plants was practically unaffected, which 

may be directly due to acclimated stage that NH4
+ nutrition confers to citrus plants.  

The analysis of hormones and metabolites in relation to plant responses to salinity reveal 

that ABA plays a role in the response against salt stress in the N-NH4
+ plants. In this work, we 

found that the N-NH4
+ plants have higher ABA levels than the control plants in the absence of 

salt. This fact is supported by the findings of Lopes and Araus (2008), who studied the gene 

expression profiles of barley seedlings fertilized with NH4
+, NH4

+ and NO3
-, or with NO3

- 

they observed that an epoxycarotenoid dioxygenase gene (involved to ABA synthesis) was 

upregulated in NH4
+, probably due to NH4

+ treatments which may invoke stress responses. 

Previous results have shown that stomatal closure occurs when barley plants are exposed to 
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NH4
+ for long periods. The fact that NH4

+ nutrition increases ABA accumulation in leaves 

may induce ABA-signaling. ABA signaling plays an important role in adaptation to abiotic 

stress and in the regulation of several genes, thought to be involved in dehydratation or salt 

tolerance as well as in stomatal closure (Zhu 2002). However, signaling in response to salinity 

seems to not depend solely on ABA. SA has long since been known to be a signal molecule in 

inducing defense mechanisms in plants (Shah 2003, Halim et al., 2007). Under our 

experimental conditions, the control plants exhibit SA accumulation at 14 d after salt stress; 

this accumulation correlates well with the SA-marker gene, PR5, since it was overexpressed 

in the control plants at the same time. On the other hand, several studies support that SA binds 

directly to the catalase enzymes inhibiting its activity in several plants species (Sanchez-Casas 

and Klessig, 1994; Horvath et al., 2002). This inhibition of catalase activity has been 

proposed to explain an increased H2O2 level upon SA accumulation (Chen et al., 1993), and 

H2O2 is responsible for ROS accumulation and induction of cell death (Overmyer et al., 

2003). This fact can explain our results since the control plants, with greater SA 

accumulation, were more affected by salinity. Jackab et al. (2005) observed that BABA-

induced salt stress tolerance mediated by ABA-dependent signaling in Arabidopsis and this 

response is independent of functional SA signaling. In this work, we also show antagonism 

between ABA and SA since the N-NH4
+ plants treated with NaCl showed a faster, stronger 

ABA accumulation which could inhibit SA accumulation. Hence, salinity resistance in the N-

NH4
+ plants might be mediated by ABA accumulation, which is a regulator of salt tolerance. 

N-NH4
+ treatment could increase ABA accumulation in leaves, thus conferring citrange 

Carrizo plants resistance to later salinity conditions.   

The analysis of PAs in our study has determined that N-NH4
+ treatment induces a faster, 

stronger Put accumulation at 2 h (data not shown) and at 14 d in the absence of salt. It is 

commonly accepted that some species develop toxic symptoms when NH4
+ nutrition is 
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applied (Gerendás et al., 1997; Lasa et al., 2001), while a negative effect on plant growth has 

been observed with this kind of nutrition (Claussen and Lenz, 1999; Walch-Liu et al., 2000). 

Ammonium nutrition decreases essential cations content (Britto and Kronzucker, 2002), 

probably due to competition with NH4
+ in the uptake process. Although the uptake of cations 

other than NH4
+ is sometimes reduced, NH4

+ uptake usually increases under NH4
+ nutrition. 

Finally, plants may have excessive total cation content in comparison with anion content 

(Clark 1982). Gerendás et al. (1997) suggest that plants could accumulate PAs to compensate 

for the lack of some cations other than NH4
+, hence they could contribute to cellular ionic 

balance maintenance. Furthermore PAs mainly Put, has an important role in abiotic stress 

since it reduces salt-induced oxidative damage by increasing the activities of antioxidant 

enzymes and by lowering lipid peroxidation (Tang and Newton, 2005). In this work, we also 

reveal that NH4
+ treatment leads to a greater induction of gene PHGPx. PHGPx is a unique 

intracellular antioxidant enzyme that directly reduces the phospholipid hydroperoxides 

produced in cell membranes, and has been considered the main line of enzymatic defense 

against oxidative biomembrane damage in mammalian cells (Chun-Juan et al., 2009). 

Furthermore, PHGPx gene expression levels have been recorded to increase in plant tissues in 

response to pathogen infections (Criqui et al., 1992), high salinity (Li et al., 2001), heavy 

metals (Li et al., 2001), and extreme temperatures (Chen et al., 2004), suggesting the 

important roles that play in the defense responses of plants to biotic and abiotic stresses. 

Transient expression of LePHGPx protects tobacco leaves from salt and heat stress, and 

suppresses the apoptotic pathway induced by Bax (Chen et al., 2004). Our results suggest that 

the resistance to salinity that we found in the N-NH4
+-treated plants could be mediated by a 

stronger accumulation of Put and the PHGPx transcript, which might induce resistance to the 

oxidative damage induced by salinity.  
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In conclusion, collectively these results indicate that NH4
+ treatment enhances citrange 

Carrizo defense against salinity stress. This suggests that NH4
+ treatment produces mild 

chronic stress and therefore induces the SIMRs in citrange Carrizo. Activation of the 

response related to SIMRs due to NH4
+ toxicity led to the “acclimation stage”, which leads to 

better adaptation to subsequent salt stress. This response initially brings about increased H2O2 

accumulation which could act as a modulator of stress signal. Besides this, NH4
+ treatment 

lowers Cl- accumulation in leaves reducing its toxic effect and produces a higher basal proline 

content which might confer initial protection against salt stress. Moreover, the N-NH4
+ treated 

plants have more active defense pathways than the control plants, and have activated ABA 

accumulation, which could prime ABA-signaling and PAs, mainly Put, which, in turn, could 

contribute to cellular ionic balance maintenance and reduce salt-induced oxidative damage. 

Furthermore, the N-NH4
+ citrus seedlings display enhanced antioxidant machine activity, thus 

increasing PHGPx transcription. Together, this observation suggests that NH4
+ treatments 

induce a mild stress condition that primes the citrange Carrizo defense response by stress 

imprinting and confers protection against a subsequent salt stress. The use of nutritional 

compounds like NH4
+ could be an interesting alternative to the use of chemical compounds to 

induce plant resistance. In addition, this fact may help to alleviate the toxicity caused by 

salinity, one of the major problems currently on citrus crop. 
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Table 1. Primers sequences 

Primer name Forward primer Reverse primer 

GAPDH 5′- ggaaggtcaagatcggaatcaa - 3′ 5′ cgtccctctgcaagatgactct -3′ 

AOS 5′- cgaatttcaatccccaagaa-3′ 5′- ttggtgggttgttcatcaga-3′ 

PHGPx 5′- catcacagtgtggcttgacc -3′ 5′- tgctggatttcagatgcttg -3′ 

PR5 5′- tgggggactactccaatgtc -3′ 5′- atcctcctggaaccctcaat-3′ 

RD22 5′- ttggaaaaggacttgcatcc-3′ 5′- atgccagcgtcttcacactc-3′ 

 

Table 2. Polyamine levels expressed in µg g-1 FW in control and N-NH4
+ plants upon salinity. 

Leaves were collected at 14 days after addition of NaCl (90 mM). Levels were determined in 

freeze-dried material by HPLC-MS. Data show the average of three independent experiments 

of a pool of 30 plants per experiment ± SE. Letters indicates statistically significant 

differences (p < 0.05). 

 Put Spd Spm 

Control 6.16  ± 1.9          a 29.51 ± 1.41    b/c 11.76 ± 2.57  a 

NH4
+ 146.98 ± 27.87    b 36.06 ± 1.93    c 19.83 ± 2.36   b 

Control + NaCl 3.04 ± 1.12       a 24.35 ± 2.99    a/b 12.89 ± 2.61   a 

NH4
+  + NaCl 160 ± 14.68      b 30.65 ± 3.43    b/c 18.77 ± 4.02   a 

 

 

FIGURE LEGENDS 

Fig. 1. Effect of NH4
+ nutrition on the growth of citrange Carrizo plants. (A) Biomass 

production, (B) root length, (C) root DW, lateral roots development expressed as: (D) number 



30	
  

	
  

of lateral roots/root DW and (E) number of lateral roots/root length. Data are from a 

representative experiment that was repeated three times with similar results. Values are the 

mean of 50 seedlings. Asterisk indicates statistically significant differences (p< 0.05). 

Fig. 2. Effect of NH4
+ treatment on the citrange Carrizo plants treated with NaCl (90 mM) for 

14 d. The result is expressed as % of damage at different levels: healthy leaves, chlorotic 

leaves (level 1), intermediate leaf necrosis (level 2) and burnt leaves (level 3). Data are from a 

representative experiment that was repeated three times with similar results. Values are the 

mean of 50 seedlings. 

Fig. 3. Effect of NH4
+ treatment on the Cl- and proline content in the citrange Carrizo plants 

treated with NaCl (90 mM) for 2 h and 14 d. (A) Cl- content expressed in mg Cl- g-1 DW and 

(B) Proline accumulation expressed in µmol proline g-1 FW. Data show the average of three 

independent experiments of a pool of 30 plants ± SE. Letters indicate statistically significant 

differences (p < 0.05). 

Fig. 4. H2O2 staining, estimated by using DAB staining in the leaves of the control and the N-

NH4
+ citrange Carrizo treated with NaCl (90 mM) for 2 h. (A) Quantitative H2O2 

measurement on the basis of brown pixels from digital photographs and (B) Brownish areas 

are indicative of H2O2 accumulation. Data are from a representative experiment that was 

repeated three times with similar results. Values are the mean of 10 seedlings. Letters 

indicates statistically significant differences (p < 0.05). 

Fig. 5. Hormone levels in the control and N-NH4
+ citrange Carrizo plants upon salinity. 

Leaves were collected at 14 d after addition of NaCl (90 mM). (A) ABA and (B) SA levels 

were determined in freeze-dried material by HPLC-MS. Data show the average of three 
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independent experiments of a pool of 30 plants per experiment ± SE. Asterisk indicates 

statistically significant differences (p < 0.05). 

Fig. 6. Effect of NH4
+ treatment on the gene expression in citrange Carrizo plants upon salt 

stress. Total RNA was isolated from leaves at 14 d after addition of NaCl (90 mM) converted 

into cDNA, and was subjected to a RT-qPCR analysis. The results were normalized to the 

GAPDH gene expression measured in the same samples. The relative level of (A) RD22, (B) 

PR5 and (C) AOS were analyzed in the control and the N-NH4
+ citrus plants. The data show 

the average of three independent experiments obtained with a pool of 10 plants per point ±SE. 

The experiment was repeated three times with similar results. 

Fig. 7. Effect of NH4
+ treatment on the PHGPx expression in the citrange Carrizo plants upon 

salt stress. Total RNA was isolated from leaves at 14 d after addition of NaCl (90 mM) 

converted into cDNA, and was subjected to a RT-qPCR analysis. The results were normalized 

to the GAPDH gene expression measured in the same samples. The data show the average of 

three independent experiments obtained with a pool of 10 plants per point ±SE. The 

experiment was repeated three times with similar results. 
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FIGURES 

 

Fig. 1. Effect of NH4
+ nutrition on the growth of citrange Carrizo plants. (A) Biomass 

production, (B) root length, (C) root DW, lateral roots development expressed as: (D) number 

of lateral roots/root DW and (E) number of lateral roots/root length. Data are from a 

representative experiment that was repeated three times with similar results. Values are the 

mean of 50 seedlings. Asterisk indicates statistically significant differences (p< 0.05). 
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Fig. 2. Effect of NH4
+ treatment on the citrange Carrizo plants treated with NaCl (90 mM) for 

14 d. The result is expressed as % of damage at different levels: healthy leaves, chlorotic 

leaves (level 1), intermediate leaf necrosis (level 2) and burnt leaves (level 3). Data are from a 

representative experiment that was repeated three times with similar results. Values are the 

mean of 50 seedlings. 
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Fig. 3. Effect of NH4
+ treatment on the Cl- and proline content in the citrange Carrizo plants 

treated with NaCl (90 mM) for 2 h and 14 d. (A) Cl- content expressed in mg Cl- g-1 DW and 

(B) Proline accumulation expressed in µmol proline g-1 FW. Data show the average of three 

independent experiments of a pool of 30 plants ± SE. Letters indicate statistically significant 

differences (p < 0.05). 
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Fig. 4. H2O2 staining, estimated by using DAB staining in the leaves of the control and the N-

NH4
+ citrange Carrizo treated with NaCl (90 mM) for 2 h. (A) Quantitative H2O2 

measurement on the basis of brown pixels from digital photographs and (B) Brownish areas 

are indicative of H2O2 accumulation. Data are from a representative experiment that was 

repeated three times with similar results. Values are the mean of 10 seedlings. Letters 

indicates statistically significant differences (p < 0.05). 
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Fig. 5. Hormone levels in the control and N-NH4
+ citrange Carrizo plants upon salinity. 

Leaves were collected at 14 d after addition of NaCl (90 mM). (A) ABA and (B) SA levels 

were determined in freeze-dried material by HPLC-MS. Data show the average of three 

independent experiments of a pool of 30 plants per experiment ± SE. Asterisk indicates  
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Fig. 6. Effect of NH4
+ treatment on the gene expression in citrange Carrizo plants upon salt 

stress. Total RNA was isolated from leaves at 14 d after addition of NaCl (90 mM) converted 

into cDNA, and was subjected to a RT-qPCR analysis. The results were normalized to the 

GAPDH gene expression measured in the same samples. The relative level of (A) RD22, (B) 

PR5 and (C) AOS were analyzed in the control and the N-NH4
+ citrus plants. The data show 
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the average of three independent experiments obtained with a pool of 10 plants per point ±SE. 

The experiment was repeated three times with similar results. 

 

Fig. 7. Effect of NH4
+ treatment on the PHGPx expression in the citrange Carrizo plants upon 

salt stress. Total RNA was isolated from leaves at 14 d after addition of NaCl (90 mM) 

converted into cDNA, and was subjected to a RT-qPCR analysis. The results were normalized 

to the GAPDH gene expression measured in the same samples. The data show the average of 

three independent experiments obtained with a pool of 10 plants per point ±SE. The 

experiment was repeated three times with similar results. 


