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Abstract 

A focused research was conducted on samples prepared from an industrial porcelain tile 

composition containing quartz, used to produce ceramic floor tiles, with the aim of evaluating the 

variation of fired specimens' Young's modulus with temperature. These samples were fired in 

controlled laboratory conditions so that specimens with pre-existing cracks were obtained and 

subject to non-destructive in situ thermo-mechanical measurements (impulse excitation technique) 

in the 22-700°C temperature range during heating and cooling processes in order to find evidences 

to explain the hysteresis phenomenon in the Young’s modulus versus temperature curve. The 

observed irreversible Young’s modulus may be directly related to the pre-existent cracks that on 

heating and cooling are closed and opened up respectively, changing thus the Young’s modulus 

which is well characterized by a hysteresis cycle. 
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1. Introduction 

Porcelain materials are produced mainly from natural raw materials such as clays, feldspar and 

quartz and/or alumina as reported in the literature [1-6]. Such materials show relatively good 

thermal, electrical, mechanical and chemical properties finding, for these reasons, applications in 

several sectors of society and industry including tableware [1-3], dental prosthesis [1], chemical 

ware [1], mechanical and structural items [1], low and high voltage electrical insulators [7-12] and 

ceramic tiles [1-3]. 

Although alumina and bauxite (aluminium hydroxide) porcelains are mechanically stronger [10], 

quartz porcelains are still produced since quartz is much cheaper than alumina [4-5]. Thus, in the 

fabrication of some porcelain parts such as electrical insulators and porcelain tiles, quartz is always 

the used filler raw material.  However, because of the high coefficient of thermal expansion,  

(quartz = 12.3 x 10-6 °C-1) [8,11] and structural transition of quartz (-quartz at 573°C to -quartz at 

574.3°C) [13,14] with volume variation (0.68%) [13], most quartz porcelains show microcracks. The 

microcracks, in this case, are located in the interlayer (glassy phase) formed between the unsolved 

quartz particles and matrix and are originated by the resulting mechanical stresses as reported 



[4,5,13-15]. Fracture often occurs through the quartz particles [5,13,16]. Some microcracks have a 

circumferential orientation [4,13,16] because in the cooling stage quartz contracts more than the 

glassy phase (glassy phase = 3.0 x 10-6 °C-1) [8,11]. Consequently, the mechanical behavior of quartz 

porcelains may be unstable and not easily predictable. 

To reduce the residual mechanical stresses in the produced quartz porcelains an optimized quartz 

particle size of 25 µm should be used [4,5]. However, even using smaller quartz particles, 

microcracks may be still visualized by microscopy as reported in the literature [4,7-9]. Thus, 

microcracks are always present in quartz porcelain materials and the understanding of the crack 

formation and propagation mechanisms is important to know how to control or to avoid cracks in 

order to prolong the lifetime of quartz porcelain parts during service. Moreover, it is important to 

say that the microcracks, as reported above, were visualized after the materials were subjected to 

a single thermal cycle. Thus, by applying multiple thermal cycles the damage is expected to 

increase so that porcelains with lower mechanical strength are obtained and their lifetime 

shortened. In fact, according to our experiences, the damage seems to increase to some extent 

but almost stabilizes at the end of the thermal cycles. This partial conclusion is based on 

microscopy observations and in situ non-destructive thermo-mechanical tests relating the Young’s 

modulus (E) with the temperature during heating and cooling processes. In this case, as reported 

in the literature [13] and according to the test method, a hysteresis in the Young’s modulus versus 

temperature curve is observed. According to a previous research [13] the hysteresis observed in 

porcelain materials is attributed to microcracking on cooling and healing of the microcracks during 

heating, in the region around the - quartz transition. Moreover, as set out elsewhere [17-18], 

porosity and metakaolinite transformation in the 429-740°C temperature range, in the early firing 

stage, negatively affect the Young’s modulus behavior. On the other hand, as reported [4] 

cristobalite formation on cooling in the 225-250°C temperature range and residual mullite may act 

as a microstructural reinforcing and so improving the mechanical strength of quartz porcelains. In 

this case cristobalite, according to a previous research [4], forms from unsolved quartz particles 

and/or from the supersaturated glassy phase by devitrification. However, as set out by Libermann 

[8,9], cristobalite and quartz play a deleterious role and must be avoided in porcelains for 

production of high voltage electrical insulators. Even so, although many efforts have been done to 

explain the hysteresis phenomenon in quartz porcelains, no clear evidences were found in the 

literature. A clear understanding of the hysteresis phenomenon may be the key to design porcelain 

materials with better performance and reliability for a specific application. 

In this context, a focused research was conducted on samples prepared from an industrial 

porcelain tile composition containing quartz (used to produce ceramic floor tiles). These samples 

were fired in controlled laboratory conditions so that specimens with pre-existing cracks, observed 

by SEM, were obtained and subject to non-destructive in situ thermo-mechanical measurements 

(impulse excitation technique) in the 22-700°C temperature range during heating and cooling 



processes in order to find evidences to explain the hysteresis phenomenon in the Young’s modulus 

versus temperature curve. 

2. Materials and methods 

An industrial spray-dried porcelain tile powder (5.5 wt.% humidity) used in the production of single-

fired floor tiles was chosen. The powder was prepared in an industrial plant by wet grinding in a 

continuous ball mill. The slurry obtained was sieved (residue below 1 wt. % on a 40 µm mesh). 

This particle distribution is of fundamental importance in increasing the green tile density and 

consequently in improving the reactivity of particles to obtain finished porcelain stoneware tiles with 

appropriated mechanical properties and good textural characteristics. 

The resulting deflocculated, concentrated aqueous suspension was spray dried. This represents 

the normal practice followed in ceramic factories for the preparation of tile ceramic bodies. 

To characterize the ceramic body and fired ceramic samples, X-ray diffraction and chemical 

analysis were performed. The chemical analysis of the ceramic body was conducted by the X-ray 

fluorescence spectroscopy technique (PANalytical model Axios, Netherlands) after the samples 

were mineralized in a concentrated HF/HCl 1:1 solution. X-ray diffraction was performed by a 

powder XRD (Broker AXS D8 diffractometer, Germany) diffractometer using Ni-filtered CuK 

radiation in the 10-70° 2 angle range. The crystalline phases were indentified from peak position 

and relative intensity, using reference data from the JCPDS Handbook. The quartz fraction was 

determined with the Rietveld method [22], using CaF2 as internal standard. 

With the aim of verifying the influence of the temperature on the Young’s modulus (E) the spray-

dried powders (moisture content of 5.5 wt.% on a dry basis) were uniaxially pressed at 45 MPa by 

means of an automatic hydraulic press so that samples with nominal dimensions of 80 mm x 20 

mm x 7 mm were obtained. Subsequently, the compacted samples were dried in a muffle oven at 

110°C for 2 h and then fired in an electric furnace (Pirometrol R, Spain) at a heating rate of 

70°C/min between 25 and 500°C, and 25°C/min from 500°C to the maximum firing temperature 

(1210°C). The holding time at the firing temperature was 6 min, followed by different cooling rates 

(slow cooling: natural cooling inside the furnace and fast cooling: air flow, 1 bar pressure) so that 

the average measured water absorption (UNE EN ISO 10545-3: 1997) in the fired bodies was 

lower than 0.5%. 

Non-destructive in situ thermo-mechanical measurements, based on the impulse excitation 

technique (Grindosonic, Belgium), were performed in the 22-700°C temperature range in order to 

determine Young’s modulus versus temperature during heating and cooling of the samples. In this 

case, the samples were heated at a rate of 6.5°C/min and 3 thermal cycles of heating and cooling 

were registered.  



To visualize microcracking in the samples after firing process, scanning electron microscopy 

(Philips XL30 CP) was used. 

3. Results and Discussion 

3.1 Ceramic body characterization 

Chemical and mineralogical analyses (Table 1 and Figure 1) of the used ceramic body indicate the 

presence of clay minerals (kaolinite and illite / muscovite), sodium feldspars. The calculated 

amount of quartz by the Rietveld method was 20 wt.%. Due to this particular chemical and 

mineralogical composition, the mechanical properties of the ceramic body after firing and its near 

zero water absorption are assured through the formation of new compounds, such as mullite and 

glassy phase as shown in Figure 2 for a fired ceramic sample. These new crystalline phases are 

the result of the reaction between the alkaline oxides from feldspars and amorphous 

dehydroxylation products of the clay minerals and free quartz as reported elsewhere [23]. 

3.2 Microstructure and thermal mechanical behavior 

Figure 3 shows SEM micrographs related to slow and fast cooled fired samples. As it can be seen 

from Figure 3, samples in both conditions of cooling show microcracks around the quartz particles. 

These microcracks are very common in porcelain materials and they contribute to the failures 

verified in the components during service. At higher magnifications (Figures 3(b) and (d)) it is 

possible to see microcracks located in the interlayer formed between the unsolved quartz particles 

and matrix, and also through the quartz particles as reported in the literature [19]. The microcracks 

display very frequently a circumferential orientation because in the cooling stage quartz shrinks 

more than the glassy phase. Consequently, the mechanical behavior of quartz porcelains may be 

unstable and not easily predictable. In fact, according to Figure 4, which shows curves 

representing the Young’s modulus as a function of the temperature (22-700°C) for 3 thermal cycles 

of heating and cooling (same heating and cooling rates), the mechanical behavior of the pre-

cracked samples is not reversible. Figure 5 shows the hysteresis (Young's modulus difference 

between cooling and heating) for the specimens under fast and slow coolings. As can be observed, 

cooling rate does not have a significant impact on the hysteresis. This result agrees with the fact 

that no big differences have been found on the microstructure (Figure 3). 

As the temperature increases, the Young’s modulus decreases almost linearly up to the quartz 

transition at 573°C. Then the Young’s modulus strongly increases up to the test temperature 

(700°C). The decrease of the Young’s modulus as the temperature increases was expected at 

least if no phase transformation, i.e., no structural changes occur. If a structural change occurs, as 

in the case of pure quartz [14], the Young’s modulus increase due to this transformation is also 

observed in the samples. In fact, according to Ault and Ueltz [20], quartz inversion can also be 



detected even though only very small amounts of free quartz are present; for example, the 

inversion was clearly observed in a body containing only about 2% free quartz. 

However, during the heating cycle a hysteresis in the samples is observed and it is accentuated for 

temperatures lower and around the quartz transition. It is possible to observe that on heating the 

samples up to about the quartz transition temperature the Young’s modulus is almost the same 

after 3 thermal cycles but it is a little higher after the second and third thermal cycles for 

temperatures higher than 600°C. On cooling down the samples the Young’s modulus follows 

almost the same curve for each applied thermal cycle but decreases a little from the first to the 

third thermal cycles from about 550 to 200°C. 

Based both in these evidences as in information reported in literature, it can be assumed that from 

temperatures above quartz transition the glassy matrix is still able to accommodate certain level of 

thermo-mechanical stresses. It is reasonable to think that viscous flow is present [21], thus some 

“necks”, or solid bonds, are expected to form. This may explain why the Young’s modulus 

increases on cooling after the second and third thermal cycles. As the temperature decreases, the 

coefficient of thermal expansion of quartz strongly increases up to the quartz transition 

temperature; however, since the viscous flow is still present, the mechanical stresses can be 

compensated (relieving of stresses). Once the temperature decreases below the quartz transition, 

the coefficient of thermal expansion of quartz increases faster than of the matrix. Therefore, the 

quartz particles start to shrink and generate stresses. Even so, particularly within the temperature 

range 550-200°C, the Young’s modulus is higher than that on heating, and it decreases a little after 

second and third thermal cycle. Nevertheless, its behavior tends to become more stable. The 

increase of the Young’s modulus on cooling may be related to the neck formations between the 

cracks interfaces, which require additional energy to break the solid bonds (Figure 6). In fact, the 

almost constant Young’s modulus of the specimen within the range 550-200°C may be explained 

by the compensation of two effects: the break of solid bonds and the increase in quartz Young’s 

modulus when the temperature decreases. 

Assuming a mixture law, it is possible to calculate Young's modulus evolution if no cracks were 

present: E=VmEm+VqEq, where Vi is the volume fractions (i=m: matrix; i=q: quartz), and Ei is the 

Young's modulus of the i-phase. If Em does not change with temperature, the variation of Young's 

modulus can be calculated as: ΔE=VqΔEq. E is not 

a function of Em. Results of this equation are shown in Figure 7. Below 550 ºC, Young's modulus 

calculated theoretically is high; and the difference may be due to cracks. 

On this basis it is possible to say that the observed hysteresis may be directly related to the pre-

existent cracks that on heating and cooling are closed and opened up respectively, thus changing 

the Young’s modulus. 

 



4. Conclusions 

Porcelain tile ceramic samples were prepared and obtained by usual industrial and laboratory 

techniques. Samples after firing process showed typical glassy and crystalline phases and cracks 

around the quartz particles as well as pores, which were detected and observed by XRD and SEM 

analyses. 

On heating and cooling pre-cracked samples, the Young’s modulus was not reversible, i.e., 

hysteresis took place. As the temperature increased the Young’s modulus decreased almost 

linearly up to the quartz transition at 573°C, when the Young’s modulus strongly increased up to 

the tested temperature (700°C). This Young’s modulus increasing was attributed to the quartz 

inversion, since it happens above the quartz transition temperature (573°C) as reported in the 

literature, and to the closing of the pre-existents cracks. 

On cooling, in particular for temperature below the quartz transition temperature, the Young’s 

modulus increased since an additional energy was necessary to break the solid bonds originated 

at high temperatures. 

The almost constant Young’s modulus in the 550-200°C temperature range may be explained by 

the compensation between the break of the solid bonds (necks) and the increase in quartz Young’s 

modulus. 

The results of this work contribute to a better understanding of quartz behavior in porcelain 

ceramics. The analysis of the hysteresis curves can be used as an interesting complementary 

method to determine the influence of other variables such as particle size distribution, mass 

fraction and composition of crystalline particles, etc. This will be helpful to produce more suitable 

porcelain tiles for specific applications.  
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FIGURES AND TABLES CAPTIONS 

Table 1. Chemical analysis of the tested porcelain tile body. 

Figure 1. X-ray diffraction of the porcelain tile body. Q: quartz, FNa: sodium feldspar, K: 

kaolinite, I/M: illite/muscovite 

Figure 2. X-ray diffraction of the porcelain tile body fired at 1210°C for 6 min. Q. quartz, 

FNa: sodium feldspar, Mu: mullite 

Figure 3. SEM micrographs of porcelain tile body samples fired at 1210°C for 6 min. (a), (b) 

slow cooled samples; (c), (d) fast cooled samples. (Slow cooling: natural cooling 

inside the furnace and fast cooling: air flow, 1 bar pressure).   

Figure 4. Young’s modulus vs. temperature of pre-cracked samples of the tested porcelain 

tile body (fast cooling). 

Figure 5. Hysteresis during the 3rd cycle of samples after fast and slow cooling. 

Figure 6. Proposed mechanism to explain thermal hysteresis 

Figure 7. Theoretical evolution of Young's modulus assuming a simple mixture law. 

Comparison with experimental results. 

 



Table 1. 

Oxyde %wt 

SiO2 

Al2O3 

Fe2O3 

CaO 

MgO 

Na2O 

K2O 

TiO2 

MnO 

P2O5 

ZnO 

ZrO2 

loss on ignition 

68.2 

19.1 

0.63 

0.74 

0.63 

4.26 

1.36 

0.63 

<0.01 

0.09 

0.04 

0.08 

3.99 
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Figure 3. 

 



Figure 4. 
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Figure 5. 
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Figure 6. 
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