
Noname manuscript No.
(will be inserted by the editor)

Surrounding neighborhood-based SMOTE for learning
from imbalanced data sets

V. Garćıa · J. S. Sánchez · R. Mart́ın-Félez · R. A. Mollineda

the date of receipt and acceptance should be inserted later

Abstract Many traditional approaches to pattern clas-
sification assume that the problem classes share simi-
lar prior probabilities. However, in many real-life ap-

plications, this assumption is grossly violated. Often,
the ratios of prior probabilities between classes are ex-
tremely skewed. This situation is known as the class

imbalance problem. One of the strategies to tackle this
problem consists of balancing the classes by resampling
the original data set. The SMOTE algorithm is prob-

ably the most popular technique to increase the size
of the minority class by generating synthetic instances.
From the idea of the original SMOTE, we here pro-

pose the use of three approaches to surrounding neigh-
borhood with the aim of generating artificial minority
instances, but taking into account both the proximity
and the spatial distribution of the examples. Experi-

ments over a large collection of databases and using
three different classifiers demonstrate that the new sur-
rounding neighborhood-based SMOTE procedures sig-

nificantly outperform other existing over-sampling al-
gorithms.

Keywords Imbalance · Over-sampling · Surrounding
neighborhood · Nearest centroid neighborhood ·Gabriel
graph · Relative neighborhood graph · SMOTE

1 Introduction

Class imbalance constitutes a challenging problem that
has recently received much attention in a wide variety of

research fields such as Data Mining, Machine Learning

Institute of New Imaging Technologies, Department of Com-
puter Languages and Systems, Universitat Jaume I, Av. Vi-
cent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
E-mail: sanchez@uji.es (J. S. Sánchez)

and Pattern Recognition [16,31,43,47]. The class im-
balance problem occurs when one or several classes (the
majority classes) vastly outnumber the other classes

(the minority classes), which are usually the most im-
portant classes and often with the highest misclassifi-
cation costs. It has been observed that class imbalance

may affect the performance of most standard classifica-
tion systems, which assume a relatively well-balanced
class distribution and equal misclassification costs [28].

This issue results particularly relevant in a variety of
real-life applications, such as the diagnosis of infrequent
diseases [10,35], credit risk assessment [4,27], detection

of software defects [30], fraud detection in telecommuni-
cations [15,24], prediction of customer insolvency [11],
text categorization [9,44], and detection of oil spills in
radar images [32]. In two-class imbalanced problems,

the examples of the minority class are typically referred
to as positive, whereas the instances of the majority
class are referred to as negative.

The issue of class imbalance has been addressed by
numerous approaches at both data and algorithmic lev-

els [23]. The methods at the algorithmic level modify
the existing learning algorithms for biasing the discrim-
ination process towards the minority class [2,38,39],

whereas the data level solutions consist of artificially re-
sampling the original data set, either by over-sampling
the minority class [2,33,49] and/or under-sampling the

majority class [3,7,20,21], until the classes are approx-
imately equally represented.

In general, the resampling strategies have been the
most investigated because they are independent of the
underlying classifier and can be easily implemented for

any problem [18]. However, the methods at the data
level also present some drawbacks because they artifi-
cially alter the original class distribution. For example,

under-sampling may throw out potentially useful data,

2 V. Garćıa et al.

while over-sampling artificially increases the size of the

data set and consequently, it worsens the computational
burden of the learning algorithm. Despite conclusions
about what is the most suitable resampling strategy for

the class imbalance problem are divergent, several stud-
ies have reported that over-sampling usually performs
better than under-sampling [3,21,46].

The present paper concentrates on the over-sampling
strategy and more specifically, extends the well-known

SMOTE (Synthetic Minority Over-sampling TEchnique)
algorithm [7] by exploiting an alternative neighborhood
formulation, namely surrounding neighborhood [40]. A

key feature of this type of neighborhood is that the
neighbors of a sample are considered in terms of both
proximity and spatial distribution with respect to the

sample, showing some practical advantages over the
conventional neighborhood that is only based on the
minimum distance. The use of the surrounding neigh-

borhood to over-sample the minority class generates
new synthetic examples that will be homogeneously
distributed around the original positive instances, con-

tributing to spread the influence region of the minor-
ity class. The thorough experimental study carried out
proves the significant performance gains of our approach

when compared to other state-of-the-art algorithms.

The rest of this paper is organized as follows. Sec-

tion 2 reviews the SMOTE algorithm and some of its
most relevant extensions. In Section 3, the general con-
cept of surrounding neighborhood and two of its imple-

mentations are presented. The modification of SMOTE
based on the different surrounding neighborhood for-
mulations is introduced in Section 4. Section 5 describes

the experimental framework, including the data sets,
the over-sampling algorithms, the classifiers, the perfor-
mance evaluation metrics and the statistical tests used

in the present analysis. In Section 6, the experiments
are carried out and their results are discussed. Finally,
Section 7 remarks the main conclusions and outlines

possible directions for future research.

2 The SMOTE algorithm and some variants

The simplest strategy to expand the minority class is

random over-sampling (ROS), which corresponds to a
non-heuristic method that balances the class distribu-
tion through a random replication of positive exam-

ples [3,36]. Although effective, this method may in-
crease the likelihood of overfitting since it makes exact
copies of the minority class instances [7].

In order to avoid overfitting, Chawla et al. [7] pro-
posed the SMOTE algorithm to up-size the minority

class. Instead of merely replicating positive instances,

this method generates artificial examples of the minor-

ity class by interpolating existing instances that lie close
together. It first finds the k positive nearest neighbors
for each minority class example and then, the synthetic

examples are generated in the direction of some or all
of those nearest neighbors.

SMOTE allows the classifier to build larger decision
regions that contain nearby instances of the minority
class. Depending upon the amount of over-sampling re-

quired, a certain number of instances from the k near-
est neighbors are randomly chosen. In the experiments
reported in the original paper, k is set to five. The gen-

eration procedure for each minority class example can
be explained as follows: (i) take the difference between
the feature vector (instance) under consideration and

one of its k minority class nearest neighbors; (ii) multi-
ply this difference by a random number between 0 and
1; and (iii) add it to the feature vector that corresponds
to the new synthetic example of the minority class.

Although SMOTE has proved to be an effective tool
for handling the class imbalance problem, it may over-

generalize the minority class as it does not take care of
the distribution of majority class neighbors, especially
when the minority class is very sparse with respect to

the majority class. As a result, the generation of syn-
thetic examples may increase the overlapping between
classes [37]. From the original SMOTE algorithm, sev-

eral modifications have further been proposed in the
literature, most of them pursuing to determine the re-
gion in which the positive examples should be gener-

ated. Among them, one of the most widely-known gen-
eralizations corresponds to the Borderline SMOTE (B-
SMOTE) algorithm [20], which consists of using only

positive examples close to the decision boundary since
these are more likely to be misclassified.

The Safe-Level SMOTE (SL-SMOTE) algorithm [5]
calculates a “safe level” coefficient (sl) for each minority
class example, which is defined as the number of other

minority class instances among its k neighbors. If the
coefficient sl is equal or close to 0, such an example is
considered as noise; if sl is close to k, then this example

may be located in a safe region of the minority class.
The idea is to direct the generation of new synthetic
examples close to safe regions.

Finally, other less known extensions of SMOTE are
the FSMOTE algorithm proposed by Zhang et al. [50],

which utilizes fractal interpolation theory to generate
the synthetic positive examples, and the LLE-based
SMOTE [48] that implements the locally linear embed-

ding algorithm to map the high-dimensional data onto
a low-dimensional space where the synthetic instances
of the minority class are then generated and mapped

back to the original input space. On the other hand,

Surrounding neighborhood-based SMOTE for learning from imbalanced data sets 3

the MSMOTE algorithm [25] divides the instances of

the minority class into three groups: safe, border and
latent noise instances. When MSMOTE generates new
examples, the strategy to select the nearest neighbors

depends on the group to which the instance belongs.
For safe instances, the algorithm randomly selects a
data point from the k neighbors; for border instances,

it only selects the nearest neighbor; for latent noise in-
stances, it does nothing. Maciejewski and Stefanowski
introduced the LN-SMOTE [37], which exploits more

precisely information about the local neighborhood of
the considered examples. The SMOTEBoost [8] com-
bines SMOTE with the standard boosting procedure:

it utilizes SMOTE for improving the prediction of the
minority class and boosting for not affecting the accu-
racy over the entire data set.

3 Surrounding neighborhood

Intuitively, the concept of neighborhood should be such
that the neighbors are as close to an instance as possi-
ble but also, the neighbors should lie as homogeneously

around it as possible. The second condition is a conse-
quence of the first in the asymptotic case but in some
practical situations, the geometrical location may be-

come much more important than the actual distances
to appropriately characterize an instance by means of
its neighborhood [40]. As the traditional neighborhood

takes into account the first property only, the nearest
neighbors may not be placed symmetrically around the
instance if the neighborhood in the data set is not spa-

tially homogeneous. In fact, it has been shown that the
use of local distance measures can significantly improve
the classifier behavior in the finite sample size case [41].

Alternative neighborhood definitions have been pro-
posed as a way to overcome the problem just pointed

out. These consider both proximity and symmetry so
as to define the general concept of surrounding neigh-
borhood [40]: they try to search for neighbors of an in-

stance close enough (in the basic distance sense), but
also in terms of their spatial distribution with respect
to that instance. The nearest centroid neighborhood and
the graph neighborhood are two representative examples

of the surrounding neighborhood, which have demon-
strated to behave better than the conventional near-
est neighborhood for a number of pattern classification

problems [40,51].

3.1 Nearest centroid neighborhood

The first definition of surrounding neighborhood comes

from the nearest centroid neighborhood (NCN) con-

cept [6]. Let p be a sample whose k neighbors should be

found from a set of n points X = {x1, . . . , xn}. These
k neighbors are such that (a) they are as near p as
possible and, (b) their centroid is also as close to p as

possible. Both conditions can be satisfied through the
following iterative procedure:

Algorithm 1 Computation of NCN
Input:

X = {x1, . . . , xn} Input data set
k Number of neighbors to search
p Query point
Output:

Q = {q1, . . . , qk} Set of k nearest centroid neighbors

The first NCN of p is its nearest neighbor, say q1
for i = 2 to k do

The i’th neighbor qi is such that the centroid of this
and all previously selected neighbors, q1, . . . , qi−1 is the
closest to p

end for

This definition leads to a type of neighborhood in

which both closeness and spatial distribution of neigh-
bors are taken into account because of the centroid cri-
terion. Besides, the proximity of the nearest centroid

neighbors to the sample is guaranteed because of the
incremental nature of the way in which those are ob-
tained from the first nearest neighbor. However, note

that the iterative procedure outlined in Algorithm 1
clearly does not minimize the distance to the centroid
because it gives precedence to the individual distances

instead. On the other hand, the region of influence of
the NCN results bigger than that of the traditional
nearest neighborhood (NN); as can be seen in Fig. 1,

the 4-NCN (a, b, c, d) of a given point p enclose a region
quite bigger than the region determined by the 4-NN
(a, e, f, g).

a
e

f
g

b

c

d

p

4-NCN

4-NN

Fig. 1 An example of NCN compared to the traditional NN

4 V. Garćıa et al.

3.2 Graph neighborhood

A proximity graph defined on a set X = {x1, . . . , xn}
is an undirected graph G = (V,E), which comprises a

set of nodes V = X and a set of edges E : V × V ,
such that (xi, xj) ∈ E if and only if the points xi and
xj fulfill some mutual neighborhood criterion; then xi

is said to be neighbor of xj and vice versa. The set of
graph neighbors of a given point constitutes its graph
neighborhood [40]. The graph neighborhood of a subset

S ⊆ V consists of the union of all the graph neighbors
of every node in S.

Two well-known examples of proximity graphs are

the Gabriel graph (GG) and the relative neighborhood
graph (RNG) [29], which are subgraphs of the Delaunay
triangulation (DT): RNG ⊆ GG ⊆ DT. As definitions
for and properties of the GG and RNG are widely avail-

able in the literature, only essential concepts needed in
this paper are reproduced here.

3.2.1 Gabriel graph

Let d(·, ·) be the Euclidean distance between two points
in Rd. The set of edges in a GG consists of the pairs of
points that satisfy the following relation:

(xi, xj) ∈ E ⇐⇒ d2(xi, xj) ≤ d2(xi, xk) + d2(xj , xk)

∀xk ∈ X, k ̸= i, j

Geometrically, two points xi and xj are said to be
Gabriel neighbors if and only if there is no other point
of X lying in the hypersphere of influence Γ (xi, xj) cen-

tered at their middle point and whose diameter is the
distance between xi and xj . In Fig. 2, for example, both
p and q are Gabriel neighbors of the point a, but r is not

because q lies inside the sphere of influence determined
by the points a and r.

Fig. 2 An example of Gabriel neighborhood

3.2.2 Relative neighborhood graph

In a similar fashion, the set of edges that belong to
an RNG comprises the pairs of points that fulfill the
following neighborhood property:

(xi, xj) ∈ E ⇐⇒ d(xi, xj) ≤ max[d(xi, xk), d(xj , xk)]

∀xk ∈ X, k ̸= i, j

In this case, its corresponding geometric interpre-

tation is based on the concept of lune Λxi,xj , which is
defined as the disjoint intersection between two hyper-
spheres centered at xi and xj and whose radii are equal

to the distance between them. Two points xi and xj

are said to be relative neighbors if and only if their lune
does not contain other points of the set X. In Fig. 3,
the points q and a are not relative neighbors because

p lies inside their lune; conversely, p and a are relative
neighbors because their lune is empty.

Fig. 3 An example of relative neighborhood

4 Surrounding SMOTE

As already mentioned, the surrounding neighborhood
methods have successfully been applied to a number of

pattern classification and data mining problems. These
approaches can effectively help in several situations (fi-
nite sample size case), in which training instances do

not fully represent the underlying statistics and/or the
distance used (irrelevant in the asymptotic case) ex-
hibits some undesirable properties. In fact, the ultimate

goal of the surrounding neighborhood is to overcome
some shortcomings of the conventional NN-based tech-
niques.

Hence, based upon the analysis just stated, we here

propose to employ the three surrounding neighborhood
realizations (NCN, GG, and RNG) for over-sampling
the minority class by means of a modification of the

standard SMOTE algorithm.

Surrounding neighborhood-based SMOTE for learning from imbalanced data sets 5

SMOTE finds the k positive nearest neighbors for

each minority class example in the training set and
then, it generates artificial samples in the direction of
some (or all) of those nearest neighbors. Instead of

nearest neighbors, now we propose to select surround-
ing positive neighbors for each instance of the minority
class. The rationale behind this modification of the orig-

inal SMOTE algorithm is that these surrounding neigh-
bors will extend the region of new synthetic samples and
therefore, it seems that the resulting over-sampled set

can describe better the decision boundaries.
The Surrounding SMOTE algorithm (using the NCN

concept) can be written as follows:

Algorithm 2 Surrounding SMOTE
Input:

P = {p1, . . . , pmin} Training positive examples
min Number of minority examples
N Number of synthetic instances to generate for each
positive example
k Number of neighbors
Output:
Synthetic Set of artificial instances

for i = 1 to min do
Find k nearest centroid neighbors of pi
for j = N to 1 do

Choose randomly one of the k nearest centroid neigh-
bors of pi, say q(pi)
diff = pi − q(pi)
gap = random number between 0 and 1
newSample = pi + gap ∗ diff
Synthetic←− newSample

end for
end for

The size of the set of synthetic instances will be

N × min. Note that in the case of GG and RNG, we
do not have to provide the number of neighbors (k),
since each training positive instance may have a differ-

ent number of graph neighbors. Apart from this differ-
ence, the rest of the procedure for Surrounding SMOTE
using proximity graphs will be exactly the same as the

one reported in Algorithm 2.
From a practical point of view, one disadvantage

of the graph neighborhood compared to the nearest

centroid neighborhood is its higher computational cost.
The graph neighbors of a set of points can be computed
exhaustively by using the brute-force method (i.e. by

testing all pairs of samples in the set X), with a com-
plexity of O(n3). Nevertheless, in the case of the GG
and RNG, there exist heuristic methods that allow to

considerably reduce the number of pairs to be tested for
graph neighbors and whose computational cost is close
to O(n2) [29]. In addition, it is worth noting that the

Surrounding SMOTE only computes the graph neigh-

bors that belong to the minority class (usually consist-

ing of a very small number of instances), what results
in a low complexity algorithm.

5 Experimental set-up

An empirical comparison between the three Surround-

ing SMOTE methods here proposed and other over-
sampling algorithms has been performed over a total
of 39 data sets taken from the KEEL Data Set Repos-

itory (http://www.keel.es/dataset.php). Note that
all the original multi-class databases have firstly been
transformed into two-class problems. Table 1 summa-

rizes the main characteristics of the data sets, including
the imbalance ratio (IR), that is, the number of nega-
tive examples divided by the number of positive exam-

ples. The fifth and sixth columns in Table 1 indicate the
original classes that have been employed to shape the
positive and negative classes, respectively. For example,

in Glass567 database the classes 5, 6 and 7 have been
combined to form a unique minority class, whereas the
original classes 1, 2 and 3 have been joined to represent

the majority class.
All the experiments have been carried out using the

Weka learning environment [19] with the 1-NN decision

rule, the C4.5 decision tree and the multi-layer percep-
tron (MLP) neural network, whose parameter values
used in the experiments are given in Table 2. We have

adopted a 5-fold cross-validation method to estimate
the AUC measure: each data set has been divided into
five stratified blocks of size n/5 (where n denotes the

total number of examples in the data set), using four
folds for training the classifiers and the remaining block
as an independent test set. Therefore, the results cor-

respond to the average over the five runs.
Each classifier has been applied to the original (im-

balanced) training sets and also to sets that have been

preprocessed by the three implementations of the Sur-
rounding SMOTE (NCN-SMOTE, GG-SMOTE, RNG-
SMOTE) and seven state-of-the-art over-sampling ap-

proaches taken from the KEEL data mining software
tool [1]. Apart from the original SMOTE and two of its
variants (B-SMOTE and SL-SMOTE), other four over-

sampling algorithms have been included in this study:
ROS, agglomerative hierarchical clustering (AHC), ad-
justing the direction of the synthetic minority class ex-

amples (ADOMS), and adaptive synthetic (ADASYN).
The Euclidean distance has been used with all the algo-
rithms tested. The number of neighbors has been set to

5 for NCN-SMOTE, SMOTE, B-SMOTE, SL-SMOTE,
ADOMS and ADASYN, and these neighbors have been
searched among the minority class instances. The data

sets have been balanced to the 50% distribution.

http://www.keel.es/dataset.php

6 V. Garćıa et al.

Table 1 Data sets used in the experimental analysis. The table is arranged in ascending order of the imbalance ratio

Data Set #Examples #Attributes IR Positive Class Negative Class

Glass2 214 9 1.82 2 1,3,5,6,7
Wisconsin2 683 9 1.86 2 1
Pima2 768 8 1.87 2 1
Iris1 150 4 2.00 1 2,3
Glass1 214 9 2.06 1 2,3,5,6,7
Yeast2 1484 8 2.46 2 1,3,4,5,6,7,8,9,10
Haberman2 306 3 2.78 2 1
Vehicle3 846 18 2.88 3 1,2,4
Vehicle2 846 18 2.90 2 1,3,4
Vehicle4 846 18 2.99 4 1,2,3
Glass567 214 9 3.20 5,6,7 1,2,3
Vehicle1 846 18 3.25 1 2,3,4
Ecoli2 336 7 3.36 2 1,3,4,5,6,7,8
NewThyroid2 215 5 5.14 2 1,3
Ecoli3 336 7 5.46 3 1,2,4,5,6,7,8
Segment1 2308 19 6.02 1 2,3,4,5,6,7
NewThyroid3 215 5 6.17 3 1,2
Glass7 214 9 6.38 7 1,2,3,5,6
Yeast4 1484 8 8.10 4 1,2,3,5,6,7,8,9,10
Ecoli4 336 7 8.60 4 1,2,3,5,6,7,8
PageBlocks2345 5472 10 8.79 2,3,4,5 1
Yeast5vs1 514 8 9.08 5 1
Yeast5vs347810 528 8 9.35 5 3,4,7,8,10
Vowel1 988 13 9.98 1 2,3,4,5,6,7,8,9,10,11
Glass3 192 9 10.29 3 1,2,7
Glass3vs12567 214 9 11.59 3 1,2,5,6,7
Shuttle1 1829 9 13.87 1 5
Yeast8vs2 459 7 14.30 8 2
Glass5 214 9 15.46 5 1,2,3,6,7
Ecoli5 336 7 15.80 5 1,2,3,4,6,7,8
PageBlocks3 472 10 15.86 3 2,5
Glass6 184 9 19.44 6 1,2,7
Yeast8vs2459 693 8 22.10 8 2,4,5,9
Glass6vs12357 214 9 22.78 6 1,2,3,5,7
Yeast9 482 8 23.10 9 1
Yeast5 1484 8 28.10 5 1,2,3,4,6,7,8,9,10
Yeast8vs12910 947 8 30.57 8 1,2,9,10
Yeast6 1484 8 32.73 6 1,2,3,4,5,7,8,9,10
Yeast7 1484 8 39.11 7 1,2,3,4,5,6,8,9,10

Table 2 Parameters used in the classifiers

Parameters

1-NN Euclidean distance; Attribute values normalized
C4.5 Pruned tree; Confidence factor = 0.25; Minimum

number of instances per leaf = 2
MLP Learning rate = 0.3; Momentum = 0.2; Train-

ing time = 500; Hidden layers = (attributes +
classes)/2; Attribute values normalized

The AHC over-sampling method [10] involves three
major steps: (1) using single- and complete-linkage to

form a dendogram, (2) gathering clusters from all lev-
els of the dendogram and computing the cluster cen-
troids as synthetic examples, and (3) concatenating cen-

troids with the original minority class instances. The

ADOMS algorithm [45] generates synthetic positive ex-
amples along the first principal component axis of local

data distribution (made up of the positive instance be-
ing analyzed and its k neighbors). Finally, the ADASYN
approach [22] is based on the idea of using a density

distribution as a criterion to adaptively determine the
number of synthetic examples to be generated for each
minority class instance according to its level of difficulty

in learning; in practice, the algorithm results in a bal-
anced data set more focused on those positive instances
that are harder to learn.

5.1 Performance evaluation metrics

Many measures have been developed for performance

evaluation on imbalanced classification problems. Most

Surrounding neighborhood-based SMOTE for learning from imbalanced data sets 7

of them are based on the 2 × 2 confusion matrix as

illustrated in Table 3.

Table 3 Confusion matrix for a two-class problem

Predicted positive Predicted negative

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

The most commonly used metric for measuring the

performance of learning systems is the overall accuracy
(and its counterpart, the error rate), which can be easily
computed as follows:

Acc =
TP + TN

TP + FN + TN + FP
(1)

Nevertheless, researchers have demonstrated that,
when the prior class probabilities are very different, the

overall accuracy is not appropriate because it does not
consider misclassification costs, is strongly biased to fa-
vor the majority class, and is very sensitive to class

skews [11,14,26]. Thus, in domains with imbalanced
data, alternative metrics that measure the classification
performance on positive and negative classes indepen-

dently are required.
Two straightforward metrics that evaluate the clas-

sification performance on the majority and minority

classes independently are the true positive rate (or sen-
sitivity or recall) and the true negative rate (or speci-
ficity), that is, the percentage of instances (positive and

negative, respectively) correctly classified. In general, in
imbalanced problems more attention should be given to
sensitivity than to specificity [34]:

sensitivity =
TP

TP + FN
(2)

specificity =
TN

TN + FP
(3)

Alternative performance evaluation criteria include

the area under the ROC curve (AUC), the geometric
mean of accuracies, the precision, the F -measure and
the area under the precision-recall curve, among oth-

ers. In general, these are good indicators of classifica-
tion performance on imbalanced data because they are
independent of the distribution of examples between

classes.
The AUC, which constitutes one of the most com-

monly used metrics in the context of skewed class dis-

tributions, will be the method employed in the present

paper to evaluate the performance of a variety of over-

sampling techniques. For a binary problem, the AUC
measure defined by a single point on the ROC curve is
also referred to as balanced accuracy or macro-average,

which can be computed as follows [42]:

AUC =
sensitivity + specificity

2
(4)

5.2 Statistical tests

The AUC results have further been tested for statisti-
cally significant differences by means of non-parametric

tests, which are generally preferred over the paramet-
ric methods because the usual assumptions of indepen-
dence, normality and homogeneity of variance are often

violated due to the non-parametric nature of the prob-
lems [12,17].

Both pairwise and multiple comparisons have been

used in this paper. First, the Iman-Davenport’s statistic
has been applied to determine whether there exist sig-
nificant differences among the over-sampling strategies.

The process starts by computing the Friedman’s rank-
ing of the algorithms for each data set independently
according to the AUC results: as there are eleven com-

peting strategies, the ranks for each data set go from 1
(best) to 11 (worst); in case of ties, average ranks are as-
signed. Then the average rank of each algorithm across

all data sets is computed. Under the null-hypothesis,
which states that all the algorithms are equivalent, the
Friedman’s statistic can be computed as follows:

χ2
F =

12N

K(K + 1)

∑
j

R2
j −

K(K + 1)2

4

 (5)

where N denotes the number of data sets,K is the total

number of algorithms, and Rj is the average rank of the
algorithm j.

The χ2
F is distributed according to the Chi-square

distribution with K − 1 degrees of freedom, when N
andK are big enough. However, as the Friedman statis-
tic produces an undesirably conservative effect [13], the

Iman-Davenport’s statistic constitutes a better alterna-
tive. This is distributed according to the F -distribution
with K − 1 and (K − 1)(N − 1) degrees of freedom:

FF =
(N − 1)χ2

F

N(K − 1)− χ2
F

(6)

If the null-hypothesis of equivalence is rejected, we
can then proceed with a post hoc test. In this work, the

Holm’s post hoc test has been employed to ascertain

8 V. Garćıa et al.

whether the best (control) algorithm performs signifi-

cantly better than the remaining techniques [17].

Afterwards, the Wilcoxon’s paired signed-rank test
has been used to find out statistically significant differ-
ences between each pair of over-sampling algorithms.

This statistic ranks the differences in performances of
two algorithms for each data set, ignoring the signs,
and compares the ranks for the positive and the neg-

ative differences. Let di be the difference between the
performance scores of the two algorithms on i-th out
of N data sets. The differences are ranked according to

their absolute values. Let R+ be the sum of ranks for
the data sets on which the first algorithm outperforms
the second, and R− the sum of ranks for the opposite.

Ranks of di = 0 are split evenly among the sums; if
there is an odd number of them, one is ignored:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (7)

Let Z be the smaller of the sums, Z = min(R+, R−).

If Z is less than or equal to the value of the distribu-
tion of Wilcoxon for N degrees of freedom, the null-
hypothesis that both algorithms perform equally well

can be rejected.

6 Experimental results and discussion

The aim of the present study is three-fold. First, we
want to establish whether the surrounding neighbor-

hood is able to properly handle the class imbalance
problem and to what extent its application can be ro-
bust across different classifiers. Second, we are also in-

terested in investigating whether or not the surround-
ing versions of SMOTE outperform other classical over-
sampling algorithms. Finally, we try to find out which of

the three surrounding implementations yields the best
performance in terms of the AUC metric.

In order to make more comprehensible the experi-
mental results, Table 4 shows the average AUC values

across all databases obtained with the 1-NN, C4.5 and
MLP classifiers using the different over-sampling meth-
ods. The detailed results over each problem are given in

the Appendix. As expected, classification with the im-
balanced data sets produces the poorest performance,
irrespective of the classifier used. However, the most

important observation is that the results of the Sur-
rounding SMOTE algorithms are among those of the
best performing methods, especially in the case of NCN-

SMOTE and GG-SMOTE realizations. Therefore, it

Table 4 Average AUC values

1-NN C4.5 MLP

Imbalanced 0.804 0.798 0.809
SMOTE 0.830 0.829 0.845
B-SMOTE 0.821 0.816 0.839
SL-SMOTE 0.804 0.820 0.847
ROS 0.804 0.820 0.842
AHC 0.823 0.826 0.845
ADOMS 0.826 0.822 0.853
ADASYN 0.828 0.834 0.844
NCN-SMOTE 0.847 0.835 0.851
GG-SMOTE 0.846 0.835 0.855
RNG-SMOTE 0.839 0.833 0.846

appears that the use of the surrounding neighborhood
to over-sample the minority class leads to balanced data
sets with a better representation of the underlying class

distribution, which contributes to better classification
results according to the AUC metric.

The Friedman’s average ranks for the three classi-

fication models have been plotted in Fig. 4, which can
be taken as a further confirmation of the findings with
the AUC values. For the 1-NN classifier, GG-SMOTE

and NCN-SMOTE clearly arise as the over-sampling al-
gorithms with the lowest rankings, that is, the highest
performance in average; when using the C4.5 decision

tree, GG-SMOTE and ADASYN are the techniques
with the best rankings, followed by NCN-SMOTE and
RNG-SMOTE; for the MLP neural network, the NCN-

SMOTE, ADOMS and GG-SMOTE methods yield the
lowest rankings. Despite the use of imbalanced data
sets produces the highest (worst) average ranks with

all classifiers, it is worth noting that the rankings of
SL-SMOTE and ROS are not too far in the case of the
1-NN rule.

With the aim of checking whether our first con-
clusions can be supported by non-parametric statisti-

cal tests, the Iman-Davenport’s statistic has been com-

 3

 4

 5

 6

 7

 8

 9

 10

Im
balanced

SM
OTE

B-SM
OTE

SL-SM
OTE

ROS
AHC

ADOM
S

ADASYN

NCN-SM
OTE

GG-SM
OTE

RNG-SM
OTE

A
ve

ra
ge

 R
an

k

1-NN C4.5 MLP

Fig. 4 Friedman’s average ranks

Surrounding neighborhood-based SMOTE for learning from imbalanced data sets 9

puted using Equation 6 to discover whether or not the

AUC results are significantly different. This computa-
tion yielded FF = 17.41 for 1-NN, FF = 6.15 for C4.5,
and FF = 5.54 for MLP. As the critical values for

the F -distribution with K − 1 = 11 − 1 = 10 and
(K − 1)(N − 1) = (11 − 1)(39 − 1) = 380 degrees
of freedom at confidence levels of 90% and 95% are

F (10, 380)0.90 = 1.62 and F (10, 380)0.95 = 1.86, the
null-hypothesis that all strategies here explored per-
form equally well can be rejected. Consequently, we

can now carry on with a Holm’s post hoc test, using
the best over-sampling method for each classifier as the
respective control algorithm.

Table 5 reports the z values, the p-values and the ad-
justed α’s calculated using the Holm’s procedure, where

the symbol “**” indicates that the null-hypothesis of
equivalence with the control algorithm is rejected at a
significance level of α = 0.05. For each classifier, the al-

gorithms have been ordered from the smallest to largest
p-values.

Table 5 Results obtained with the Holm’s test for α = 0.05

i Algorithm z p-value α/i

1-NN (GG-SMOTE is the control method)

10 Imbalanced** 6.827887 0 0.005000
9 ROS** 6.691330 0 0.005556
8 SL-SMOTE** 6.605981 0 0.006250
7 AHC** 3.772408 0.000162 0.007143
6 B-SMOTE** 3.089619 0.002004 0.008333
5 ADASYN** 2.628737 0.008570 0.010000
4 ADOMS** 2.543388 0.010978 0.012500
3 SMOTE 1.877669 0.060426 0.016667
2 RNG-SMOTE 1.553344 0.120341 0.025000
1 NCN-SMOTE 0.273115 0.784764 0.050000

C4.5 (GG-SMOTE is the control method)

10 Imbalanced** 5.684216 0 0.005000
9 ROS** 3.755338 0.000173 0.005556
8 SL-SMOTE** 3.004270 0.002662 0.006250
7 B-SMOTE** 2.850643 0.004363 0.007143
6 AHC 2.543388 0.010978 0.008333
5 ADOMS 2.167854 0.030170 0.010000
4 SMOTE 1.809390 0.070390 0.012500
3 RNG-SMOTE 1.263159 0.206532 0.016667
2 NCN-SMOTE 0.921765 0.356651 0.025000
1 ADASYN 0.221906 0.824387 0.050000

MLP (NCN-SMOTE is the control method)

10 Imbalanced** 5.650077 0 0.005000
9 B-SMOTE 2.355621 0.018492 0.005556
8 SMOTE 2.116645 0.034290 0.006250
7 ROS 1.689902 0.091047 0.007143
6 SL-SMOTE 1.638693 0.101277 0.008333
5 AHC 1.433856 0.151613 0.010000
4 RNG-SMOTE 1.126601 0.259911 0.012500
3 ADASYN 1.041253 0.297758 0.016667
2 GG-SMOTE 0.136558 0.891380 0.025000
1 ADOMS 0.085349 0.931984 0.050000

The results of the Holm’s test given in Table 5 re-
veal the superiority of the surrounding strategies with
the 1-NN classifier: the GG-SMOTE approach performs

significantly better than all the other algorithms, ex-

cept SMOTE, NCN-SMOTE and RNG-SMOTE. Fo-

cusing on the results of the C4.5 decision tree, one can
observe that GG-SMOTE appears significantly better
than ROS, SL-SMOTE and B-SMOTE, but it is sta-

tistically equivalent to AHC, ADOMS, SMOTE, RNG-
SMOTE, NCN-SMOTE and ADASYN. With the MLP
neural network, the control algorithm NCN-SMOTE

significantly outperforms the non-preprocessed imbal-
anced data set, but behaves equally well as all the other
over-sampling techniques.

As several algorithms exhibit similar behaviors, es-

pecially with the C4.5 and MLP classifiers, we have run
a Wilcoxon’s test between each pair of techniques for
each classification model. The upper diagonal half of

Tables 6–8 summarizes this statistic for a significance
level of α = 0.10 (10% or less chance), whereas the
lower diagonal half corresponds to a significance level

of α = 0.05. The symbol “•” indicates that the method
in the row significantly outperforms the method in the
column, and the symbol “◦” means that the method
in the column performs significantly better than the

method in the row.

Table 6 Summary of the Wilcoxon’s statistic for the over-
sampling methods with the 1-NN classifier. Upper and lower
diagonal halves are for α = 0.10 and α = 0.05, respectively

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1) Imbalanced – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
(2) SMOTE • – • • • • ◦ ◦ ◦
(3) B-SMOTE • – • • ◦ ◦ ◦
(4) SL-SMOTE ◦ ◦ – ◦ ◦ ◦ ◦ ◦ ◦
(5) ROS ◦ ◦ – ◦ ◦ ◦ ◦ ◦ ◦
(6) AHC • ◦ • • – ◦ ◦ ◦ ◦
(7) ADOMS • • • – ◦ ◦ ◦
(8) ADASYN • • • – ◦ ◦ ◦
(9) NCN-SMOTE • • • • • • • • – •
(10) GG-SMOTE • • • • • • • • – •
(11) RNG-SMOTE • • • • • • ◦ ◦ –

With the 1-NN classifier, the original SMOTE al-
gorithm performs significantly better than SL-SMOTE,

ROS and AHC at both significance levels, whereas there
are not significant differences between SMOTE and B-
SMOTE at a significance level of α = 0.05. The most re-

markable observation from Table 6 is that NCN-SMOTE
and GG-SMOTE are significantly better than the re-
maining methods at both significance levels, what demon-

strates the suitability of these over-sampling algorithms
to consistently produce well-balanced training sets for
further classification with the 1-NN model.

When using the C4.5 decision tree, Table 7 shows

that there are less statistically significant differences
than in the previous case of the 1-NN rule. Nonethe-
less, the GG-SMOTE algorithm performs significantly

better than B-SMOTE, SL-SMOTE, ROS, AHC and

10 V. Garćıa et al.

Table 7 Summary of the Wilcoxon’s statistic for the over-
sampling methods with the C4.5 classifier. Upper and lower
diagonal halves are for α = 0.10 and α = 0.05, respectively

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1) Imbalanced – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
(2) SMOTE • – • •
(3) B-SMOTE • ◦ – ◦ ◦ ◦ ◦
(4) SL-SMOTE • – ◦ ◦ ◦ ◦
(5) ROS • ◦ – ◦ ◦ ◦ ◦
(6) AHC • – ◦ ◦ ◦
(7) ADOMS • – ◦ ◦
(8) ADASYN • • • • • • –
(9) NCN-SMOTE • • • • • –
(10) GG-SMOTE • • • • • • –
(11) RNG-SMOTE • • –

ADOMS at both significance levels. On the other hand,
NCN-SMOTE is also significantly better than those

methods (except to ADOMS) at both significance lev-
els. The original SMOTE algorithm and the ADASYN
technique perform equally well as the methods based

on the surrounding neighborhood here introduced.

In the case of the MLP neural network, ADOMS and

NCN-SMOTE appear to be the algorithms with most
differences, being significantly better than SMOTE, B-
SMOTE, ROS and AHC for α = 0.05; besides, at a

significance level of α = 0.10, ADOMS also performs
significantly better than SL-SMOTE and ADASYN,
whereas NCN-SMOTE is also significantly better than

the RNG-SMOTE approach. Finally, for α = 0.10, the
GG-SMOTEmethod is significantly superior to SMOTE,
B-SMOTE, SL-SMOTE, RNG-SMOTE, ROS, AHC and

ADASYN.

Table 8 Summary of the Wilcoxon’s statistic for the over-
sampling methods with the MLP classifier. Upper and lower
diagonal halves are for α = 0.10 and α = 0.05, respectively

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1) Imbalanced – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
(2) SMOTE • – ◦ ◦ ◦
(3) B-SMOTE • – ◦ ◦ ◦ ◦
(4) SL-SMOTE • – ◦ ◦
(5) ROS • – ◦ ◦ ◦
(6) AHC • – ◦ ◦ ◦
(7) ADOMS • • • • • – •
(8) ADASYN • – ◦
(9) NCN-SMOTE • • • • • – •
(10) GG-SMOTE • • • • – •
(11) RNG-SMOTE • ◦ –

As a summary of the Wilcoxon’s tests for an easier

analysis, the three values in the cells of Table 9 show
how many times each method has been significantly-
better/same/significantly-worse than the rest of over-

sampling strategies at significance levels of α = 0.10
and α = 0.05 for each classifier. The results here re-
ported corroborate the discussion of previous tables,

proving the practical relevance of over-sampling the mi-

nority class irrespective of the classification model (us-

ing the imbalanced set is significantly worse than em-
ploying a training set that has been preprocessed by
some over-sampling algorithm). This summary also al-

lows to clearly state the superiority of the NCN-SMOTE
and GG-SMOTE algorithms over the remaining meth-
ods, especially with the 1-NN classifier.

Table 9 Summary of how many times the over-sampling
techniques have been significantly-better/same/significantly-
worse

1-NN C4.5 MLP

α0.10 α0.05 α0.10 α0.05 α0.10 α0.05

Imbalanced 0/2/8 0/2/8 0/0/10 0/0/10 0/0/10 0/0/10
SMOTE 5/2/3 4/4/2 3/7/0 3/7/0 1/6/3 1/6/3
B-SMOTE 3/3/4 3/4/3 1/4/5 1/5/4 1/5/4 1/6/3
SL-SMOTE 0/2/8 0/2/8 1/5/4 1/6/3 1/7/2 1/9/0
ROS 0/2/8 0/2/8 1/4/5 1/4/5 1/6/3 1/6/3
AHC 3/2/5 3/3/4 1/6/3 1/6/3 1/6/3 1/7/2
ADOMS 3/4/3 3/5/2 1/7/2 1/7/2 7/3/0 5/5/0
ADASYN 4/3/3 3/4/3 6/4/0 6/4/0 2/6/2 1/9/0
NCN-SMOTE 9/1/0 9/1/0 5/5/0 5/5/0 6/4/0 5/4/1
GG-SMOTE 9/1/0 9/1/0 6/4/0 6/4/0 8/2/0 4/6/0
RNG-SMOTE 8/2/0 6/2/2 4/6/0 2/8/0 1/7/2 1/8/1

7 Final conclusions and future work

This paper has focused on the problem of expanding
the minority class so as to balance the class distribution

of the training set. Three modifications of the original
SMOTE algorithm have been proposed, all them based
upon the concept of surrounding neighborhood. In par-

ticular, we have used the NCN, the GG and the RNG
in the step of selecting neighbors for further generation
of artificial positive examples. The aim of these alterna-

tives is to take both proximity and spatial distribution
of neighbors into account in order for extending the re-
gions of the minority class.

Experimental results over 39 databases using three
different classifiers (1-NN, C4.5 and MLP) have demon-
strated that the Surrounding SMOTE methods achieve

significant improvements in terms of the AUC mea-
sure with respect to the original SMOTE algorithm
and other existing over-sampling procedures. From the

three surrounding alternatives, the NCN-SMOTE and
GG-SMOTE appear to be the strategies with the high-
est performance according to the average AUC value

and the average Friedman’s rank. A further analysis
with the Wilcoxon’s statistic has allowed to observe
that both NCN-SMOTE and GG-SMOTE have per-

formed significantly better than most of the remaining
methods, especially when using the 1-NN classification
rule. Despite differences are less significant in the case

of the C4.5 decision tree and the MLP neural network,

Surrounding neighborhood-based SMOTE for learning from imbalanced data sets 11

these two surrounding approaches to SMOTE are still

the best over-sampling algorithms.

Finally, future research will be mainly addressed
to incorporate a filtering phase into the general struc-

ture of the Surrounding SMOTE algorithms in order
to remove any example (either positive or negative)
that could be considered noisy or atypical. Another av-

enue for further investigation concentrates on the study
of alternative methods to be exploited in the phase
of generation of synthetic positive examples. Also, we

are interested in analyzing the behavior of both the
surrounding-based approaches and other SMOTE-like
algorithms as a function of the imbalance ratio of the

data sets.

Acknowledgements This work has partially been supported
by Spanish Ministry of Education and Science (CSD2007–
00018 and TIN2009–14205), Fundació Bancaixa (P1–1B2009–
04), Generalitat Valenciana (PROMETEO/2010/028), and
Universitat Jaume I (PREDOC/2008/04).

Appendix

This appendix provides three tables with the detailed

results for the experimental analysis carried out in the
present work. Table 10 contains the AUC values for
all the databases and algorithms achieved when using

the 1-NN classification rule, Table 11 shows the results
with the C4.5 decision tree, and Table 12 is for the MLP
neural network. The best results are highlighted in bold

face.

References

1. J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac,
S. Garćıa, L. Sánchez, and F. Herrera. Software tool:
Data set repository, integration of algorithms and exper-
imental analysis framework. Journal of Multiple-Valued
Logic and Soft Computing, 17(2–3):255–287, 2011.

2. R. Barandela, J. S. Sánchez, V. Garćıa, and E. Rangel.
Strategies for learning in class imbalance problems. Pat-
tern Recognition, 36(3):849–851, 2003.

3. G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard.
A study of the behavior of several methods for balancing
machine learning training data. SIGKDD Explorations

Newsletter, 6(1):20–29, 2004.
4. I. Brown and C. Mues. An experimental comparison

of classification algorithms for imbalanced credit scoring
data sets. Expert Systems with Applications, 39(3):3446–
3453, 2012.

5. C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursin-
sap. Safe-Level-SMOTE: Safe-Level-Synthetic Minority
Over-Sampling TEchnique for handling the class imbal-
anced problem. In Proc. of the 13th Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pages
475–482, Bangkok, Thailand, 2009.

6. B. B. Chaudhuri. A new definition of neighborhood of
a point in multi-dimensional space. Pattern Recognition

Letters, 17(1):11–17, 1996.
7. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer. SMOTE: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research,
16:321–357, 2002.

8. N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W.
Bowyer. SMOTEBoost: Improving prediction of the mi-
nority class in boosting. In Proc. of the 7th European Con-
ference on Principles and Practice of Knowledge Discovery
in Databases, pages 107–119, Dubrovnik, Croatia, 2003.

9. E. Chen, Y. Lin, H. Xiong, Q. Luo, and H. Ma. Exploiting
probabilistic topic models to improve text categorization
under class imbalance. Information Processing & Manage-
ment, 47(2):202–214, 2011.

10. G. Cohen, M. Hilario, H. Sax, S. Hugonnet, and A. Geiss-
buhler. Learning from imbalanced data in surveillance of
nosocomial infection. Artificial Intelligence in Medicine,
37(1):7–18, 2006.

11. S. Daskalaki, I. Kopanas, and N. Avouris. Evaluation
of classifiers for an uneven class distribution problem.
Applied Artificial Intelligence, 20(5):381–417, 2006.

12. J. Demšar. Statistical comparisons of classifiers over mul-
tiple data sets. Journal of Machine Learning Research,
7(1):1–30, 2006.

13. J. Derrac, S. Garćıa, D. Molina, and F. Herrera. A prac-
tical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary Compu-

tation, 1(1):3–18, 2011.
14. T. Fawcett. An introduction to ROC analysis. Pattern

Recognition Letters, 27(8):861–874, 2006.
15. T. Fawcett and F. Provost. Adaptive fraud detec-

tion. Data Mining and Knowledge Discovery, 1(3):291–316,
1997.

16. V. Ganganwar. An overview of classification algo-
rithms for imbalanced datasets. International Journal of
Emerging Technology and Advanced Engineering, 2(4):42–
47, 2012.

17. S. Garćıa, A. Fernández, J. Luengo, and F. Herrera. Ad-
vanced nonparametric tests for multiple comparisons in
the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Infor-

mation Sciences, 180(10):2044–2064, 2010.
18. V. Garćıa, J. S. Sánchez, and R. A. Mollineda. On the

effectiveness of preprocessing methods when dealing with
different levels of class imbalance. Knowledge-Based Sys-
tems, 25(1):13–21, 2012.

19. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. H. Witten. The WEKA data mining
software: An update. SIGKDD Explorations Newsletter,
11(1):10–18, 2009.

20. H. Han, W.-Y. Wang, and B.-H. Mao. Borderline-
SMOTE: A new over-sampling method in imbalanced
data sets learning. In Proc. of the International Conference
on Intelligent Computing, pages 878–887, Hefei, China,
2005.

21. G. He, H. Han, and W. Wang. An over-sampling expert
system for learning from imbalanced data sets. In Proc. of
the 2nd International Conference on Neural Networks and

Brain, pages 537–541, Beijing, China, 2005.
22. H. He, Y. Bai, E. A. Garcia, and S. Li. ADASYN: Adap-

tive synthetic sampling approach for imbalanced learn-
ing. In Proc. of the International Joint Conference on Neu-

ral Networks, pages 1322–1328, Hong Kong, 2008.

12 V. Garćıa et al.

Table 10 AUC results for the 1-NN classifier

Data Set Imbalanced SMOTE B-SMOTE SL-SMOTE ROS AHC ADOMS ADASYN NCN-SMOTE GG-SMOTE RNG-SMOTE

Glass2 0.779 0.768 0.771 0.779 0.779 0.785 0.7879 0.774 0.777 0.791 0.774
Wisconsin2 0.953 0.961 0.964 0.957 0.953 0.956 0.959 0.967 0.963 0.966 0.968
Pima2 0.671 0.673 0.676 0.671 0.671 0.669 0.674 0.673 0.687 0.688 0.675
Iris1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Glass1 0.913 0.923 0.949 0.913 0.913 0.929 0.942 0.936 0.929 0.942 0.933
Yeast2 0.648 0.652 0.649 0.648 0.648 0.651 0.668 0.650 0.657 0.663 0.663
Haberman2 0.535 0.536 0.534 0.526 0.526 0.538 0.554 0.523 0.572 0.550 0.563
Vehicle3 0.941 0.950 0.955 0.941 0.941 0.952 0.948 0.955 0.956 0.950 0.964
Vehicle2 0.623 0.638 0.646 0.627 0.627 0.642 0.660 0.634 0.667 0.678 0.658
Vehicle4 0.673 0.688 0.674 0.678 0.678 0.687 0.684 0.680 0.693 0.695 0.677
Glass567 0.838 0.845 0.842 0.838 0.838 0.838 0.835 0.828 0.838 0.842 0.831
Vehicle1 0.911 0.923 0.926 0.911 0.911 0.928 0.921 0.926 0.940 0.939 0.937
Ecoli2 0.797 0.836 0.843 0.797 0.797 0.823 0.843 0.833 0.845 0.861 0.842
NewThyroid2 0.977 0.992 0.992 0.977 0.977 0.977 0.989 0.992 0.986 0.989 0.989
Ecoli3 0.906 0.907 0.914 0.906 0.906 0.899 0.915 0.898 0.893 0.896 0.902
Segment1 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.994 0.995
NewThyroid3 0.980 0.994 0.994 0.980 0.980 0.980 0.994 0.992 0.989 0.980 0.992
Glass7 0.871 0.888 0.888 0.871 0.871 0.871 0.888 0.899 0.899 0.877 0.869
Yeast4 0.814 0.857 0.854 0.814 0.814 0.842 0.853 0.858 0.866 0.867 0.866
Ecoli4 0.745 0.821 0.768 0.745 0.745 0.783 0.841 0.808 0.821 0.834 0.792
PageBlocks2345 0.875 0.897 0.897 0.876 0.876 0.886 0.911 0.901 0.922 0.913 0.913
Yeast5vs1 0.851 0.883 0.862 0.851 0.851 0.868 0.882 0.879 0.905 0.875 0.896
Yeast5 0.680 0.753 0.734 0.680 0.680 0.710 0.706 0.720 0.790 0.770 0.752
Vowel1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000
Glass3 0.580 0.682 0.601 0.580 0.580 0.626 0.545 0.682 0.667 0.682 0.643
Glass3vs12567 0.601 0.728 0.619 0.601 0.601 0.685 0.613 0.731 0.721 0.690 0.669
Shuttle1 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
Yeast8vs2 0.642 0.699 0.681 0.642 0.642 0.689 0.706 0.680 0.752 0.698 0.702
Glass5 0.821 0.866 0.868 0.821 0.821 0.863 0.809 0.866 0.923 0.925 0.928
Ecoli5 0.870 0.894 0.870 0.870 0.870 0.915 0.911 0.917 0.892 0.917 0.894
Page Blocks3 0.980 1.000 0.980 0.980 0.980 1.000 0.980 1.000 1.000 1.000 1.000
Glass6 0.836 0.883 0.883 0.836 0.836 0.877 0.836 0.883 0.933 0.883 0.883
Yeast8vs2459 0.573 0.615 0.597 0.573 0.573 0.598 0.625 0.585 0.653 0.673 0.665
Glass6vs12357 0.893 0.888 0.888 0.893 0.893 0.890 0.883 0.888 0.888 0.888 0.885
Yeast9 0.768 0.764 0.761 0.768 0.768 0.794 0.727 0.763 0.807 0.795 0.804
Yeast5 0.667 0.706 0.693 0.667 0.667 0.686 0.720 0.714 0.763 0.773 0.743
Yeast8vs12910 0.554 0.585 0.593 0.554 0.554 0.581 0.651 0.585 0.660 0.698 0.691
Yeast6 0.846 0.924 0.902 0.846 0.846 0.922 0.931 0.913 0.941 0.952 0.922
Yeast7 0.749 0.778 0.760 0.749 0.749 0.771 0.834 0.776 0.847 0.846 0.845

Average 0.804 0.830 0.821 0.804 0.804 0.823 0.826 0.828 0.847 0.846 0.839

23. H. He and E. A. Garcia. Learning from imbalanced data.
IEEE Trans. on Knowledge and Data Engineering, 21:1263–
1284, 2009.

24. C. S. Hilas and P. A. Mastorocostas. An application
of supervised and unsupervised learning approaches to
telecommunications fraud detection. Knowledge-Based

Systems, 21(7):721–726, 2008.
25. S. Hu, Y. Liang, L. Ma, and Y. He. MSMOTE: Improv-

ing classification performance when training data is im-
balanced. In Proc. of the 2nd International Workshop on
Computer Science and Engineering, pages 13–17, Qingdao,
China, 2009.

26. J. Huang and C.-X. Ling. Using AUC and accuracy in
evaluating learning algorithms. IEEE Trans. on Knowl-
edge and Data Engineering, 17(3):299–310, 2005.

27. Y.-M. Huang, C.-M. Hung, and H. C. Jiau. Evaluation
of neural networks and data mining methods on a credit
assessment task for class imbalance problem. Nonlinear

Analysis: Real World Applications, 7(4):720–757, 2006.
28. N. Japkowicz and S. Stephen. The class imbalance

problem: A systematic study. Intelligent Data Analysis,
6(5):429–449, 2002.

29. J.W. Jaromczyk and G.T. Toussaint. Relative neighbor-
hood graphs and their relatives. Proceedings of the IEEE,
80(9):1502–1517, 1992.

30. Y. Jiang, M. Li, and Z.-H. Zhou. Software defect de-
tection with ROCUS. Journal of Computer Science and

Technology, 26(2):328–342, 2011.

31. W. Klement, S. Wilk, W. Michalowski, and S. Matwin.
Classifying severely imbalanced data. In Proc. of the 24th
Canadian Conference on Advances in Artificial Intelligence,
St. John’s, Canada, 2011.

32. M. Kubat, R. C. Holte, and S. Matwin. Machine learning
for the detection of oil spills in satellite radar images.
Machine Learning, 30(2–3):195–215, 1998.

33. M. Kubat and S. Matwin. Addressing the curse of imbal-
anced training sets: One-sided selection. In Proc. of the
14th International Conference on Machine Learning, pages
179–186, Nashville, TN, 1997.

34. C. Lemnaru and R. Potolea. Imbalanced classification
problems: Systematic study, issues and best practices.
In Enterprise Information Systems, pages 35–50. Springer,
2012.

35. D.-C. Li, C.-W. Liu, and S. C. Hu. A learning method
for the class imbalance problem with medical data sets.
Computers in Biology and Medicine, 40(5):509–518, 2010.

36. C. X. Ling and C. Li. Data mining for direct market-
ing: Problems and solutions. In Proc. of the 4th Interna-

tional Conference on Knowledge Discovery and Data Min-
ing, pages 73–79, New York, NY, 1998.

37. T. Maciejewski and J. Stefanowski. Local neighbour-
hood extension of SMOTE for mining imbalanced data.
In Proc. of the IEEE Symposium on Computational Intel-
ligence and Data Mining, pages 104–111, Paris, France,
2011.

Surrounding neighborhood-based SMOTE for learning from imbalanced data sets 13

Table 11 AUC results for the C4.5 classifier

Data Set Imbalanced SMOTE B-SMOTE SL-SMOTE ROS AHC ADOMS ADASYN NCN-SMOTE GG-SMOTE RNG-SMOTE

Glass2 0.733 0.701 0.743 0.726 0.725 0.745 0.666 0.759 0.703 0.717 0.716
Wisconsin2 0.948 0.948 0.950 0.952 0.943 0.950 0.953 0.961 0.944 0.952 0.944
Pima2 0.703 0.703 0.725 0.722 0.691 0.722 0.715 0.717 0.726 0.729 0.716
Iris1 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990
Glass1 0.916 0.863 0.869 0.876 0.866 0.865 0.902 0.866 0.865 0.879 0.859
Yeast2 0.668 0.712 0.697 0.686 0.678 0.712 0.688 0.690 0.691 0.708 0.702
Haberman2 0.576 0.608 0.593 0.619 0.622 0.581 0.617 0.671 0.670 0.653 0.643
Vehicle3 0.948 0.951 0.954 0.956 0.942 0.952 0.954 0.962 0.946 0.963 0.957
Vehicle2 0.660 0.689 0.714 0.671 0.685 0.687 0.729 0.713 0.707 0.699 0.722
Vehicle4 0.666 0.729 0.671 0.705 0.711 0.710 0.694 0.709 0.739 0.728 0.708
Glass567 0.817 0.824 0.806 0.799 0.767 0.789 0.782 0.799 0.821 0.786 0.792
Vehicle1 0.927 0.924 0.933 0.927 0.926 0.932 0.935 0.926 0.927 0.928 0.927
Ecoli2 0.861 0.890 0.907 0.880 0.881 0.900 0.883 0.885 0.906 0.879 0.879
NewThyroid2 0.949 0.975 0.966 0.963 0.963 0.949 0.975 0.980 0.963 0.954 0.952
Ecoli3 0.862 0.868 0.900 0.848 0.875 0.878 0.896 0.874 0.883 0.858 0.859
Segment1 0.984 0.992 0.982 0.992 0.992 0.994 0.989 0.984 0.992 0.992 0.993
NewThyroid3 0.949 0.946 0.952 0.980 0.952 0.937 0.977 0.952 0.946 0.966 0.952
Glass7 0.813 0.884 0.853 0.876 0.876 0.867 0.863 0.892 0.894 0.874 0.898
Yeast4 0.857 0.906 0.891 0.881 0.868 0.899 0.911 0.938 0.914 0.904 0.918
Ecoli4 0.728 0.837 0.815 0.725 0.783 0.801 0.828 0.839 0.800 0.830 0.832
PageBlocks2345 0.922 0.945 0.937 0.928 0.931 0.938 0.939 0.945 0.941 0.950 0.946
Yeast5vs1 0.833 0.873 0.836 0.848 0.840 0.858 0.840 0.874 0.878 0.877 0.869
Yeast5 0.680 0.800 0.777 0.680 0.748 0.759 0.752 0.781 0.741 0.772 0.751
Vowel1 0.971 0.951 0.941 0.958 0.962 0.956 0.972 0.967 0.968 0.968 0.938
Glass3 0.618 0.646 0.560 0.582 0.604 0.643 0.596 0.629 0.623 0.638 0.702
Glass3vs12567 0.669 0.667 0.653 0.628 0.655 0.711 0.512 0.728 0.723 0.582 0.735
Shuttle1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Yeast8vs2 0.594 0.620 0.648 0.615 0.650 0.645 0.608 0.680 0.644 0.670 0.626
Glass5 0.793 0.849 0.785 0.883 0.849 0.842 0.848 0.880 0.844 0.880 0.880
Ecoli5 0.814 0.892 0.816 0.839 0.839 0.909 0.904 0.858 0.864 0.866 0.839
Page Blocks3 0.998 0.998 0.998 0.998 0.998 0.998 0.997 0.998 0.998 0.998 0.998
Glass6 0.891 0.894 0.894 0.894 0.894 0.891 0.894 0.894 0.891 0.894 0.894
Yeast8vs2459 0.500 0.523 0.506 0.535 0.509 0.520 0.506 0.613 0.531 0.589 0.516
Glass6vs12357 0.898 0.945 0.948 0.943 0.943 0.890 0.948 0.945 0.945 0.945 0.945
Yeast9 0.500 0.747 0.664 0.865 0.840 0.783 0.809 0.588 0.771 0.795 0.779
Yeast5 0.595 0.773 0.684 0.690 0.698 0.672 0.682 0.678 0.737 0.735 0.747
Yeast8vs12910 0.616 0.565 0.614 0.683 0.629 0.605 0.614 0.608 0.653 0.680 0.599
Yeast6 0.883 0.913 0.902 0.857 0.879 0.924 0.923 0.946 0.945 0.934 0.946
Yeast7 0.781 0.806 0.766 0.802 0.790 0.801 0.760 0.804 0.833 0.818 0.815

Average 0.798 0.829 0.816 0.820 0.820 0.826 0.822 0.834 0.835 0.835 0.833

38. S.-H. Oh. Error back-propagation algorithm for classifi-
cation of imbalanced data. Neurocomputing, 74(6):1058–
1061, 2011.

39. A. Orriols-Puig and E. Bernadó-Mansilla. Evolutionary
rule-based systems for imbalanced data sets. Soft Com-

puting, 13(3):213–225, 2008.
40. J. S. Sánchez and A. I. Marqués. Enhanced neighbour-

hood specifications for pattern classification. In Pattern
Recognition and String Matching, pages 673–702. Kluwer
Academic Publishers, 2002.

41. R. D. Short and K. Fukunaga. A new nearest neighbour
distance measure. In Proc. of the 5th International Con-

ference on Pattern Recognition, pages 81–86, Miami, FL,
1980.

42. M. Sokolova and G. Lapalme. A systematic analysis of
performance measures for classification tasks. Informa-
tion Processing & Management, 45(4):427–437, 2009.

43. Y. Sun, A. K. C. Wong, and M. S. Kamel. Classification
of imbalanced data: A review. International Journal of

Pattern Recognition and Artificial Intelligence, 23(4):687–
719, 2009.

44. S. Tan. Neighbor-weighted K-nearest neighbor for un-
balanced text corpus. Expert Systems with Applications,
28(4):667–671, 2005.

45. S. Tang and S.-P. Chen. The generation mechanism of
synthetic minority class examples. In Proc. of the 5th In-

ternational Conference on Information Technology and Ap-

plication in Biomedicine, pages 444–447, Shenzhen, China,
2008.

46. J. van Hulse, T. M. Khoshgoftaar, and A. Napolitano.
Experimental perspectives on learning from imbalanced
data. In Proc. of the 24th International Conference on Ma-
chine Learning, pages 935–942, Corvallis, OR, 2007.

47. J. van Hulse, T. M. Khoshgoftaar, and A. Napolitano.
An exploration of learning when data is noisy and imbal-
anced. Intelligent Data Analysis, 15(2):215–236, 2011.

48. J. Wang, M. Xu, H. Wang, and J. Zhang. Classifica-
tion of imbalanced data by using the SMOTE algorithm
and locally linear embedding. In Proc. of the 8th Interna-
tional Conference on Signal Processing, pages 16–20, Bei-
jing, China, 2006.

49. S.-J. Yen, Y.-S. Lee, C.-H. Lin, and J.-C. Ying. Inves-
tigating the effect of sampling methods for imbalanced
data distributions. In Proc. of the IEEE International
Conference on Systems, Man, and Cybernetics, pages 4163–
4168, Taipei, Taiwan, 2006.

50. D. Zhang, W. Liu, X. Gong, and H. Jin. A novel im-
proved SMOTE resampling algorithm based on fractal.
Journal of Computational Information Systems, 7(6):2204–
2211, 2011.

51. J. Zhang, Y.-S. Yim, and J. Yang. Intelligent selection of
instances for prediction functions in lazy learning algo-
rithms. Artificial Intelligence Review, 11(1):175–191, 1997.

14 V. Garćıa et al.

Table 12 AUC results for the MLP classifier

Data Set Imbalanced SMOTE B-SMOTE SL-SMOTE ROS AHC ADOMS ADASYN NCN-SMOTE GG-SMOTE RNG-SMOTE

Glass2 0.647 0.725 0.732 0.739 0.715 0.740 0.711 0.751 0.698 0.706 0.727
Wisconsin2 0.960 0.963 0.964 0.967 0.963 0.964 0.961 0.964 0.956 0.961 0.957
Pima2 0.739 0.709 0.729 0.721 0.713 0.724 0.721 0.731 0.719 0.719 0.702
Iris1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Glass1 0.903 0.913 0.917 0.904 0.904 0.915 0.924 0.919 0.906 0.900 0.909
Yeast2 0.690 0.708 0.716 0.711 0.716 0.718 0.716 0.714 0.719 0.725 0.717
Haberman2 0.580 0.620 0.615 0.604 0.597 0.588 0.616 0.628 0.637 0.627 0.631
Vehicle3 0.971 0.978 0.974 0.978 0.972 0.980 0.984 0.978 0.988 0.985 0.986
Vehicle2 0.761 0.794 0.796 0.781 0.797 0.810 0.812 0.811 0.798 0.802 0.788
Vehicle4 0.795 0.778 0.779 0.817 0.789 0.790 0.788 0.787 0.780 0.790 0.795
Glass567 0.781 0.774 0.778 0.778 0.767 0.810 0.764 0.800 0.753 0.778 0.828
Vehicle1 0.950 0.960 0.971 0.968 0.973 0.966 0.972 0.975 0.971 0.965 0.973
Ecoli2 0.867 0.887 0.880 0.861 0.867 0.867 0.870 0.862 0.892 0.883 0.871
NewThyroid2 0.954 0.966 0.966 0.966 0.983 0.969 0.980 0.966 0.980 0.980 0.980
Ecoli3 0.894 0.900 0.904 0.888 0.895 0.892 0.917 0.857 0.920 0.912 0.909
Segment1 0.993 0.998 0.998 0.999 0.999 0.997 0.994 0.995 0.997 0.996 0.996
NewThyroid3 0.954 0.952 0.952 0.952 0.952 0.952 0.975 0.952 0.977 0.977 0.983
Glass7 0.849 0.877 0.849 0.877 0.880 0.880 0.869 0.880 0.888 0.883 0.877
Yeast4 0.856 0.899 0.887 0.909 0.906 0.905 0.916 0.906 0.913 0.891 0.917
Ecoli4 0.807 0.878 0.859 0.881 0.865 0.865 0.887 0.878 0.878 0.890 0.854
PageBlocks2345 0.847 0.931 0.926 0.939 0.942 0.941 0.938 0.944 0.944 0.935 0.938
Yeast5vs1 0.855 0.884 0.869 0.872 0.924 0.912 0.907 0.875 0.915 0.893 0.885
Yeast5 0.717 0.746 0.749 0.744 0.759 0.748 0.788 0.762 0.758 0.795 0.736
Vowel1 0.994 0.989 1.000 0.994 1.000 0.999 1.000 1.000 1.000 0.999 0.994
Glass3 0.557 0.674 0.660 0.619 0.696 0.641 0.666 0.594 0.665 0.696 0.648
Glass3vs12567 0.554 0.790 0.667 0.765 0.754 0.759 0.772 0.721 0.792 0.775 0.759
Shuttle1 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
Yeast8vs2 0.626 0.679 0.637 0.699 0.662 0.684 0.712 0.722 0.678 0.741 0.638
Glass5 0.871 0.897 0.930 0.894 0.894 0.889 0.923 0.894 0.892 0.928 0.897
Ecoli5 0.891 0.912 0.889 0.914 0.914 0.909 0.900 0.914 0.861 0.911 0.915
Page Blocks3 0.979 0.979 0.978 0.997 0.978 0.998 0.999 0.977 0.998 0.976 0.957
Glass6 0.791 0.836 0.836 0.836 0.836 0.839 0.836 0.786 0.883 0.836 0.836
Yeast8vs2459 0.515 0.585 0.579 0.585 0.563 0.534 0.573 0.573 0.547 0.567 0.598
Glass6vs12357 0.895 0.893 0.893 0.895 0.895 0.893 0.885 0.893 0.890 0.893 0.893
Yeast9 0.773 0.724 0.787 0.833 0.714 0.745 0.796 0.738 0.768 0.785 0.712
Yeast5 0.663 0.780 0.786 0.752 0.758 0.767 0.777 0.800 0.790 0.769 0.763
Yeast8vs12910 0.531 0.622 0.611 0.695 0.595 0.580 0.625 0.618 0.669 0.691 0.646
Yeast6 0.844 0.941 0.862 0.918 0.919 0.930 0.927 0.930 0.945 0.933 0.947
Yeast7 0.681 0.816 0.789 0.795 0.806 0.871 0.883 0.836 0.848 0.868 0.822

Average 0.809 0.845 0.839 0.847 0.842 0.845 0.853 0.844 0.851 0.855 0.846

	Introduction
	The SMOTE algorithm and some variants
	Surrounding neighborhood
	Surrounding SMOTE
	Experimental set-up
	Experimental results and discussion
	Final conclusions and future work

