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Abstract 

The microstructure and mechanical properties of spray-dried grains are key factors in 

many applications. In this work single droplets of silica nanofluids were dried in an acoustic 

levitator under different experimental conditions of solid mass fraction, pH value, salt 

concentration, drying temperature and initial droplet volume. ANOVA method was used to 

determine their influence on the final grain diameter, the shell thickness and the mechanical 

strength. The solid content and the droplet volume are the variables that exert an influence on 

these three properties. In addition, the mechanical strength is influenced by the pH value. The 

maximum packing fraction of the particles inside the shell was obtained by modelling the 

viscosity data with the Quemada equation. The packing fraction was then used to calculate 

the shell thickness. The internal microstructure of the grains was observed by SEM and the 

shell thickness was measured. Experimental and calculated results show good agreement. 
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1 Introduction 
 
 In many industrial applications such as ceramics, food products, detergents and 

pharmaceuticals, spray drying is used to produce powders with different characteristics. This 

process causes the solvent of the droplets to evaporate, leading to the formation of dried 

grains [1]. Depending on the final application of these grains and their later handling and 

processing, different microstructures may be required. This makes it of great importance to 

know how all the variables involved in the drying process affect the crust formation, the 

packing of the particles, the hollowness of the final grain, and so forth. A good knowledge 

and control of these parameters can lead to the production of grains with suitable 

characteristics for each application. 

The drying behaviour of a liquid-solid suspension droplet can be divided into two 

stages [1-3]. In the first stage, also known as the constant rate period, particles move towards 

the inner part of the droplet to minimize its surface energy [4, 5]. The surface energy of the 

liquid-vapour interface is lower than that of the solid-vapour one and so the particles move, 

thus allowing the droplet surface to be completely wetted and the liquid to evaporate at the 

droplet surface. When the critical moisture content is reached, the entire droplet surface can 

no longer be kept saturated by moisture migration and the second drying period begins. In 

this period, called the falling rate period, a shell is formed on the droplet surface and the 

evaporation occurs through the pores of the shell. 

When the second drying period starts, the liquid menisci formed between particles 

create a capillary force that makes them approach each other and keep together [6]. 

Moreover, the latent heat of water evaporation has a high value. When a small amount of 

water evaporates, a strong flux of heat is transmitted from the surface of the droplet into the 

gas stream and local temperature gradients are created on the droplet surface. This causes the 

thermophoretic displacement of the particles towards the surface of the droplet [7, 8]. As a 

result, the shell thickness increases due to the progressive incorporation of particles into the 

shell. 

The packing fraction of the particles in the shell is constant and closer to the 

maximum packing that particles can achieve, i.e. random close packing [6, 9]. In particulate 

systems, two packings are possible: random close packing (RCP) represents the densest 

packing state that uniform spheres can achieve when randomly packed, while random loose 

packing (RLP) refers to the least dense packing that can resist an external load [10-12]. For 

hard, monodispersed, spherical particles with a micrometric size the final volume fractions 
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achieved at each packing state are established at φRCP = 0.64 and φRLP = 0.56 for RCP and 

RLP respectively. However, these values depend on the particle size and the interparticle 

forces present in the system.  

For particles in the nanometric size range, the Van der Waals cohesive forces become 

dominant. This force restricts the relative movement of the particles, thereby resulting in the 

formation of agglomerates that affect the packing of particles. Hence, the volume fraction for 

RCP depends on the Hamaker constant and particle size [11, 13, 14]. Moreover, in 

nanofluids, capillary forces are present at the final stage of the packing process and these 

affect the packing [15-17]. In general, cohesive forces hinder the rearrangement of the 

particles and lead to lower packing fractions.  

The maximum packing fraction that the nanoparticle system can achieve (RCP) 

corresponds to the fluidity limit, φm. Below this value the nanofluid behaves like a liquid, 

while above the fluidity limit the nanofluid has the properties of a solid. The graphical 

representation of viscosity versus the volume fraction makes it possible to obtain the fluidity 

limit, which is the concentration at which the viscosity takes an infinite value. Krieger and 

Dougherty, and Quemada [18, 19] proposed equations to model the viscosity of numerous 

suspensions with particles of different natures, which allows the fluidity limit and hence the 

RCP, to be determined for each particulate system. 

The degree of hollowness of the grains depends on the final grain diameter and the 

packing of the particles. By modifying the properties of the suspension, the maximum 

packing fraction of the particles can also be modified. This packing influences the volume 

occupied by the particles in the shell and its thickness, which in turn determines the degree of 

hollowness of the dried grains for a constant final diameter. Otherwise, for a particular 

system with a constant packing fraction, the shell thickness depends on the final diameter. 

This diameter varies according to the capacity of the particles to diffuse inside the droplet, 

thus modifying the instant in which the collapse of particles takes place and the second 

drying period starts. The strength of drying is quantitatively represented by the Peclet 

number, Pe, which characterizes the relative importance of the time scale for diffusion 

(rD
2/DS) with respect to that of the convective drying time (t) [8, 9, 20]: 

t
DrPe SD /2

=              (1) 
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where rD is the droplet radius, t is the drying time and DS is the diffusion coefficient, which 

can be calculated from the Einstein-Stokes relation: 

p

DB
S r

Tk
D

⋅⋅⋅
⋅

=
ηπ6

            (2) 

where kB is the Boltzman constant, TD is the droplet temperature, η is the viscosity of the 

nanofluid and rp is the radius of the particles diffusing inside the droplet. 

If the Peclet number Pe>>1, the drying is faster than the rate of diffusion of the 

particles and the time needed for the liquid to evaporate is shorter than the time required to 

homogenize the droplet. In this case the drying is said to be fast and the collapse takes place 

earlier, thus leading to the formation of a hollow or crumpled grain. In contrast, if Pe<<1, the 

drying is regarded as a slow process, particles have time to diffuse towards the core of the 

droplets and they shrink isotropically, resulting in compact grains with smaller diameters. 

In this work, single droplets of silica nanofluids were dried in an acoustic levitator 

under different experimental conditions, in accordance with a Design of Experiments (DoE). 

The ANOVA method was used to determine the influence of the drying conditions on the 

characteristics and properties of the grains obtained, i.e. final grain diameter, shell thickness 

and mechanical strength. The fluidity limit and the maximum packing fraction were obtained 

for this system using the Quemada equation to model the viscosity data. The packing fraction 

and the final diameter were used to calculate the shell thickness and compare it with the 

experimentally measured thickness.  

2 Experimental set-up and measurement techniques 

2.1 Rheological measurements 

The viscosity of the nanofluids was obtained by conducting tests under steady-state 

conditions using a Bohlin CVO-120 rheometer (Malvern Instruments Ltd., UK). A double 

gap (DG 40/50) device composed of two concentric cylinders suitable for low viscosity 

suspensions was used. The sample is introduced in the gap between the inner cylinder 

(diameter = 40 mm) and the outer cylinder (diameter = 50 mm). A cylindrical device with a 

diameter of 45.46 mm is submerged into the sample, thereby creating the double gap. Before 

each test, a pre-treatment, in which the samples are submitted to a constant shear stress, was 

applied to the nanofluids for 30 seconds to ensure similar starting conditions for all of them. 
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 2.2 Drying of droplets 

Droplets were dried in an acoustic levitator. This equipment was previously used to 

study the drying behaviour of single droplets of different materials under a variety of 

experimental conditions [21-28]. Levitator tubes offer some advantages over conventional 

methods, since there is no mechanical contact with the droplet and this makes it possible to 

work with almost any liquid over a wide range of diameters of droplets (from 0.1 mm to 

several mm) [29]. The experimental set-up and the operational conditions were described in 

detail in a previous work [27]. An acoustic levitator consisting of an ultrasonic 58 kHz horn 

and a concave reflector (tec5 AG Sensorik und Systemtechnik) modified in order to work at 

high temperature conditions of up to 150ºC was used. The flow rate of the air stream was set 

to 0.5 l/min and used to ensure constant drying conditions around the droplet and to ventilate 

the acoustically-induced vortex system formed around the droplet from liquid vapour. The 

process was recorded and the images were processed with Matlab to gather the desired 

information. 

The sound pressure level of the acoustic stream must be held at a constant and 

appropriate value. To levitate a drop, the ultrasound has to be strongly enough to overcome 

gravity force. However, if the sound pressure level is too high the drop disintegrates into 

small droplets, since then the capillary forces become weak to keep the drop intact [41]. 

Therefore, the intensity of the acoustic stream is established at a value so that the capillary 

and Van der Waals forces that keep particles together are not influence by the levitation 

process. The acoustic streaming in the gas provides a convective mechanism much stronger 

than the natural convection and dominates the evaporation process thus affecting the drying 

rate but not the motion of the particles inside the droplet [42].  

2.3 Grain properties 

The internal microstructure of the grains obtained was observed by means of 

Scattering Electron Microscopy using an FEI Quanta 200F microscope. The grains were cut 

and coated with platinum in order to obtain cross-sections and to observe the internal shell 

formed during the drying process. Images were taken of the shell and the arrangement of the 

nanoparticles inside it. 

Moreover, in order to obtain the mechanical strength of the granules, diametrical 

compression tests of single granules were performed. The equipment used (Instron 5889) has 

a special compression cell (maximum load of 10 N) that allows individual grain tests to be 
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performed. Typical force-displacement curves were acquired for each experimental condition 

and these were then used to obtain the fracture load of the grains. In the curves it can be seen 

how, when the compression device comes into contact with the granule, the force increases 

until the breaking point.  

 
3 Suspensions and experimental matrix  

All the experiments were carried out with silica-water nanofluids. In this work 

commercial fumed silica provided by Degussa was used. The silica chosen was an Aerosil 

200 consisting in amorphous hydrophilic silica nanoparticles with primary units of 12 nm and 

a density of 2200 kg/m3 according to the manufacturer. Nanofluids with different particle 

concentrations were prepared by adding distilled water to the defined amounts of 

nanoparticles. In this method, known as the two-step method, the nanoparticles are purchased 

as a dry powder and then dispersed in the liquid medium. The dispersion was performed 

using an ultrasonic probe (UP400s from Hielscher Company), which has been proven to be 

the most effective dispersion system [30]. The procedure that allows a good dispersion to be 

achieved was established by the authors in a previous work [31]. Initially, the mixture of 

nanoparticles with the water is submitted to a sonication treatment for 3 minutes. After this, 

the pH of the nanofluid is modified by adding small amounts of HCl or NaOH solutions 

(2.75 M). Finally, to ensure correct dispersion of all the components, the nanofluids are 

submitted to a second sonication treatment for 2 minutes. In the same previous study, the 

isoelectric point (IEP) for this system was experimentally determined from the zeta potential 

curves and a pH = 2 value was obtained.  

To gather experimental information about the internal microstructure of the grains and 

their mechanical strength at different experimental conditions a DoE was planned. In this 

case, a matrix based on a fractional factorial design, 2k-1, was performed. Five variables 

including the solid mass fraction (expressed as kg of solid per kg of suspension): 0.02 w/w < 

Y
S 

< 0.20 w/w; pH of nanofluids: 2 < pH < 10; salt concentration; 0 M < [NaCl] < 0.05 M; 

ambient air temperature: 80ºC < T < 120ºC; and initial droplet volume: 0.3 μl < V
0 

< 0.8 μl 

were chosen to study their effect on the packing of particles and physical properties. A total 

number of 16 tests were carried out for the five input variables.  

 

4 Results and discussion 

4.1 ANOVA analysis 
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Table 1 shows the experimental matrix and the conditions under which the drying 

tests were carried out. For each test performed, the final grain diameter (dG) was obtained 

from the image processing of the videos that were recorded. The shell thickness (s) was 

measured from the SEM images. Finally, grains produced in all the drying experiments were 

submitted to mechanical strength tests. For each experimental condition, the maximum force 

resisted by the grain before breaking (F) was obtained. The drying and mechanical tests were 

repeated 8 times to obtain mean values for the parameters analysed and to evaluate the 

reproducibility of the experimental set-up. The shell thickness was established by taking the 

mean of 5 values measured at different regions of the cut grains. Errors of less than 10% were 

obtained for all the properties measured. 

Table 1 shows the results obtained for each output variable mentioned above. All the 

results were analysed using the ANOVA method and the significance of each effect on each 

output variable was obtained. This method determines the degree of significance from the 

probability of the Fisher distribution. It is said that an input variable has a statistically 

significant effect on the output variable at the 95% confidence level when the probability of 

the F-distribution is less than 0.05. Table 2 shows the values obtained for the probability of 

the F-distribution for each input variable and measured property. In the sections that follow, 

all the results and the analysis of variables are shown. 

Grain diameter (dG) 

In Table 2 it can be seen that the only two input variables that influence the final grain 

diameter are the solid content and the initial droplet volume. In Figure 1 a) it can be observed 

that both effects are positive. This means that an increase in the value of the input variable 

leads to an increase in the output one. 

When the solid content is increased, there are more particles inside the droplet and the 

final volume of solids is higher, thus producing bigger grains. Moreover, at a constant solid 

content, bigger droplets contain higher amounts of solids, which finally also produce bigger 

grains.  

Shell thickness (s) 

In Table 2 it can be seen that the input variables that influence the shell thickness are 

the solid content and the initial droplet volume. Not only their single effect but also the cross 

effect are significant for this output variable.  
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In Figure 1 b) it can be observed that both single effects are positive. An increase in 

the solid content leads to a higher amount of solid inside the droplet when the shell is formed. 

As a result, the thickness of the shell is bigger. Furthermore, bigger droplets, containing 

higher amounts of solid, produce thicker shells [5]. Actually, from the cross effect it can be 

seen that when the solid content is very low, the influence of the droplet volume on the shell 

thickness is negligible. However, it is at high solid contents when the influence of the droplet 

volume becomes important. The influence of the solid content is enhanced when it is high 

due to the larger number of particles inside the droplet. 

Mechanical strength (F) 

The mechanical strength of the grains is of great importance. Often they must resist 

handling, as well as later treatments and stages, and this property can influence the quality of 

the final product. The mechanical strength is related to the microstructure of the grains. In 

general, dense solid granules are more resistant while hollow ones break more easily when an 

external load is applied. 

In Table 2 it can be seen that the input variables that influence the force resisted by 

the grain are the solid content, the droplet volume and the pH of the nanofluid. Not only their 

single effect but also the cross effect of the solid content with the other two variables are 

significant.  

In Figure 1 c) it can be observed that the single effects are positive. The influence of 

the solid content and the droplet volume is related to the effect of these two variables on the 

shell thickness. As mentioned before, an increase in the solid content or the droplet volume 

leads to thicker shells. This makes the grains denser and, as a result, the force the grains can 

resist is also increased by raising the values of these two parameters. In the same way as the 

shell thickness, this effect is more important for high solid contents.  

The effect of the pH of the nanofluid also depends on the solid content. For low solid 

contents, the mechanical strength is not dependent on the pH value. However, for high solid 

contents, the mechanical strength increases with the pH value. This trend is related to the 

evolution of the solubility of silica particles in water [32, 33]. The dissolution of silica in 

water is, in effect, a depolymerization through hydrolysis and the “solubility” is the 

concentration of Si(OH)4 and other silicate species. For silica, the hydroxyl ion is a unique 

catalyst and the solubility of silica in water can be increased by making the solution more 

alkaline. As a result, at high pH values, the solubility/dissolution rate increases and necks are 
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formed between particles, thereby increasing the strength of the bond. The influence of the 

pH value is more important for high solid contents because of the large number of particles 

involved in the process. 

The influence of the pH value and the shell thickness (which in turn depends on the 

solid content and the droplet volume) can be observed by plotting the force resisted by the 

grain versus the shell thickness. In Figure 2, the influence of the variables analysed before 

can be observed and confirmed. First, as the shell thickness increases, the grain becomes 

more compact and denser, and consequently it can resist a higher external load. Secondly, for 

a high shell thickness, the mechanical strength increases with the pH.  

4.2 Particle packing in the shell 

In order to calculate the fluidity limits and the maximum packing fraction of the 

particles, the Quemada equation was used to model the viscosity data at different solid 

contents for the two pH values studied.  
2

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

mF
r φ

φ
η
ηη                     (3) 

where ηr is the relative viscosity, η, is the viscosity of the nanofluid, ηF is the viscosity of the 

base fluid and φm is the fluidity limit. 

Additional nanofluids were prepared at volume fractions ranging from 0.002 to 0.132 

m3 of solid per m3 of suspension, which corresponds to mass fractions from 0.005 to 0.25 kg 

of solid per kg of suspension. A total number of 8 different nanofluids were prepared within 

this range of solid content to cover a wide range of viscosities, obtaining results in the non-

lineal region of the curve. This number of experimental data also made it possible to fit them 

to the model equation.  

To model the evolution of the viscosity results with the solid content, effective 

volume fractions are needed [34-36]. When nanoparticles are electrostatically stabilized, 

surface charges appear, forming an external double layer around the particles. The thickness 

of this layer depends on the presence of electrolytes and ions introduced into the nanofluids 

when adjusting the pH value (introduction of chloride and sodium ions with HCl and NaOH 

respectively). The use of effective volume fractions makes it possible to screen the effect of 

the electrolyte concentration on the viscosity in order to model the experimental data. The 

thickness of the electrical double layer or Debye length, κ -1, was calculated from the 

electrical conductivity measurements of each nanofluid by means of equations 4 and 5: 
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I⋅= −− 91 10·215.0κ                      (4) 

where I is the ionic strength of the medium and is calculated from the electrical conductivity. 

Griffin and Jurinak [37] obtained the following empirical equation to calculate the ionic 

strength in suspensions with the presence of sodium and chloride ions:  

ECI ⋅= 013.0                       (5) 

where EC is the electrical conductivity of the suspension, which was measured directly using 

an EC-Meter Basic 30+ conductimeter (Crison). 

With the electrical double layer, the effective volume fractions were calculated taking 

6 nm as the value of the particle radius: 
31
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In Figure 3 experimental data are represented together with the theoretical curves 

corresponding to the Quemada equation. It can be seen that the viscosity results are in good 

agreement with the model.  

As can be seen, the maximum packing fraction, φm, increases as the pH value 

decreases. For pH=2 (IEP) the maximum value for the fluidity limit is achieved (φm = 0.33), 

which represents RCP. However, this value is lower than the 0.64 predicted for low hard, 

monodispersed spheres. In this case, Van der Waals cohesive forces are predominant. These 

forces restrict the relative movement of particles resulting in agglomerates with the presence 

of large pores and worse packings than in the case of hard spheres. When the pH value is 

increased, particles become negatively charged and an electrical layer is formed around them. 

The repulsion generated between particles leads them to remain separated from each other, 

thus resulting in higher viscosities (secondary electroviscous effect) and less compact 

packings [38, 39]. Therefore, an increase in the pH value and the surface charge leads to 

looser packings as a consequence of the repulsion between particles. 

The experiments involving drying single droplets carried out in the DoE were used to 

check the constant packing fraction of the particles in the shell for a particular system, 

regardless of the drying conditions. All tests resulted in high Peclet values ranging from 7·102 

to 2·106. The Peclet numbers were calculated using equations 1 and 2, taking the radius of the 

agglomerates present in the nanofluid as the radius of the particles in equation 2. Those 

agglomerates are the ones that diffuse, not the primary particles. The temperature of the 
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droplet is the wet bulb temperature corresponding to the drying temperature for each case, 

and the viscosity of the nanofluid and the drying time were measured experimentally. The 

minimum Peclet values correspond to the lowest solid content (0.02 w/w), which provides 

lower viscosities (0.0012 Pa·s), a lower size of the agglomerates as measured by Dynamic 

Light Scattering (205 nm) and, hence, a higher diffusion coefficient (1.72·10-12 m2/s), as well 

as the lowest drying temperature (80ºC), which provides longer drying times (91 s). In 

contrast, the maximum Peclet values correspond to the highest solid content (0.20 w/w), 

which provides higher viscosities (0.381 Pa·s), a higher size of the agglomerates as measured 

by Dynamic Light Scattering (1004 nm) and, hence, a lower diffusion coefficient (1.17·10-15 

m2/s), as well as the highest drying temperature (120ºC), which provides shorter drying times 

(83 s).  

As a consequence, hollow grains were obtained in all the tests performed. The shell 

thickness was calculated considering a packing fraction value of φShell = 0.33, which was 

obtained previously from the viscosity model. The packing fraction of the particles in the 

shell can be expressed as the ratio between the volume of solid inside the shell, VS, and the 

shell volume, VShell: 

CG

SdSd
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Shell VV
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V

−
⋅⋅

==
ρρ

φ ,0,0          (7) 

where V0,d is the initial droplet volume, VG is the final grain volume, VC is the core volume 

(central pore volume), YS is the initial solid mass fraction, ρS is the solid density and ρ0,d is 

the initial droplet density calculated as follows: 
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where ρL is the liquid density. 

Equation 7 can be rewritten in terms of the initial droplet radius, r0,d, the final grain 

radius, rG, and the core radius, rC: 

33
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3
,0
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⋅⋅

=
ρρ

φ           (9) 

From equation 9, both the core radius and hence the shell thickness, s, can be 

calculated: 
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In these equations the droplet and grain radius are obtained from the image processing 

of the video recorded for each test that was performed (Table 1). Figure 4 shows the scheme 

of a dried grain and its main dimensions that were used in the calculations. 

The dried grains were collected and the internal microstructure was observed by 

Scattering Electron Microscopy. Figure 5 shows the internal structure and the arrangement of 

the particles in the shell of some of the grains obtained from the drying of droplets under 

different experimental conditions. The hollow structure can be observed in all cases and the 

shell thickness was measured. In these images it can also be observed that the sodium 

chloride always crystallizes at the surface of the grain and, hence, the crystals formed during 

the evaporation of the liquid do not affect the packing of the particles inside the shell. 

Results obtained from equation 11 for the shell thickness were plotted against the 

ones measured from the micrographs. Figure 6 shows the fitting of the data, in which a very 

good agreement between theoretical and experimental results can be observed. 

Therefore, the packing of the particles in the shell can be said to be constant and equal 

to the maximum packing that particles can achieve, i.e. RCP. The packing fraction is 

independent of the solid content, the drying temperature, the pH of the suspension, the salt 

content and the initial droplet volume. This packing fraction can be obtained by measuring 

the viscosity of the suspension at different solid contents and later fitting the data to the 

Krieger-Dougherty and Quemada equations.  

According to equations 10 and 11, once the packing of the particles has been proved 

to be constant for a particular material, the shell thickness and the degree of hollowness of the 

grains can be assumed to depend only on the solid content, the initial droplet volume and the 

final grain diameter, which was shown by the ANOVA analysis to also depend on these two 

variables. 

The final grain diameter can easily be obtained from the drying curves. This variable 

is related to the critical moisture content, Xcr, by the following equation [40]: 
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where dcr is the critical diameter equal to the final grain diameter (the shrinkage of the droplet 

stops at the critical moisture content), d0,d is the initial droplet diameter, X0 is the initial 

moisture content and ρL and ρS are the densities of the liquid and the solid respectively. 

That critical moisture content, Xcr, represents the beginning of the second drying 

period and can be obtained from the drying kinetics of a single droplet. From the drying test, 

and the evolution of the droplet diameter and position recorded and processed, the critical 

moisture content was obtained for each experimental condition. The final grain diameter was 

calculated by means of equation 12. Figure 7 shows the good agreement between the 

theoretical values and the experimental values obtained from the image processing (Table 1). 

This means that from the drying kinetics, the final grain diameter and the shell thickness can 

be predicted for a particular system. Figure 8 summarizes the procedure for calculating the 

degree of hollowness of grains. 

 

5 Conclusions 

Single droplets of silica-water nanofluids were dried under different experimental 

conditions of solid content, pH value, salt concentration, drying temperature and droplet 

volume. 

The influence of these variables on the final grain diameter, the shell thickness and 

the mechanical strength of the grain was studied. The solid content and the initial droplet 

volume were found to influence the final grain diameter and the shell thickness in a positive 

way. The mechanical strength of the grains was found to depend on the shell thickness (and 

therefore on the solid content and the droplet volume) and on the pH of the nanofluid. 

Alkaline conditions increase the “solubility” of silica nanoparticles in water, leading to the 

formation of highly resistant necks between them. 

The packing of particles inside the droplet was proved to be constant for a particular 

system and equal to RCP. This packing can be obtained from the modelling of the viscosity 

data using the Quemada equation. For nanoparticles, the value of the packing fraction is 

lower than for hard microparticles due to the presence of cohesive forces that encumber the 

movement and rearrangement of particles. 
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Hence, the degree of hollowness only depends on the solid content and the final grain 

diameter. A procedure for predicting the degree of hollowness of the grains from the drying 

curves was provided. Experimental and theoretical results for the final grain diameter and the 

shell thickness show good agreement.  
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Figure captions 

Figure 1. Single and cross effects for a) grain diameter, b) shell thickness and c) force. 

Figure 2. Evolution of the mechanical strength with the shell thickness. Influence of pH. 

Figure 3. Evolution of relative viscosity with effective volume fraction and pH. Experimental 
data and modelled curve. 

Figure 4. Internal microstructure of a dried grain and main dimensions. 

Figure 5. Internal microstructure of dried grains at different drying conditions. 

Figure 6. Shell thickness determined experimentally and theoretically. 

Figure 7. Final grain diameter determined experimentally and theoretically. 

Figure 8. Procedure to evaluate the degree of hollowness of grains. 
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Figure 1. Single and cross effects for a) grain diameter, b) shell thickness and c) force. 
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Figure 2. Evolution of the mechanical strength with the shell thickness. Influence of pH. 
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Figure 3. Evolution of relative viscosity with effective volume fraction and pH. 

Experimental data and modelled curve. 
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Figure 4. Internal microstructure of a dried grain and main dimensions. 
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YS =0.02, pH =10, [NaCl]=0, T=80°C, V0=0.3 μl

           
YS =0.02, pH =2, [NaCl]=0, T=120°C, V0=0.3 μl 

 

           
YS =0.20, pH =10, [NaCl]=0.05 M, T=80°C, V0=0.3 μl 

           
YS =0.20, pH =2, [NaCl]=0.05 M, T=120°C, V0=0.3 μl

Figure 5. Internal microstructure of dried grains at different drying conditions. 
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Figure 6. Shell thickness determined experimentally and theoretically. 
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Figure 7. Final grain diameter determined experimentally and theoretically. 
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Figure 8. Procedure to evaluate the degree of hollowness of grains. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Dying 
curve 

Xcr 
Eq. 12 

dG, rG 

Viscosity 
data 

Eq. 3 
 

Quemada model 
φshell 

d0,d, YS 

Eq. 10, 11 
s s/rG 

s/rG < 1 
Hollow grain 

s/rG = 1 
Compact grain 



27 
 

Table captions. 
Table 1. Experimental matrix (DoE) and results. 
Table 2. Probability of the F-distribution. 
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Table 1. Experimental matrix (DoE) and results.  

Exp 
YS 

[w/w] pH [NaCl] 
[M] 

Τ 
[ºC] 

V0 

[μl] 
dG 

[mm] 
e 

[mm] 
F 

[N] 
1 0.02 2 0 80 0.8 0.467 0.027 0.039 
2 0.20 2 0 80 0.3 0.581 0.101 0.131 
3 0.02 10 0 80 0.3 0.284 0.025 0.030 
4 0.20 10 0 80 0.8 0.813 0.165 0.290 
5 0.02 2 0.05 80 0.3 0.334 0.022 0.028 
6 0.20 2 0.05 80 0.8 0.733 0.214 0.226 
7 0.02 10 0.05 80 0.8 0.439 0.031 0.028 
8 0.20 10 0.05 80 0.3 0.579 0.106 0.218 
9 0.02 2 0 120 0.3 0.399 0.015 0.011 
10 0.20 2 0 120 0.8 0.752 0.252 0.237 
11 0.02 10 0 120 0.8 0.486 0.023 0.022 
12 0.20 10 0 120 0.3 0.594 0.113 0.239 
13 0.02 2 0.05 120 0.8 0.464 0.036 0.053 
14 0.20 2 0.05 120 0.3 0.556 0.109 0.144 
15 0.02 10 0.05 120 0.3 0.367 0.018 0.017 
16 0.20 10 0.05 120 0.8 0.797 0.155 0.288 
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Table 2. Probability of the F-distribution.  

Input 
variable dG e F 

YS 0.0000 0.0000 0.0000 

pH 0.6605 0.0671 0.0014 

[NaCl] 0.5220 0.9793 0.9694 

T 0.2780 0.0947 0.7186 

V0 0.000 0.0001 0.0002 

YS  x V0 - 0.0002 0.0019 

YS  x pH - - 0.0003 

 

 
 


