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Spatial location patterns of Spanish manufacturing firms
*
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†
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‡
 

Abstract 

In this paper, we evaluate the spatial location patterns of Spanish manufacturing 

firms in each industry. We use a distance-based method, Ripley’s K function, which 

allows us to treat space as continuous. With ‘complete spatial randomness’ as benchmark, 

every sector presents significant concentration whatever the distance considered. If we 

use the locations of all manufacturing firms as benchmark, we find dispersion in some 

sectors and concentration in others, finding also differences in the spatial scale at which 

clustering occurs. Finally, the use of cities as benchmark reveals that not only is ‘first 

nature’ among the location determinants of manufacturing firms but they also include the 

self-reinforcing advantages of ‘second nature’. 
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1. Introduction 

Economic activity is distributed across space heterogeneously and the 

tendency for different industries to cluster in certain areas has been well known 

for a long time. Some traditional and well-known examples of this geographic 

concentration are high-tech firms in Silicon Valley, the auto industry in Detroit or 

the carpet industry in Dalton (USA) and, going back further in time, the textile 

industry in Lancashire (UK). In Spain, the tile industry in Castellón or the leather 

and footwear industry in Elche are also good examples of this tendency towards 

the geographic concentration of economic activity.  

Heterogeneity of the spatial distribution of activity can be caused by multiple 

and very different factors. The pioneering work by Marshall (1890) put special 

emphasis on the role of specialised local markets, positive externalities and 

linkages, as sources of agglomeration. A century later, the ‘new economic 

geography’, initiated by Krugman (1991a, b), highlighted the role of economies of 

scale and transport costs as the main agglomeration forces, which interact with the 

dispersion forces, immobile factors and product market competition to determine 

the location of economic activity. This strand of the literature has made significant 

advances in the identification of the forces and factors that determine the choice 

of location by firms and the resulting patterns of agglomeration of economic 

activity.
1
 

However, economists are not only concerned about the determinants of 

geographic concentration, but also how to measure and characterise the patterns of 

geographic concentration of firms and industries in space; this paper deals with 

this second aspect. In fact, its main objective will be to measure and characterise 

the nature and the physical scale of location patterns of Spanish manufacturing 

                                                 
1
 For further details see Ottaviano and Puga (1998), Fujita et al. (1999), Puga (1999, 2002), 

Overman et al. (2003), Venables (1995, 2006), Ottaviano and Thisse (2004) Fujita and Thisse 

(2009) or Redding (2009). 
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sectors by improving the application of some recent methods developed to assess 

the geographic distribution of economic activity.  

Specifically, we are going to use Ripley’s K function
2
, which is a spatial 

distance-based statistical method for measuring the spatial distribution of any set 

of points, in our case, the geographic location of firms. Consequently, the method 

employed will treat space as continuous in order to obtain a proper analysis of 

spatial location patterns, instead of sticking to administrative-scale data. Thus, by 

avoiding the inconvenience of geographic scale, our paper follows the third 

generation of measures to test localisation, according to the classification 

developed by Duranton and Overman (2005). In addition, our approach satisfies 

the five essential requirements that these authors stressed that any test for 

measuring concentration should fulfil, namely: (1) be comparable across 

industries, (2) control for the overall agglomeration of manufacturing, (3) control 

for industrial concentration, (4) be unbiased with respect to scale and aggregation, 

and (5) give an indication of the significance of the results. 

In Spain, many authors are also interested in this topic, the most notable being 

Callejón (1997), Viladecans (2001), Alonso-Villar et al. (2003, 2004) or Paluzie 

et al. (2004). From a different perspective, other papers have also used this kind of 

indices in the analysis of the determinants of industrial localisation in Spain, as is 

the case of Paluzie et al. (2001) or Tirado et al. (2002). It should be borne in mind 

that all of these Spanish studies have a common drawback: they treat space as 

being discrete. They restrict the spatial distribution to just one scale and analyse 

the distribution of activity over discrete geographic units, which do not 

necessarily coincide with the relevant scale from the economic point of view. In 

this way, the spatial scale chosen is a key decision that may alter the results and 

conclusions reached. 

                                                 
2
 For further details, see Ripley (1976, 1977, 1979). 
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In addition, we must emphasise another aspect that differentiates our 

empirical analysis from others: our location of firms is very accurate, because we 

know the geographic coordinates (longitude and latitude) of every establishment. 

Thus, we employ these coordinates to situate each firm as a dot on the map, 

without taking administrative borders into account.
3
  

The remainder of the paper is organised as follows. In Section 2.1, we present 

an overview of the literature on the different methods used in the empirical 

analysis of the spatial location of economic activity, in order to put our approach 

into perspective. In Section 2.2, we outline the methodology employed and the 

key improvements incorporated into our application. In Section 3, we describe our 

data set. In Section 4, we present and discuss the main results achieved, 

comparing them with those from other authors. Finally, Section 5 contains the 

most important conclusions reached and an outline of future research.  

2. Methodology 

2.1. An overview of the literature 

As a starting point from which to understand our methodological approach 

and put it into perspective, in the following we present a brief summary of the 

literature on the empirical measurement of economic agglomeration. 

First, it is important to note that this literature has been influenced by two 

very different traditions, economic geography and spatial statistics, and therefore 

has followed two different paths. Over time, these paths have converged and the 

positions of the two approaches have gradually got closer to each other. However, 

there remain some significant differences. So, our paper attempts to help unify the 

two approaches by providing an empirical method that highlights the interactions 

between them. 

                                                 
3
 Until now most studies have used the postcodes of the manufacturing firms and the geographic 

coordinates associated with each postcode to locate them in space. See, for example, Marcon and 

Puech (2003) and Duranton and Overman (2005). 
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From the perspective of economic geography, the ‘first generation’ of 

measures of localisation is based on indicators such as the Herfindahl or Gini 

index. This type of measures did not take space into consideration and could not 

distinguish whether concentration of activity is due to the presence of a few huge 

firms in a specific area or many small firms in the same specific area; in other 

words, they did not control for the level of industry concentration. Krugman 

(1991a), Brülhart (2001), Amiti (1997) or Paluzie et al. (2001), among others, 

used the Gini index to measure the concentration of economic activity.  

The ‘second generation’ of measures, as it was called by Duranton and 

Overman (2005), was initiated by Ellison and Glaeser (1997) and tried to solve 

some of the drawbacks of the previous generation. It began to take space into 

account and to control for the overall agglomeration of manufacturing and for 

industrial concentration. In addition, the Ellison and Glaeser index provided a null 

hypothesis which could be used to test for the presence of concentration. Thus, 

this type of indices allowed us to compare concentration between industries 

properly. However, this generation of measures had a disadvantage: they treated 

space as being discrete. According to these indices, an industry was said to be 

concentrated if a large part of the production or the workers were concentrated in 

a small number of regions, regardless of whether those regions were neighbours 

or not. Consequently, although the spatial dimension started to gain importance in 

this approach, there remained a downward bias when dealing with industries that 

cross the boundaries of the administrative units considered. Furthermore, this bias 

increases as the size of these administrative units is reduced. Therefore, by 

treating space as discrete, they restrict the spatial distribution to just one 

administrative scale. In the words of Duranton and Overman (2005), ‘they 

transform points on a map into units in boxes’. Thus, as already mentioned, the 

spatial scale that is chosen is a critical decision that will have important effects on 

the final results of the analysis. For instance, Viladecans (2001) and Alonso-Villar 

et al. (2003) used more than one geographic level in their analysis to determine 
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the most suitable administrative unit in each case
4
. Many other authors, such as 

Devereux et al. (2004), Rosenthal and Strange (2001) or Maurel and Sédillot 

(1999), have developed alternative indices, with similar characteristics, and used 

them to measure the geographic concentration of activity in their respective 

countries, i.e. UK, USA and France. Other applications of these indices to the 

Spanish economy can be found in Callejón (1997), for Spanish provinces, Alonso-

Villar et al. (2003, 2004) or Paluzie et al. (2004). 

The ‘third generation’, put forward by Duranton and Overman (2005), 

introduces the treatment of space as something that is continuous. Results can 

then be compared across different scales, thereby enabling their measurement to 

be unbiased with respect to arbitrary changes in the spatial units. Moreover, their 

localisation test provides an indication of the statistical significance of the results. 

Duranton and Overman (2005) popularised ‘K-density’, which was a density 

function of bilateral distances between pairs of firms. Additionally, they also 

developed a new way to test for localisation and answered questions about issues 

such as the spatial scale at which localisation occurs and its sectoral scope. 

Obviously, their approach meets the five aforementioned requirements that any 

test that measures concentration must fulfil. 

The second path, with its origins in the tradition of spatial statistics, was not at 

first of an economic nature. That is one of the reasons why we decided to treat the 

evolution of the research as two different paths, in addition to the differences in 

the methodologies used.  

A tool was needed to analyse spatial point process data and, at the very 

beginning, in the analysis of a point pattern only the nearest neighbour was taken 

into account. Ripley (1976) introduced the theory of the second-order property of 

point processes, which considered all the neighbours rather than just the nearest. 

This methodology was named ‘K function’ in Ripley (1977) and, from then on, it 

                                                 
4
 Viladecans (2001) used the municipal and provincial level, corresponding to NUTS 5 and 3 and 

Alonso-Villar et al. (2003) used the provincial and regional level, corresponding to NUTS 3 and 2. 
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has been a very common measure in spatial statistics and very widely used to 

analyse the spatial structures of point patterns. Ripley’s K function has been 

followed, modified and improved over time by many authors, such as Diggle 

(1983), Cuzick and Edwards (1990), Diggle and Chetwynd (1991) (who tried to 

deal with inhomogeneity), Cressie (1993) or Marcon and Puech (2003b), who 

tried to introduce the size of firms. 

In terms of its application, this function was first introduced into fields such 

as forestry (Duncan, 1993; Goreaud and Pélissier, 1999), regional science 

(Sweeney and Feser, 1998), or disease cases (Diggle and Chetwynd, 1991). Only 

more recently was it incorporated into the analysis of the geographic 

concentration of economic activity. In fact it was first introduced into economics 

by Arbia and Espa (1996) and later made more popular by Marcon and Puech 

(2003a), followed by Quah and Simpson (2003) or by Arbia et al. (2008). Since 

then, the use of this measure in economic fields has not stopped growing. Finally, 

we should highlight the fact that Ripley’s K function is a cumulative measure, 

instead of being a density function of bilateral distances, as is the case of the K-

density used by Duranton and Overman (2005). 

 The aim of our paper, beyond the specific application to Spanish 

manufacturing sectors, is also to help unify both perspectives, by the direct use of 

a statistical function and trying to make our approach meet the five requirements 

of Duranton and Overman (2005).  

Thus, like Marcon and Puech (2003a) and other previously mentioned authors, 

the distance-based method we are going to use to measure the spatial distribution 

of activity in Spain is Ripley’s K function, which offers important advantages 

over traditional concentration indices. Indeed, by means of this method, we can 

know whether concentration exists, what its intensity is and at what distance, or 

spatial scale, its highest level is obtained.
5
 Furthermore, in contrast to Marcon and 

                                                 
5
 Marcon and Puech (2003a) have previously used this concentration index, in France, to measure 

the spatial distribution of economic activity. 
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Puech (2003a), and like Duranton and Overman (2005), we controlled for the 

general tendency of the manufacturing industry to agglomerate and for the 

industrial concentration of each sector. 

2. 2. A framework for measuring economic agglomeration: Ripley’s K 

function  

Ripley’s K function, K(r), is a distance-based method that measures 

concentration by counting the average number of neighbours each firm has within 

a circle of a given radius, ‘neighbours’ being understood to mean all firms situated 

at a distance equal to or lower than the radius (r). From here on, firms will be 

treated as points.  

The K(r) function describes characteristics of the point patterns at many and 

different scales simultaneously, depending on the value of ‘r’ we take into 

account, that is, 
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where dij is the distance between the i
th

 and j
th

 firms; I(x) is the indicator function; 

N is the total number of points observed in the area of the study region; λ=N/A 

represents its density, A being a rectangular or alternatively a polygonal area 

covering the study region
6
 and wij is the weighting factor to correct for border 

effects.
7
 The indicator function, I(dij), takes a value of 1 if the distance between 

the i
th

 and j
th

 firms is lower than r, or 0 otherwise, and wij will be equal to the area 

                                                 
6
 The general tendency of the spatial location patterns of each sector does not vary qualitatively 

when we introduce the 'polygonal boundary', and only the K value is reduced somewhat. 

Nevertheless, when some dissimilarity appears due to a different area being employed, it will be 

remarked. 
7
 These border-effect corrections should be incorporated to avoid artificial decreases in K(r) when 

r increases, because the increase in the area of the circle under consideration is not followed by the 

increase of firms (outside the study area there are no firms). 
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of the circle divided by the intersection between the area of the circle and the area 

of study. Regarding the area of study, an initial analysis is performed using a 

rectangular bounding box in order to continue on from the literature by Marcon 

and Puech (2003). We then implement a later analysis by using a polygonal 

bounding box, which allows a better fit to the land area of the country. 

Finally, using the definition of λ, the K(r) function can be rewritten as: 

    
 


N

i

N

jij

ijij dIw
N

A
rK

1 ,1
2

 

Therefore, the K(r) function shows the average number of neighbours in an 

area of radius (r), divided by the density of the whole study region (λ). 

The next step in the evaluation of the location patterns of economic activity is 

to determine the null hypothesis and compare it with our results. The null 

hypothesis is usually a kind of randomly distributed set of locations in the area of 

study. Thus, if firms were located in the study area random and independently 

from each other, we would have a location pattern known as Complete Spatial 

Randomness (CSR). This is our first benchmark and, as long as we assume CSR, 

the K function will be equal to 2r . 

Consequently, we define MCSR(r) as the value that quantifies the difference 

between the empirical K value of the real point pattern of each sector and the 

theoretical K value,
8
 that is:  

    2rrKrMCSR   

If the empirical K value, K(r), is higher than the theoretical K value, 2r , this 

indicates concentration of our point pattern distribution, since the real density is 

greater than that of the benchmark. Lower values indicate dispersion and if K(r) is 

equal to 2r , then this means that our points are independently distributed.  

                                                 
8
 Marcon and Puech (2003) used the normalised function, L(r), because they considered that ‘a 

practical limitation of Ripley’s K function is the need to compare any value to πr
2
. However, we 

do this directly thanks to the statistical software employed.  
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Figures 1 and 2 show two spatial distributions of points, both with the same 

number of points (100) inside the same area. However, the points in Figure 1 are 

distributed at random and independently from each other, while the points in 

Figure 2 show some tendency to cluster. 

INSERT FIGURE 1 AND 2 ABOUT HERE 

Figures 3 and 4 show the empirical and theoretical K functions and the 

corresponding MCSR functions of the point patterns that appeared in Figures 1 and 

2. 

INSERT FIGURE 3 ABOUT HERE 

As we can see, on the left-hand side of Figure 3 there are two lines. The 

dashed line represents the empirical K value, that is to say, the K value of the 

observed point pattern in Figure 1, and the continuous line takes a value of 2r , 

since this represents the CSR benchmark. We can observe that the values of these 

two lines are almost the same, no matter what radius we take into account 

(   2rrK  ). The right-hand graph in Figure 3 shows the value of the MCSR 

function. Consequently, it can be seen that an independent and random 

distribution of points produces an almost flat M curve, with a value of around zero. 

The graphs in Figure 4 give us the same information as the previous ones, but 

refer to the spatial distribution of the points in Figure 2. Here, in the left-hand 

graph we can observe that   2rrK   at all distances of ‘r’ considered, which 

means that the point pattern in Figure 2 presents concentration at all distances. 

Moreover, from the MCSR curve we can determine the distance at which the 

highest level of concentration is reached. This curve also indicates whether the 

point pattern observed is concentrated or dispersed relative to the benchmark 

under consideration, depending on its positive or negative value. Therefore, the 

MCSR curve provides concise information with which to analyse different location 

patterns and we will use this function throughout the paper to analyse the spatial 

location patterns of Spanish manufacturing firms. 



 11 

INSERT FIGURE 4 ABOUT HERE 

In actual fact, considering firms to be randomly and independently distributed 

from each other within a particular area is not completely correct, because 

economic activity cannot be located in a random and independent way and the 

results are sensitive to the specific area considered. Economic activities are 

spatially concentrated for other reasons, very different to economic factors, for 

example because of dissimilarities in such natural features as mountains, rivers or 

harbours, that is, ‘first nature’. Additionally, with CSR as our benchmark we 

cannot isolate the idiosyncratic tendency of each sector to locate itself in 

accordance with the general tendency of manufacturing firms to agglomerate.  

Consequently, as an alternative scenario, we use the ‘whole of 

manufacturing’
9
 as a benchmark, thus minimising the aforementioned drawbacks. 

Indeed, we can compare the spatial distribution of each sector with the overall 

tendency of manufacturing industry to agglomerate, that is: 

     rKrKrM TMTM   

Here, MTM(r) is the difference between the K-value of each sector under 

consideration and the K-value of the total manufacturing at radius r. In this case, 

the null hypothesis will be that the spatial distribution of firms in a given sector is 

the same as the one we would get by choosing a random sample, of the same size, 

from the set of all manufacturing firms, that is to say, ‘spatial randomness 

conditional on both industrial concentration and the overall agglomeration of 

manufacturing’
10

. Relative localisation or dispersion will appear within a 

particular sector depending on whether its K-value is higher or lower than K-value 

of the total manufacturing. In such a case, our claim is that this sector is 

concentrated or dispersed relative to the whole of the manufacturing industry. 

                                                 
9
 Henceforth TM. 

10
 Duranton and Overman (2005), p. 1078.  
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Now, to evaluate the statistical significance of departures from the null 

hypothesis of each scenario in a robust way, we should construct a confidence 

interval for MCSR and MTM. The traditional technique used to construct this 

confidence interval is the Monte Carlo method, which involves generating a large 

number of independent random simulations. It should be noted that the 

construction of the confidence interval will be different in the two scenarios, MCSR 

and MTM. In the first scenario, we simulate Poisson patterns with the same number 

of points as in the real distribution of each sector and then locate them randomly 

within the area of study. In the second scenario, we also simulate random 

distributions with the same number of firms as in each of the sectors under 

consideration, but this time the location of these hypothetical firms is restricted to 

the sites where we can currently find firms from the whole manufacturing 

sector.
11

 Both scenarios are generated by running 100 simulations and both allow 

us to reject the non-significant values. A confidence interval of 95% was utilised. 

In this way, the construction of the confidence interval allows us to control for 

industrial concentration, as well as to assess the significance of departures from 

randomness, in the first scenario, and from the overall pattern of location of the 

manufacturing industry, in the second scenario.  

The use of TM as a benchmark and the way of testing for localisation, of 

course, could give rise to some controversy for two distinct reasons. On the one 

hand, if all points are used as the ‘alternative’, the in-sector points are repeated. 

This is an obvious fact, but our very reason for using ‘the whole manufacturing’ 

as a benchmark is to be able to compare across industries – one of the five 

aforementioned requirements that we want our approach to meet. In fact, the use 

of ‘TM-i’
12

 as a benchmark does not allow us to make a comparison across 

industries because this benchmark is different in each case. Even so, we carried 

                                                 
11

 This procedure is the same as the one used by Duranton and Overman (2005) in the construction 

of their counterfactuals and again minimises the shortcomings associated to the specificity of the 

considered area. 
12

 The whole of manufacturing minus the sector itself. 
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out a parallel analysis using TM-i as our benchmark, with negligible differences in 

the results.
13

 Moreover, we should emphasise that by using the whole of the 

manufacturing industries as our benchmark, we are trying to bear in mind the path 

followed in the economics field and compare the spatial location patterns of firms 

in an industry with that of the whole manufacturing industry.  

On the other hand, using the TM as a benchmark and comparing the 

deviations from TM of each sector ‘i’ with those of hypothetical industries with 

the same number of firms randomly distributed across all manufacturing sites 

(making Monte Carlo simulations) prevents us from using the class of spatial 

clustering methods proposed by authors like Cuzick and Edwards (1990) or 

Diggle and Chetwynd (1991). The reason for this is that, as Cuzick and Edwards 

(1990) pointed out, these methods are appropriate if the population density is 

unknown in advance. In other words, we do not need to use a previously selected 

group of controls, or representative sample of the entire population, because the 

entire population is known to us.  

Finally, it must be emphasised that the most popular papers that have used 

distance-based methods to assess the geographical concentration of activity, 

probably Marcon and Puech (2003a) and Duranton and Overman (2005), followed 

similar, but not identical, approaches. In fact, several differences can be found if 

we analyse them in depth. 

On the one hand, Duranton and Overman (2005) emphasised that their test 

fulfils all the five requirements that any measure of concentration should satisfy. 

However, Duranton and Overman’s method has a disadvantage with regard to 

Ripley’s K function, that is to say, it is not possible to quantify the concentration 

or dispersion but only detect the proportion of sectors that are concentrated.  

On the other hand, if we revise Marcon and Puech (2003a), we can see that 

their application of the K function, like our MCSR function, is very sensitive to the 

                                                 
13

 Results available upon request. 
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study area considered
14

 and does not satisfy two of the five above-mentioned 

requirements, since it does not control for the overall tendency of manufacturing 

firms to agglomerate or for industrial concentration. 

Now, on examining the properties of the measure of concentration used after 

improving the benchmark employed and making more robust the construction of 

the confidence interval, that is, the MTM function, it can be observed that fulfils all 

the five requirements established by Duranton and Overman and allows us to 

obtain a measure that quantifies the concentration or dispersion of all our point 

patterns, thus minimising the drawbacks associated to the use of rectangular areas 

in the analysis. 

Obviously, our concentration measure based on Ripley’s K function is 

comparable across sectors. Additionally, we control for the overall agglomeration 

of manufacturing by considering the whole set of manufacturing firms as our 

benchmark and, when constructing the confidence interval, by randomly locating 

the firms across the set of locations of all the manufacturing firms. The third 

requirement, control for industrial concentration, is satisfied by considering 

hypothetical sectors with the same number of firms as in each existing sector. 

Fourth, as we use a continuous distance method to measure spatial concentration 

and not an administrative scale, information about characteristic features of the 

patterns of localisation at different scales is known and our test is unbiased with 

respect to scale and aggregation. Lastly, statistical significance is also satisfied, 

since the confidence interval allows us to know whether the observed distribution 

is significantly different from conditional randomness. In this case, randomness is 

conditioned to the industrial concentration of each sector and to the location of the 

overall manufacturing. 

                                                 
14

 Marcon and Puech (2003) restricted their area of study and did not analyse the whole of France, 

but instead an industrial area of 40 x 40 km around Paris and a larger rectangular area of France 

measuring 550 x 630 km. 
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Finally, we would like to stress that by using alternative benchmarks we could 

redefine the null hypothesis and see to what extent the spatial distribution of each 

sector diverges from the spatial distribution of the proposed benchmark, as well as 

to what spatial scale and with what intensity this occurs. We could then attempt to 

explain the possible nature behind the different localisation behaviours. An 

interesting possibility is to use the spatial distribution of towns and cities in the 

same area as a benchmark.
15

 This benchmark will be denominated 

‘municipalities’ (M) and will allow us to discriminate between 'first nature' and 

'second nature', since the settlement of towns in space has usually been 

conditioned by some distinctive natural advantage (proximity to a river or the sea, 

availability of natural resources or productive soil, etc.).
16

 Additionally, we will 

use it as a test of the robustness of the tendency of industries to cluster for reasons 

other than the map of cities in the Spanish territory. In this case, we can compare 

the spatial distribution of each sector with the spatial distribution of Spanish 

‘cities and towns’, that is: 

     rKrKrM MM   

MM(r) being the difference between the K-value of each sector and the K-value of 

the distribution of ‘cities and towns’ at radius r. If the location patterns do not 

coincide, that is to say, if the K-values are not the same at each distance, we will 

be able to determine not only the fact that the spatial distribution of firms is 

conditioned by ‘first nature’, but also the self-reinforcing advantages of ‘second 

nature’.
17

 

The different benchmarks used provide us with distinct counterfactuals with 

which to compare the K of each sector. With CSR we do not control for anything, 

with M we control for first nature and with TM we control for first nature and also 

                                                 
15

 We would like to thank one of the reviewers for this suggestion. 
16

 Throughout the paper we use the terms ‘municipalities’ and ‘cities and towns’ as synonyms and 

when we say ‘municipality’ we are referring to a single settlement (a city, town or village) and not 

to an administrative area that may contain multiple settlements.  
17

 See Krugman (1993). 
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for the general tendency of manufacturing firms to agglomerate.
18

 In this way, the 

information that each one provides us with is more detailed and, thus, the 

comparison between the different values of M gives us clues about the different 

causes or factors that lead industries to cluster. 

3. Data 

Our empirical analysis uses current establishment level data, for the year 2007, 

from the Analysis System of Iberian Balances database,
19

 which contains detailed 

information about Spanish and Portuguese companies. We restrict our database to 

Spanish manufacturing establishments, using the National Classification of 

Economic Activities
20

 and analysing sectors at the two-digit level. Furthermore, 

we add another two requirements to our database. First, we ensure that our 

database contains only Spanish manufacturing firms on the peninsula, without 

including firms from the Canary and Balearic Islands, Ceuta and Melilla. Second, 

we restrict our analysis just to firms employing at least ten workers. Finally, once 

these requirements have been applied, our database contains exactly 43,087 firms. 

At this point the comparison between our restriction, related to the number of 

employees, and Marcon and Puech (2003)’s restriction must be considered. In fact, 

they used French manufacturing firms employing at least twenty workers. This 

difference, concerning the number of employees, is due to the fact that SMEs 

(small and medium-sized enterprises) are predominant in Spain. Consequently, 

too many firms would be left out if we only considered those with twenty or more 

than twenty workers, as Marcon and Puech did. 

Spanish manufacturing activities are classified into 23 sectors according to 

‘NACE 93 - Rev. 1’ and these are as follows: (15) Food products and beverages, 

(16) Tobacco products, (17) Textiles, (18) Wearing apparel and dressing, (19) 

Tanning and dressing of leather, (20) Wood and products of wood, (21) Pulp, 

                                                 
18

 Note that MTM(r) = [K(r) – KM (r)] – [KTM(r) – KM(r)] 
19

 SABI 
20

 NACE 93 - Rev. 1 
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paper and paper products, (22) Publishing, printing and recorded media, (23) 

Coke, refined petroleum products, (24) Chemical and chemical products, (25) 

Rubber and plastic products, (26) Other non-metallic mineral products, (27) Basic 

metals, (28) Fabricated metal products, (29) Other machinery and equipment, (30) 

Office machinery and computers, (31) Electrical machinery, (32) Radio, 

televisions and other appliances, (33) Instruments, (34) Motor vehicles and trailers, 

(35) Other transport equipment, (36) Furniture and other products, (37) Recycling. 

Table A1, situated in Appendix 1, shows us a brief descriptive analysis of the 

above-mentioned sectors including additional information, such as the number of 

firms, the number of employees, or the technological intensity of each one. Thus, 

as we can see in this table, there are great differences in the number of firms, 

depending on the sector we are referring to. Hence, three of the twenty-three 

sectors considered (16, 23 and 30) will not be analysed because they are too small 

as far as their number of establishments is concerned. 

INSERT FIGURE 5 ABOUT HERE 

Figure 5 shows the spatial distribution of four Spanish manufacturing sectors 

(15, 17, 20 and 35). Here, each dot corresponds to an establishment and we can 

see that there are great differences in the spatial distributions of these sectors.
21

 

We know the precise location of every establishment through its geographic 

coordinates (longitude and latitude), which enables us to minimise the margin of 

error in each case.
22

 These geographic coordinates are transformed into UTM
23

 

coordinates, or flat coordinates, as they are also called. This transformation was 

carried out by means of the method proposed by Morton (2003). This procedure 

converts latitude and longitude coordinates into Easting and Northing coordinates, 

                                                 
21

 The area of study is normalised, (0, 1), but the real measures would be 1075 × 882 km.  
22

 Marcon and Puech (2003) and Duranton and Overman (2005) only know the postcode of each 

manufacturing firm and thus obtain a location error of between 100 m and about 2 km. However, 

if we had used the Spanish postcodes to locate the firms, our margin of error would have been 

higher, since our postcodes cover larger areas than those from the United Kingdom or France. 
23

 Universal Transverse Mercator. 
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on a Transverse Mercator projection, the UTM coordinates being expressed in 

metres. We should highlight the fact that the construction of this system allowed 

us to move away from the Equator with hardly any distortions, because any point 

is a long way away from the central meridian of its zone. 

Finally, in order to introduce the ‘municipalities’ as a benchmark we obtained 

the location data on 7938 Spanish ‘towns and cities’ from MUNI97.ARJ. Centro 

Nacional de Información Geográfica (Spain). This database contains information 

about the geographic coordinates of Spanish cities and towns, which we 

transformed into UTM so as to be able to carry out our analysis, in the same way 

as we did with the geographic coordinates of the firms. 

4. Empirical Results and Discussion 

Following the order in which we have developed our discussion of the 

methodology, first we will discuss the results coming from the ‘CSR benchmark’, 

after that, those coming from the ‘TM benchmark’, and finally the results 

considering the set of cities and towns, the ‘M benchmark’.
24

 

Figure 6 shows the MCSR curves of the four sectors presented earlier (15, 17, 

20 and 35) and their corresponding confidence intervals.
25

 

INSERT FIGURE 6 ABOUT HERE 

If we examine the confidence intervals, we can observe that they are very 

narrow. This is due to the way they are constructed, since the difference between 

the Poisson simulations and the theoretical K-value is almost zero for every r 

considered. Consequently, although there are differences between them, all the 

                                                 
24

 We used the free statistical software ‘R’ to conduct our research. This software is downloadable 

from the following website: http://www.r-project.org/. Specifically, we used the package ‘Spatstat’ 

(kest) in our analysis. Other alternatives, as the package Splancs (khat), should be used to analyse 

the spatial clustering methods proposed by authors like Cuzick and Edwards (1990) or Diggle and 

Chetwynd (1991). 
25

 The results obtained from computing the MCSR function for each sector are available from the 

authors upon request.  

http://www.r-project.org/
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sectors present concentration relative to complete spatial randomness, whatever 

the distance we consider. But a different result was not really expected. As 

mentioned in Section 2.2, complete spatial randomness ignores the heterogeneity 

of the space in which firms are located. However, in actual fact, the spatial 

location of firms is also influenced by ‘first nature’, that is, by dissimilarities in 

such natural features as mountains, rivers or harbours, and even by the general 

tendency of manufactures to agglomerate. 

In order to correct these shortcomings, our second benchmark, as explained in 

the methodology, is constructed taking into account the location of overall 

manufacturing. Figure 7 shows the MTM curves of the four sectors presented 

earlier (15, 17, 20 and 35), together with their associated confidence intervals.
26

 

At first glance, we observe that the location patterns of these sectors differ 

considerably from the first analysis. In fact, as is well known, this type of analysis 

is sensitive to the benchmark being considered. Two aspects related to the 

confidence intervals also stand out. First, they are not as narrow as in the first case 

and, second, the smaller the sector is, the wider the confidence interval will be. 

We are going to use sector 35, Other transport equipment, to exemplify the 

different location patterns coming from the two benchmarks. In Figure 5d, we can 

see the spatial distribution of firms from sector 35, in the Spanish territory. It can 

be seen that the establishments in this sector are distributed in small clusters 

around Madrid, Barcelona, Vigo and the Basque Country, as well as along coastal 

areas in general.  

If we compare the outcomes obtained using both benchmarks (Figures 6d and 

7d), it becomes clear that the resulting location patterns are very different. In fact, 

the location pattern shown in Figure 7d has characteristic features that are more 

consistent with the real distribution of firms (shown in Figure 5d) than Figure 6d. 

The apparent concentration of sector 35 that appears in Figure 6d is partly due to 

                                                 
26

 It should be noted that the graphs of the MTM curves of all the sectors analysed appear in 

Appendix 2. 
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an inappropriate benchmark. Indeed, when the MCSR function is used, sector 35 

presents significant concentration up to a radius length of 186 km. However, when 

we control for the ‘first nature’ factors and for the general tendency of economic 

activity to agglomerate, using the MTM function, we achieve results that are more 

realistic. In this case significant concentration is observed up to a radius of 25 km 

and the maximum significant peak is reached at a distance of 9 km. Furthermore, 

significant dispersion is found from kilometre 57 onwards. Thus, we note that the 

results obtained from the MTM function describe the real distribution of 

establishments in space in a more accurate way. 

INSERT FIGURE 7 ABOUT HERE 

The rest of the sectors analysed using the second benchmark also show 

different location patterns, and this result is independent of the bounding box used 

(rectangular or polygonal). Table 1 summarises the results obtained from 

computing the MTM function for each sector by using a rectangular boundary, 

while Table 2 summarises the same results using a polygonal boundary.  

INSERT TABLE 1 ABOUT HERE 

INSERT TABLE 2 ABOUT HERE 

If we focus on the second and third columns in Table 1 and 2, we can see that 

not every sector presents concentration compared to manufacturing firms as a 

whole, whatever the length of the radius considered, as happens with the CSR 

benchmark. Nevertheless, in terms of the intensity reached when we use the 

rectangular boundary and TM as a benchmark, the sectors with a higher 

concentration remain the same. In this way, if we pay attention to the fourth 

column in Table 1, we can see that the most highly concentrated sectors, i.e. those 

that reach the highest M value, are the same as the ones in the first analysis and in 

the same order: (19) Tanning and dressing of leather, (17) Textiles, (32) Radio, 

televisions & other appliances, (22) Publishing, printing and recorded media, (33) 

Instruments, (24) Chemical and chemical products, and (31) Electrical machinery. 
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Obviously, the MTM value of these sectors is not as high as the MCSR value, 

because in this case we compare each sector with the location of overall 

manufacturing and not with complete spatial randomness. When we apply the 

polygonal boundary, these sectors remain the same but in a different order. 

It may be interesting to compare the above-mentioned results with those 

obtained by Duranton and Overman (2005) in the UK. Surprisingly, they are very 

similar. On the one hand, they find that the localised sectors in the UK are 17, 18, 

19, 22, 30, 31 32 and 33, which almost coincide with the most concentrated 

sectors in Spain. On the other hand, the least concentrated sectors in Spain match 

those non-localised sectors in the UK perfectly, i.e. 15, 20 and 26. Therefore, it 

can be observed that manufacturing sectors tend to follow similar patterns of 

location between countries; at least, this seems to be the case between Spain and 

the UK. Additionally, the most concentrated sectors in France and the USA are 

Textile (17) and Leather products (19),
27

 these results also coinciding with the 

most concentrated sectors in Spain and the UK. 

Alonso-Villar et al. (2004) also studied the geographical concentration of 

Spanish industry, between 1993 and 1999,
28

 and concluded that the most highly 

concentrated industries, according to the Maurel and Sédillot index, are 19, 17, 32, 

22, 33 and 24. As we can see, these results are the same as ours. Hence, thanks to 

the results obtained by these authors, we can also deduce that, broadly speaking, 

the spatial location patterns of Spanish manufacturing sectors have not varied 

significantly in recent years, since the highest concentrated sectors are still the 

same as in 1999, thus showing some temporal persistence. 

In spite of this regularity, every Spanish manufacturing sector possesses its 

own singularities and its patterns of location differ meaningfully from one to 

another. In fact, the persistence of the agglomeration in space, i.e. the spatial scale 

                                                 
27

 See Maurel and Sédillot (1999) and Ellison and Glaeser (1997). 
28

 Nevertheless, they only presented results for 1999, since not many differences were observed 

throughout the whole period. 
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dimensions of the cluster, varies depending on the sector considered. Hence, we 

classify all of the sectors analysed into five groups. First, type 0 sectors are those 

formed by industries that do not present statistically significant concentration or 

dispersion in comparison to the total manufacturing industry. Second, type 1 

sectors include industries that show a greater tendency to concentrate than the 

manufacturing as a whole at all distances under consideration. Type 2 sectors 

consist of those industries that are systematically less concentrated than the 

overall manufacturing industry, that is, they show just relative dispersion patterns. 

Type 3 industries are relatively concentrated at low distances and dispersed at 

large distances. Finally, type 4 sectors include those industries that are relatively 

dispersed at low distances, while at long distances they are more concentrated 

than manufacturing as a whole. 

The classification of the different sectors appears in the last column of Table 1, 

‘Type of cluster’. On the one hand, it can be seen that 12 sectors (17, 19, 21, 22, 

24, 25, 27, 29, 31, 32, 33 and 34), more than half of the total number that were 

considered, present a stronger tendency to cluster than manufacturing firms as a 

whole at all distances (Type 1), whereas just one sector presents only dispersion in 

relation to the manufacturing industry as a whole at all distances (Type 2). Finally, 

it should be noted that sectors 18, 28 and 37 do not present significant divergence 

in their tendency to cluster with regard to manufacturing sectors as a whole (Type 

0). 

On the other hand, we can see that the rest of the sectors present different 

location patterns depending on the spatial scale chosen, that is to say, depending 

on the length of the radius being considered. Hence, only sector 35 show 

concentration patterns, as compared to manufacturing as a whole, at low distances 

and relative dispersion at large distances, that is to say, concentration takes place 

on a relatively small scale (Type 3). Consequently, we may deduce that the 

establishments in this sector are distributed in small clusters, presenting dispersion 

when the distances become longer. Finally, sectors 20, 26 and 36 are relatively 
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dispersed at low distances and more concentrated than manufacturing as a whole 

at long distances (Type 4). In the case of sectors 20 and 26, however, this 

tendency to cluster in relation to overall manufacturing at long distances is quite 

weak and, in the three cases, the distance at which this tendency appears is very 

long. As we can see in Table 1, we only find relatively significant concentration 

patterns in these sectors from 137, 145 and 96 km onwards, respectively, and so 

these three sectors can be considered to be relatively dispersed. 

When we introduce the ‘polygonal boundary’ (Table 2), the concentration 

intensity of the sectors is reduced. Thus, sectors such as 17 and 19 stop showing a 

greater tendency to concentrate than the manufacturing as a whole at all distances 

considered (Type 1) and become sectors which are concentrated at low distances 

and dispersed at large distances, as compared to manufacturing as a whole (Type 

3). Moreover, the number of sectors that do not present a statistically significant 

concentration or dispersion in comparison to the total manufacturing industry is 

also increased, since there are three sectors when we use the rectangular area and 

five sectors by using the polygonal area. 

Taking into account the MTM value from the fourth column in Table 1 and 2, 

we can deduce that dispersion happens on different scales and the most highly 

dispersed sectors in Spain are (15) Food products and beverages, (20) Wood and 

products of wood, and (26) Other non-metallic mineral products. These dispersed 

sectors, which have an elevated dependence on natural resources, are related to 

food or to the primary sector. Moreover, these sectors are also likely to be made 

up of specialised manufacturers that disperse their establishments to supply the 

different markets in the best possible way. 

Alternatively, if we pay attention to the sectors that have been classified as the 

most highly concentrated, it can be seen that the agglomeration forces that explain 

this concentration do not exhibit particular characteristics. On the one hand, the 

two sectors that show a higher level of concentration in Spain, 19 and 17, are 

clearly low-tech. We presume that the geographical concentration presented by 
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these sectors is wholly due to historical trends.
29

 On the other hand, technological 

spillovers seem to be the main reason for location in sectors 31, 32 and 33. Finally, 

sectors 22 and 24 are the ones for which the search for skilled labour appears to 

play a decisive role in their decision to concentrate. This indicates that 

‘knowledge spillovers’ are not the only factors determining the concentration of 

activity. Indeed, there are also many other factors such as local labour pooling, 

natural advantages, tradition, transport costs or upward and forward linkages
30

 

that can be factors determining this concentration and which play an important 

role in the patterns of localisation of each sector. 

Hence, although according to the literature high-tech sectors may be the most 

highly concentrated, this is not so in our analysis. In fact, it does not occur in the 

UK, France or in the USA either. Thus, Devereux et al. (2004) stressed that ‘the 

most geographically concentrated industries appear to be relatively low-tech’ and 

Maurel and Sédillot (1999) found that the most concentrated sectors in France are 

textile and leather products, two of the most traditional and low-tech sectors. 

Similar results can also be found for the United States. Thus, in Chapter 2 of 

Krugman (1991a) it is said that the sectors with a higher degree of concentration 

are not high-tech, but rather they are sectors related to the textile industry. 

Nevertheless, we are not trying to say that the high-tech sectors are not 

concentrated; we just want to draw attention to the fact that low-tech sectors can 

also be concentrated. As a result, the diversity of forces that, according to the 

theory, can cause agglomeration seems to be present with different degrees of 

intensity in each sector. 

It can be observed that quite a lot of sectors show concentration patterns at 

shorter distances, i.e. less than 90 km (13 out of 20). The percentages of 

manufacturing firms and workers employed in these concentrated sectors are 65% 

and 67% respectively, whereas 35% of the manufacturing firms and 33% of 

                                                 
29

 They have probably settled and clustered in the same area since the Industrial Revolution. 
30

 Emphasised in this way by Krugman (1991a). 
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manufacturing workers belong to dispersed sectors. Therefore, we can state that a 

larger proportion of manufacturing employees work in sectors with concentration 

patterns and that these sectors have a larger proportion of firms. 

Finally, the agglomerative strengths belonging to each sector, which pull 

economic activities together, may weaken at long distances and determine the 

differences in the size of the clusters and in their spatial sequence. The specific 

location of firms is the result of the trade-off between centripetal (external 

economies, scale economies, technological spillovers, specialised factor markets, 

and so one) and centrifugal forces (diseconomies of agglomeration, immobile 

factors, land rents, etc.) and this is what will determine the differences in the size 

of each cluster. At first, the increase in firms located in an area creates a self-

reinforcing process of agglomeration, which leads to a progressive increase in the 

centripetal forces associated with this location. Given the intensity of centripetal 

forces, an increase in the radius (r) and the corresponding increase in distance 

may reduce the incentive to locate in a particular cluster. Thus, this trade-off 

between the centripetal and the centrifugal forces does not necessarily increase or 

decrease monotonically with distance. For this reason, it is interesting not only to 

analyse the average values of the M function at each radius, but also its variations 

when we change the radius, that is, M/r (the marginal MTM value at each 

distance). This marginal MTM value informs us about the increase in the number of 

neighbours in each sector when r becomes higher as compared to the increase in 

neighbours of the overall manufacturing industry. 

In Appendix 2, we can see this information for every sector that was 

considered; nevertheless, we are going to give a detailed description of the 

location patterns of four sectors, which present a higher level of concentration. 

Thus, in Figure 8, we can see the MTM value (continuous line) and the marginal 

MTM value (dashed line) for sectors 17 (textiles), 19 (tanning and dressing of 

leather), 24 (chemical and chemical products) and 32 (radio, televisions and other 

appliances). On observing these graphics, some questions come to mind: What is 
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the distance at which the greatest increases in the relative density of neighbours 

are produced? Do these increases present any kind of regularity? 

The distances at which we can find the maximum increase in neighbours 

(maximum M/r) vary considerably for each sector, depending on the 

agglomerative strengths that are specific to each sector. These distances will be 

called ‘distance of maximum increase’ and are summarised in Table 3. In this 

table, we can compare the distances at which an absolute maximum in MTM is 

found (absolute MTM) with the distances at which maximum increases in MTM take 

place (marginal MTM). It can also be observed how the two values complement 

each other in order to give us more detailed information about the location 

patterns of each sector. 

INSERT TABLE 3 ABOUT HERE 

INSERT FIGURE 8 ABOUT HERE 

In sector 17, we can see that the marginal MTM value presents four noticeable 

peaks at the distances of 2, 8, 17 and 25 km. These increases in the number of 

neighbours at short distances can be interpreted as the existence of nearby clusters 

(or micro-clusters) in the textile industry. Moreover, we find new peaks when we 

increase the distance and the radius measures 62, 69 and 73 km, respectively. This 

can be due to the existence of new clusters, which are separated from the previous 

ones, in other regions or cities. Sector 19 also shows multiple nearby clusters up 

to a similar distance (27 km). In fact, we find significant increases in the number 

of neighbours when r measures 2, 9, 24, 26 and 27 km. Thus, sectors 17 and 19 

allow us to observe similar location patterns at short distances, and the distances 

at which the clusters appear almost coincide with one another. However, as you 

can see in Appendix 2, the increase in neighbours in the textile sector is more 

regular than in sector 19, since two great increases in the number of neighbours 

appear in the latter at distances of 2 and 27 km. 



 27 

The centripetal forces of the previously analysed sectors, 17 and 19, may be 

different from those of sectors 24 and 32, since the initial spatial scale at which 

multiple nearby clusters appear in these sectors is smaller (16 and 18 km, 

respectively, instead of 25 and 27 km). Indeed, sectors 17 and 19 are traditional, 

low-tech sectors whereas 24 and 32 are high-tech sectors. Therefore, we can 

assume that the technological spillovers may reduce the distance at which the 

clusters are produced. Thus, the nature of the centripetal and centrifugal forces of 

each sector will determine the differences in the size of the clusters and the 

sequence in which clusters appear within the territory. 

Finally, we will discuss the results and highlight some of the most important 

conclusions of considering the set of ‘municipalities’ as a benchmark. 

INSERT TABLE 4 ABOUT HERE 

Although the location of the ‘cities and towns’ is a clear constraint on the 

location of manufacturing, and therefore the existence of agglomerations of 

people will be an obvious reason for finding a concentration of manufacturing 

firms in space (as shown in Table 4), the different industrial sectors in Spain are 

concentrated for reasons other than just the spatial distribution of Spanish ‘cities 

and towns’. In general terms, the relative concentration intensity of each Spanish 

manufacturing sector is higher if we compare it with the distribution of the 

Spanish ‘municipalities’ instead of comparing it with the distribution of the whole 

of manufacturing. Obviously, this means that the ‘Spanish municipalities’ present 

a more dispersed spatial pattern than the ‘whole of manufacturing’. Thus, we will 

be able to determine that the spatial distribution of firms is conditioned not only 

by ‘first nature’, but also by the self-reinforcing advantages of ‘second nature’. 

However, although all sectors have a higher relative concentration level if we 

compare them with the distribution of the Spanish ‘cities and towns’, the location 

patterns of each one vary if they are analysed in detail. The highest intensity in the 

concentration appears mostly in the initial distances of ‘r’. This means that 
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Spanish ‘municipalities’ are more spatially dispersed than the whole of 

manufacturing at small distances of ‘r’, but when this distance becomes larger, it 

changes.
31

 Therefore, when ‘r’ is made larger, the relative level of concentration 

of the sectors decreases more quickly if we compare it with the distribution of 

Spanish ‘municipalities’ instead of comparing it with the distribution of the whole 

of manufacturing. This evidence has two implications: first, it confirms that the 

self-reinforcing advantages of ‘second nature’ at work are different for each sector 

and, second, in the case of Spain, these reinforcing advantages have a smaller 

scope than those of the ‘first nature’. 

5. Conclusions 

This paper analyses the spatial location patterns of manufacturing firms in 

Spain. To do this, we use a distance-based method, which allows us to consider 

space as continuous and avoids the drawbacks of the administrative scale, and 

thus geographic concentration can be measured at different scales. Therefore, this 

method enables us to know the intensity of concentration or dispersion of each 

Spanish manufacturing sector, the distance at which its maximum level is 

obtained, and the spatial sequence of the increases in the said intensity. Moreover, 

we can detect whether the departures from randomness are statistically significant.  

The characteristics of the location patterns of the Spanish manufacturing 

sectors can be attributed, in our first analysis, to various forces acting 

simultaneously. Thus, the location of the activity may be due, first of all, to the 

dissimilarities in such natural features as mountains, rivers or harbours, that is, 

‘first nature’. Secondly, it may be due to the general tendency of manufacturing 

firms to agglomerate and, thirdly, to the idiosyncratic tendency of each particular 

sector to concentrate. In fact, by using ‘complete spatial randomness’ as the 

benchmark, we find that in most of the sectors a general tendency to concentrate 

predominates, whatever the distance considered.  
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 Detailed results are available upon request from the authors. 
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In our second analysis, we control for the first nature and for the general 

tendency of manufacturing firms to agglomerate, which allows us to isolate the 

specificities of each sector and their idiosyncratic tendency to concentrate. In this 

way, although the most highly concentrated sectors coincide in both analyses, not 

every sector presents concentration as compared to the overall manufacturing 

industry. Our results show that about 70% of Spanish manufacturing sectors and a 

similar proportion of manufacturing employees are relatively concentrated. The 

most highly concentrated sectors are both traditional (predominated by textile-

related industries) and high-tech industries. This also occurs in the UK, France or 

the USA, as we have already commented, and it coincides with the Spanish results 

obtained in 1999. From this, we can conclude that these location patterns have not 

varied significantly in Spain in the last few years and that manufacturing sectors 

in different countries tend to follow similar patterns of location. These findings 

lead us to believe that this is more likely to be due to idiosyncratic features of the 

sectors (technology, input structure, transport costs, and so forth) than to 

characteristics of the countries themselves. 

With regard to the specific location patterns of each sector, more than half of 

them present a stronger tendency to cluster than the manufacturing industry as a 

whole, no matter what the distance is; in fact just one sector presents dispersion at 

every radius measured and the rest present concentration or dispersion depending 

on the spatial scale that is chosen. However, by employing a polygonal boundary 

instead of a rectangular bounding box, the sectors that present relative 

concentration patterns at all distances considered are reduced, while those that 

present some degree of relative dispersion increase. Finally, using ‘total 

manufacturing’ as the benchmark, our index is comparable across industries, it 

controls for the overall agglomeration of manufacturing and for industrial 

concentration, it is unbiased with respect to scale and aggregation, and it gives an 

indication of the significance of the results. 
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By means of the marginal MTM value (M/r), which informs us about the 

increase in neighbours when r becomes higher in every sector relative to the 

increase in neighbours in the overall manufacturing, it can be seen that the 

distances at which we can find the maximum increase in neighbouring firms vary 

considerably among sectors. In all probability, the differences in the size of the 

clusters and the sequence in which clusters appear in the territory are determined 

by the nature of the centripetal and centrifugal forces of each sector. As a result, 

we find multiple nearby clusters in the most highly concentrated sectors, but the 

initial spatial scale at which we find these multiple micro-clusters is smaller in 

high-tech sectors (i.e. 16 km) than in traditional, low-tech sectors, where it is 

25 km. This may be because the centripetal forces are stronger in high-tech 

sectors. Finally, when the spatial scale considered becomes larger, new clusters 

appear and this indicates the existence of new agglomerations of firms in different 

regions. 

By using the spatial distribution of ‘cities and towns’ as a benchmark, we can 

go a step forward. Thus, although all sectors have a higher relative concentration 

level if we compare them with the distribution of Spanish municipalities, this 

tendency is stronger at small distances. This result indicates a clear tendency for 

industries to form clusters more than Spanish municipalities at small distances, 

thus confirming that the self-reinforcing advantages of ‘second nature’ at work 

have a smaller scope than those of ‘first nature’. 

Finally, before ending, we should just add that we are aware of the 

aggregation issue in our analysis, given that we are dealing with sectors that are 

aggregated at the two-digit level. This aspect may generate a clear compensation 

effect between the different branches of each sector, since the most aggregated 

and the most dispersed ones can compensate each other. Consequently, one of the 

next steps in our analysis could be to try to find out whether the location patterns 

presented by the different branches of each sector are similar to or different from 

those displayed by the sector itself. 
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Figure 1. Independent distribution. Figure 2. Concentrated distribution. 

 

 

  

Figure 3. Ripley’s K function (theoretical and empirical) and M function corresponding 

to the point pattern from Figure 1. 

 

 

  

Figure 4. Ripley’s K function (theoretical and empirical) and M function corresponding 

to the point pattern from Figure 2. 
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(c) (d) 

Figure 5. Maps of spatial distribution of firms. 
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(a) (b) 

  
(c) (d) 

Figure 6. Spatial location patterns (MCSR). 
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(a) (b) 

  
(c) (d) 

Figure 7. Spatial location patterns (MTM). 
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(a) (b) 

  
(c) (d) 

Figure 8. Spatial location patterns (MTM and marginal MTM value). 
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Table 1. Location patterns of Spanish manufacturing sectors (MTM_rectangular bounding box) 

Sectors (NACE 93 - Rev. 1) 
Significant 

concentration 

Significant 

dispersion 

 Significant peak 

Type of 

cluster  
MTM 

value 

Distance 

(r) 

15 Food products and beverages --- All distances  -0.04 80 km 2 

17 Textiles All distances ---  0.19 82 km 1 

18 Wearing apparel and dressing --- --- --- --- 0 

19 Tanning and dressing of leather All distances ---  0.45 152 km 1 

20 Wood and products of wood 137-200 km 0-120 km  -0.03 64 km     4 

21 Pulp, paper and paper products All distances ---  0.07 103 km 1 

22 Publishing, printing & recorded media All distances ---  0.12 28 km 1 

24 Chemical and chemical products 0-128 km ---  0.08 41 km 1 

25 Rubber and plastic products 0-160 km ---  0.04 90 km 1 

26 Other non-metallic mineral products 145-200 km 0-123 km  -0.03 60 km 4 

27 Basic metals 36-200 km   ---  0.03 200 km 1 

28 Fabricated metal products --- --- --- --- 0 

29 Other machinery and equipment 0-169 km   ---  0.04 77 km 1 

31 Electrical machinery 0-131 km ---  0.07 48 km 1 

32 Radio, televisions & other appliances All distances ---  0.12 80 km 1 

33 Instruments 0-140 km ---  0.11 45 km 1 

34 Motor vehicles and trailers 51-100 km ---  0.02 80 km 1 

35 Other transport equipment 0-25 km 57-200 km  0.02 9 km 3 

36 Furniture and other products 96-200 km 25-93 km  0.05 167 km 4 

37 Recycling --- --- --- --- 0 
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Table 2. Location patterns of Spanish manufacturing sectors (MTM_polygonal bounding box) 

Sectors (NACE 93 - Rev. 1) 
Significant 

concentration 

Significant 

dispersion 

  Significant peak 

 
MTM 

value 

Distance 

(r) 

15 Food products and beverages --- All distances -0.01 63 km  

17 Textiles 0-37 km   49-200 km 0.03 20 km  

18 Wearing apparel and dressing 116-200 km --- 0.04 200 km  

19 Tanning and dressing of leather 0-82 km 86-200 km 0.11 30 km  

20 Wood and products of wood --- 42-127 -0.01 70 km  

21 Pulp, paper and paper products All distances --- 0.04 95 km  

22 Publishing, printing & recorded media All distances --- 0.13 82 km  

24 Chemical and chemical products All distances --- 0.03 76 km  

25 Rubber and plastic products --- --- --- ---  

26 Other non-metallic mineral products --- 36-200 km -0.03 200 km  

27 Basic metals --- --- --- ---  

28 Fabricated metal products All distances --- 0.07 87 km  

29 Other machinery and equipment --- 87-200 km -0.03 200 km  

31 Electrical machinery 0-159 km --- 0.03 85 km  

32 Radio, televisions & other appliances All distances --- 0.12 128 km  

33 Instruments All distances --- 0.07 81 km  

34 Motor vehicles and trailers --- --- --- ---  

35 Other transport equipment 0-10 km 130-200 km 0.01 7 km  

36 Furniture and other products --- --- --- ---  

37 Recycling --- --- --- ---  
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Table 3. Distance of maximum intensity of neighbouring firms 

Sectors (NACE 93 - Rev. 1) 
 Absolute   

MTM 

Marginal       

MTM
 (a)

 

15 Food products and beverages 80 km 
 

17 Textiles 87 km 2/8/17/25 km 

18 Wearing apparel and dressing ---  

19 Tanning and dressing of leather 157 km 2/9/24/26/27 km 

48/81/113 km 

20 Wood and products of wood 64 km  

21 Pulp, paper and paper products 103 km 17 km 

22 Publishing, printing & recorded media 36 km 2-6/17 km 

24 Chemical and chemical products 83 km 4-6/13/16 km 

25 Rubber and plastic products 90 km 18 km 

26 Other non-metallic mineral products 60 km  

27 Basic metals 63 km  

28 Fabricated metal products 66 km  

29 Other machinery and equipment 77 km 11 km 

31 Electrical machinery 81 km 10 km 

32 Radio, televisions & other appliances 83 km 5/7/ 9-10 km 

12/16/18 km 

33 Instruments 81 km 4/8-10/14/17 km 

34 Motor vehicles and trailers 80 km  

35 Other transport equipment 9 km 2 km 

36 Furniture and other products 193 km  

37 Recycling ---  

 (a) Those sectors in which the ‘marginal MTM value’ does not appear is because it 

does not add relevant information. 
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Table 4. Location patterns of Spanish manufacturing sectors (MM) 

Sectors (NACE 93 - Rev. 1) 
Significant 

concentration 

Significant 

dispersion 

  Significant peak 

 
MM 

value 

Distance 

(r) 

15 Food products and beverages 0-108 km 117-200 km  0.02 73 km  

17 Textiles All distances ---  0.24 86 km  

18 Wearing apparel and dressing 0-138 km 145-200 km 0.06 69 km  

19 Tanning and dressing of leather All distances ---  0.44 114 km  

20 Wood and products of wood 0-141 km 153-200 km  0.03 76 km  

21 Pulp, paper and paper products All distances ---  0.12 85 km  

22 Publishing, printing & recorded media All distances ---  0.17 78 km  

24 Chemical and chemical products 0-141 km 153-200 km  0.14 78 km  

25 Rubber and plastic products 0-145 km 152-200 km  0.10 84 km  

26 Other non-metallic mineral products 0-139 km 151-200 km  0.03 76 km  

27 Basic metals 0-122 km 127-200 km  0.08 70 km  

28 Fabricated metal products 0-125 km 131-200 km 0.07 72 km  

29 Other machinery and equipment 0-126 km 134-200 km  0.10 74 km  

31 Electrical machinery 0-137 km 144-200 km  0.13 75 km  

32 Radio, televisions & other appliances All distances ---  0.18 80 km  

33 Instruments 0-160 km 171-200 km  0.17 79 km  

34 Motor vehicles and trailers 0-133 km 142-200 km  0.08 80 km  

35 Other transport equipment 0-103 km 112-200 km  0.06 58 km  

36 Furniture and other products All distances --- 0.06 78 km  

37 Recycling 0-130 km 138-200 km 0.06 55 km  
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Appendix 1 

Table A1. Additional descriptive information about Spanish manufacturing sectors 

Sectors (NACE 93 - Rev. 1) 

 

Number 

of firms 

 

Number of 

employees 

 

Technological 

intensity
32

 

 

 

15 Food products and beverages 5,761 356,314 L 

16 Tobacco products 6 1,226 L 

17 Textiles 1,949 81,818 L 

18 Wearing apparel and dressing 1,710 59,286 L 

19 Tanning and dressing of leather 1,698 46,708 L 

20 Wood and products of wood 2,340 75,844 L 

21 Pulp, paper and paper products 837 56,890 L 

22 Publishing, printing & recorded media 3,004 130,222 L 

23 Coke, refined petroleum products 12 16,417 M-L 

24 Chemical and chemical products 1,722 158,238 H 

25 Rubber and plastic products 2,165 138,488 M-L 

26 Other non-metallic mineral products 3,413 225,792 M-L 

27 Basic metals 986 137,066 M-L 

28 Fabricated metal products 8,094 267,568 M-L 

29 Other machinery and equipment 3,015 161,407 M-H 

30 Office machinery and computers 77 6,374 H 

31 Electrical machinery 1,099 79,357 M-H 

32 Radio, televisions & other appliances 344 31,593 H 

33 Instruments 376 19,528 H 

34 Motor vehicles and trailers 876 192,873 M-H 

35 Other transport equipment 451 58,274 M-H 

36 Furniture and other products 2,924 100,084 L 

37 Recycling 

 

228 

 

8,095 

 

L 

 

                                                 
32

 This classification of sectors according to the technological intensity belongs to the National 

Statistics Institute, meaning H = high, M-H = medium high, M-L = medium low and L = low. 
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Appendix 2 

The graphs situated on the left illustrate the spatial distribution of firms from each 

Spanish manufacturing sector. The graphs on the right show the spatial location 

patterns of these sectors measured by the MTM function and a rectangular 

boundary (thick continuous line), with the addition of the marginal MTM value 

(dashed line) and their corresponding confidence intervals (thin continuous lines). 
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