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Strain in free standing CdSe/CdS core-shell nanorods
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(Received 1 July 2011; accepted 28 November 2011; published online 3 January 2012)

The main characteristic strain trends in free-standing II–VI wurtzite semiconductor nanorods

coated with a few-monolayers shell are reported. Calculations for different aspect ratios and shell

thicknesses show that these are key factors for the strength of strain components that can even

change their sign. Strain in core-shell nanorods with few monolayers coating is strong and

qualitatively different from that of buried dots. Hexagonal symmetry compared to cubic and

isotropic approximations reveals that, with the appropriate parameters, isotropic strain mimics

very well the strain distributions of wurtzite core-shell nanorods. VC 2012 American Institute of
Physics. [doi:10.1063/1.3673256]

I. INTRODUCTION

In the last decade, various colloidal chemical approaches

have been successfully developed for synthesizing inorganic

nanostructures with controlled morphologies and patterns,1 so

nowadays, semiconductor quantum dots (QDs) are commonly

fabricated either as colloids suspended in solution or as epi-

taxial structures grown on solid crystalline substrates. Epitax-

ial QDs can be reproducibly prepared, arranged in regular

patterns, and directly incorporated into optoelectronic devi-

ces. QD nets may be fabricated in different sizes and a wide

range of shapes, as pyramids, lenses, or flat cylinders. On the

other hand, solution phase techniques provide exceptional

control over size, monodispersity, and shape.2 We may

actually find a wide variety of shapes3 from nearly spherical

nanocrystals (NCs) to large aspect ratio nanorods (NRs) and

tetrapods.4 In addition, colloidal heteronanocrystals are also

currently synthesized5 as, e.g., core-shell dot-in-a-rod6,7 and

rod-in-a-rod.8

Elongated nanocrystals have an interesting physics, as

systems located between zerodimensional QDs and one-

dimensional quantum wires (QWs). They display unique

characteristics including low lasing thresholds associated

with increased Auger lifetimes,9 large absorbance cross sec-

tions, and linearly polarized absorption and emission.10 Their

properties show promise for using NRs in applications such

as lasing,11 biolabeling,12 polarized single-photon sources,13

light harvesting, and carrier collection.6,14

Among semiconductor colloidal nanostructures, CdSe

and CdS quantum dots and rods are excellent systems for op-

tical and electronic applications due to their easy synthesis,

optical quality, and relatively stable surface passivation. The

band gaps of CdSe and CdS are in the visible light range and

can be tuned by changing the nanostructure size. This makes

them good candidates for optical related applications, includ-

ing solar cells and photoelectrochemical cells.15

NRs can be coated with an epitaxial graded shell of a

few monolayers in thickness.16 This coating increases, in

general, the NR stability in air and allows for better synthesis

control and quality. In addition, this core/shell structures and

nanojunctions are of special interest as the different band

alignment can drive the electron and hole into different loca-

tions and dissociate the excitons, which is the main function

of a p-n junction.17

Semiconductor nanocrystals are greatly impacted by the

effects of strain arising in heterojunctions, in both the solid

state phase and also in the colloidal state. On the one hand,

lattice strain is the reason that QDs spontaneously grow on

lattice mismatched solid substrates in the Stranski-Krastanov

growth mode, leaving substantial residual strain in the nano-

crystals. On the other hand, colloidal semiconductor (core)-

shell materials, with a relevant mismatch in bond length

between core and shell, can also generate a strong strain field

in the nanocrystal, severely influencing its optical and elec-

tronic properties.18 Thus, it has been reported that by varying

the composition and size, CdSe/CdS heterostructured nano-

rods were tuned between type-I, quasi type-II, and type-II

characteristics.7,8

In the present paper, we study the main characteristic

strain trends arising in free-standing coated NRs. We have

chosen CdSe/CdS as representative of II-IV coated NRs. Sev-

eral issues are addressed. Among them the different aspect ra-

tio, since buried QDs, look like flat cylinders or lens while

NRs have a large aspect ratio like a cut nanowire. Also, we

study the influence of the coating shell thickness, as NRs can

be coated by one or a few monolayers (MLs) and, therefore,

the strain at the border of the shell can be nonzero. In this

case, we must impose boundary conditions of zero normal

stress for the free NR surface, while in the case of a QD em-

bedded in an infinite matrix, one assumes null deformation

field far away from the QD border. We will see that beyond a

rather small shell/system size ratio, the strain is similar to that

of a QD buried in an infinite matrix. Since most of synthe-

sized coated NRs are built of II-IV semiconductor materials,

we write a code for hexagonal wurtzite crystal structure. As

customary, we assume linear elasticity. With an appropriate

input, the code can also be used for cubic zinc-blende or iso-

tropic materials. We will carry out a comparative study of the

strain distribution as obtained for hexagonal, cubic, and iso-

tropic elasticities. Peeters et al.19 reported that isotropic anda)Electronic mail: josep.planelles@qfa.uji.es.
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anisotropic cubic continuum mechanical models yield similar

results, so that one can often employ simpler isotropic elastic-

ity theory to estimate the strain in cubic crystals. We show

here that this result can be extended in the sense that using

appropriate elastic coefficients, all three models yield similar

output. Finally, since NRs can be only partially coated,3,5 we

have also addressed the calculation of strain in partially bur-

ied systems. Also, we pay attention to the strain in the sur-

rounding shell, as it is important for type-II systems.

II. THEORY

We have written a strain code for hexagonal wurtzite

crystals whose volumetric elastic density energy reads20

e ¼ 1

2
Cxxxxðe2

xx þ e2
yyÞ þ

1

2
Czzzze

2
zz þ Cxxyyexxeyy

þ Cxxzzezzðexx þ eyyÞ þ 2Cxzxzðe2
yz þ e2

xzÞ
þ 2Cxyxye

2
xy; (1)

where Cxyxy¼ (Cxxxx � Cxxyy)/2 and the rest of elastic modu-

lus tensor elements are linear independent. See supplemen-

tary material for details on the underlying theory, precise

prescription employed for finite differences and implementa-

tion.25 As for the boundary conditions, in short, if the dot is

embedded in an infinite matrix, we assume a zero deforma-

tion field u far away from the dot border, i.e., u¼ 0 at the

grid border and beyond. In the case of a dot coated (or par-

tially coated) by finite shells, boundary conditions of zero

normal stress for the free surface are employed. These are

implemented by setting
P

j rijnj¼ 0, where rij¼
P

kl Cijklekl

is the stress tensor at the border nodes and n is the outward

normal to the border surface at these nodes.

Only three elastic modulus tensor elements remain linear

independent for cubic zinc-blende symmetry. By replacing Czzzz

by Cxxxx, Cxxzz by Cxxyy, and Cxzxz by Cxyxy in Eq. (1) we formally

reach the zinc-blende volumetric elastic density energy expres-

sion. Also, instead of the two different wurtzite lattice constants

(a, a, c), zinc-blende has only a distinct lattice constant: (a, a,
a). In turn, isotropic bodies require just two elastic coefficients,

one related to hydrostatic compression (k) and another to shear

(l). They are called Lamé coefficients. In terms of these coeffi-

cients, the elastic modulus tensor elements for an isotropic mate-

rial read Cijkl ¼ kdijdkl þ l dikdjl þ dildjk

� �
. Hence, just by

writing an appropriate input, the wurtzite code can also be used

for zinc-blende or isotropic materials.

Since strain distribution is invariant to the system scal-

ing,21 for a given core-shell system it is the size ratio shell/

core which determines the strain strength.

III. RESULTS AND DISCUSSION

We analyze the components of the strain tensor for a se-

ries of CdSe/CdS heterostructures with different sizes and as-

pect ratios. The schematic structure is depicted in Fig. 1,

namely, a CdSe cylinder of radius R and length L concentri-

cally embedded in a CdS cylinder. The thicknesses of the

CdS shell in the radial and longitudinal direction are S1 and

S2, respectively. Unless otherwise stated, a wurtzite crystal

lattice is considered. The elastic and lattice constants

employed in the calculations22 are summarized in Table I.

We start by focusing on the strain distributions of systems

with different aspect ratio. The aim is to show the different

behavior of the typically flat QDs obtained through physical

growing methods and the chemically synthesized elongated

nanorods. To this end, we show in Fig. 2 shading contour rep-

resentations of the strain for four core-shell nanostructures

with different aspect ratio. We plot the x - z cross section of

the nanostructures for y¼ 0 (see Fig. 1). The inner CdSe nano-

structure dimensions (R and L) and aspect ratio (a.r.¼ L/2R)

are given on top of each column. In all cases we consider a

CdS shell with a constant thickness of S1¼ S2¼ 2 nm.

Diagonal components of the strain tensor are represented

in the first two rows of Fig. 2. exx and eyy have been grouped

in the so-called lateral strain, defined as ek ¼ 1
2
ðexx þ eyyÞ,19

which assesses the strain along the radial direction of the cyl-

inder. Due to the symmetry of the system, all off-diagonal

components of the strain tensor except exz are zero in the

y¼ 0 plane. Then, we include exz in Fig. 2. Also, the hydro-

static strain eH¼ exxþ eyyþ ezz is included.

From Fig. 2 we can see that eH and exz undergo little

changes versus the aspect ratio. The figure shows that eH is

compressive in the core and nearly zero in the shell while exz

has only relevant values near the core edges. Significative

changes versus the aspect ratio can be seen for lateral ek and

ezz strain components, although their sum, eH, remains nearly

unchanged. Then, since the wurtzite crystals deformation

potentials for both the conduction and valence bands are ani-

sotropic, the influence of strain on the energy structure can

vary with changes in the aspect ratio, despite de constancy of

the hydrostatic strain eH. This is particularly noticeable for

the conduction band for which an isotropic hydrostatic defor-

mation potential would lead to a nearly constant potential in

the Hamiltonian, as the hydrostatic strain eH is almost inde-

pendent of the aspect ratio, as can be seen in Fig. 2. We can

see in this figure that large aspect ratios imply nearly zero

lateral strain ek and strongly compressive ezz in the core and,

nearly zero ek and slightly expansive ezz in the lateral part of

the shell. Their sum, eH, is strongly compressive in the core

and zero in the shell. All the same, small aspect ratios

involve strongly compressive ek and expansive ezz in the core

FIG. 1. Schematics of the studied nanostructures.

TABLE I. Material parameters of wurtzite CdSe and CdS employed in the

calculations.22

Cxxxx Cxxyy Cxxzz Czzzz Cxzxz Cxyxy a(Å) c(Å)

CdSe 7.41 4.52 3.89 8.43 1.34 1.45 4.2999 7.0109

CdS 8.65 5.40 4.73 9.44 1.50 1.63 4.1348 6.749

014303-2 Rajadell, Royo, and Planelles J. Appl. Phys. 111, 014303 (2012)

Downloaded 07 May 2013 to 150.128.148.186. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions



and softer with opposite sign in the shell. The sum eH is just

strong compressive in the core.

Next we study the influence of the thickness of the coat-

ing shell. To this end, we fix the geometry of the CdSe core

and cover it with an increasing number of CdS MLs. We

assume that 1 ML¼ 0.3 nm. The results are summarized in

Fig. 3, where only the components ek and ezz, which undergo

the most significative changes, are included. Also, as a refer-

ence, the case of a core buried in an infinite CdS matrix is

included. We label it in the figure with u¼ 0, reminding the

boundary conditions imposed in this case. The core geometry

is defined by R¼ 0.7 nm and L¼ 4.2 nm (see schematic in

Fig. 1). The lateral S1 and vertical S2 shell thickness are

equal in these series of calculations.

The main result one can see in Fig. 3 is that while after

covering the core with a few MLs the strain resembles that

of a core buried in an infinite matrix, severe differences

occur for typically synthesized5 1-2 ML thick core-shells.

Especially noticeable is the strong expansive ezz in the shell,

the can be of relevance for type II systems, and the expected

reduction of compressive ezz in the core, which is paralleled

by some increase of compressive ek.
In order to complete this study, we fix next the size S2 of

the shell at the two ends of the core and change the lateral

shell thickness S1 from a uniform covering S1¼ S2 up to a

null S1¼ 0 lateral coating. The results are summarized in

Fig. 4, where again, only ek and ezz are represented. As we

can see in the figure, a well covered core has a negligible lat-

eral ek strain in both core and shell, except in a region very

close to the two core ends. Meanwhile, ezz is strongly com-

pressive in the core and softly expansive in the shell, except

close to the two core ends where it is compressive. The

hydrostatic strain eH ¼ ek þ ezz being compressive in the

core and nearly zero in all the shell (not shown).

Also, trends similar to those in Fig. 3 of strong changes

as we reduce the lateral S1 covering, can be seen in Fig. 4.

On the one hand, the strain in the shell, at the two ends of the

core, is negligible except in the regions next to the core/shell

interfaces. On the other hand, a strong ezz expansion paral-

leled by a ek compression in the lateral shell can be seen.

As far as the core is concerned, the reduction of S1 turns

into a less severe ezz compression. A noticeable jump in prop-

erties is produced after removing the last lateral covering

ML. On the one hand, compressive ezz turns into expansive.

In parallel, ek goes from soft to strongly compressive, so that

their sum, the hydrostatic strain eH, results compressive.

Regarding the core hydrostatic strain, the change produced

by eliminating the lateral covering ML by ML up to S1¼ 0 is

gradual. However, since wurtzite deformation potentials asso-

ciated with ek and ezz are different, a severe strain-induced

change in the electronic structure is expected by removing

the lateral core coating.

FIG. 2. (Color online) 2 D contours (x-z cross section at y¼ 0, see Fig. 1) of

the strain components for different aspect ratios. Geometries of the CdSe

core and aspect ratios are included at the top of each column. A constant

CdS shell thickness S1¼ S2¼ 2 nm has been considered in all cases.

FIG. 3. (Color online) Diagonal strain components of a core-shell NR with

different shell thickness. The CdSe core has a radius and length of

R¼ 0.7 nm and L¼ 4.2 nm. The shell thickness is the same in all directions,

(S1¼ S2), and its value is indicated in the left side of the panels in mono-

layers units (1 ML¼ 0.3 nm). The topmost panels correspond to the case of

a CdSe core buried in an infinte CdS matrix. We label it with ui¼ 0.
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Tadic et al.19 showed that the strain distribution of a flat

cylinder buried in a matrix is almost the same for an internal

material symmetry isotropic or cubic (Zinc-Blende). We next

extend their study to hexagonal symmetry (wurtzite) and elon-

gated cores coated with just a few MLs of covering material.

We consider here a CdSe core defined by a radius and length

of R¼ 0.7 nm and L¼ 4.2 nm, respectively (see Fig. 1), and

calculate the strain using the proper wurtzite elastic modulus

tensor parameters (see Table I) and also related cubic and iso-

tropic coefficients. Since by formally replacing the elastic

coefficient Czzzz by Cxxxx, Cxxzz by Cxxyy, and Cxzxz by Cxyxy in

Eq. (1), and c by a in the lattice constants, we turn hexagonal

wurtzite into cubic zinc-blende, according to Eq. (1), the elas-

tic and lattice constants of the zinc-blende closest to the

wurtzite material must be Cznbl
xxxx¼ (2Cwr

xxxxþCwr
zzzz)/3,

Cznbl
xxyy¼ (Cwr

xxyyþ 2Cwr
xxzz)/3, Cznbl

xyxy¼ (Cwr
xyxyþ 2Cxzxz

wr )/3, and

aznbl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðawrÞ2cwr3

q
. We use geometric average for the lattice

constant in order to get a new unit cell with the same volume

as the former one.

The general formula for the elastic coefficients of iso-

tropic materials in terms of the two Lamé k and l coefficients,

Cijkl ¼ kdijdkl þ l dikdjl þ dildjk

� �
, particularize to Cxxxx

¼ kþ 2l, Cxxyy¼ k, and Cxzxz¼l. This represents an extra

restriction on zinc-blende elastic coefficients: Cxxxx

¼Cxxyyþ 2Cxzxz. Then, in order to find the isotropic material

elastic coefficients Ciso
ijkl closest to zinc-blende ones Cznbl

ijkl , we

write Ciso
ijkl¼Cijkl

znblþDCznbl
ijkl , with ijkl¼ xxxx, xxyy, xyxy, and

calculate those isotropic coefficients that yield the minimum

of the sum (DCznbl
xxxx)2þ (DCznbl

xxyy)
2þ (DCznbl

xyxy)
2 subject to

the restrictions Cxxxx
iso ¼Ciso

xxyyþ 2Cxzxz
iso , i.e., Cznbl

xxxx

�Cznbl
xxyy � 2Cznbl

xzxz ¼ DCznbl
xxxx � DCznbl

xxyy � 2DCznbl
xzxz ¼ k. It yields

Ciso
xxxx ¼ Cznbl

xxxx � k=6, Ciso
xxyy¼Cznbl

xxyyþ k/6, and Cxyxy
iso

¼Cznbl
xyxyþ k/3. We use these coefficients when calculating

within the isotropic approximation.23

In order to better show quantitative differences among

the models, profiles along the main axes corresponding to the

three models instead of two-dimensional shading contour rep-

resentations are displayed in Fig. 5. In addition, for the sake of

comparison, actual cubic coefficients for Zinc-Blende CdSe

and CdS materials22 are employed in a fourth series of calcu-

lations and the results included in the figure (dotted lines).

A neat result emerges in Fig. 5: with appropriate related

elastic parameters, isotropic, cubic, and hexagonal models for

the elastic energy lead to almost identical strain profiles, thus

extending the conclusions by Tadic et al.19 to elongated sys-

tems and wurtzite structure. Note, however, that the actual

elastic modulus tensor of the Zinc-Blende materials and the

cubic approximation obtained from the elastic parameters of

its polymorphic wurtzite conterpart are different and yield dif-

ferent strain profiles (see dotted versus dashed lines in Fig. 5).

One may conclude that, with the above prescription for the

isotropic approximation to an hexagonal crystal, the simple

model proposed by David24 can safely be used to estimate

strain in elongated, few ML covered wurtzite NRs.

IV. SUMMARY AND CONCLUSIONS

We study the main characteristic strain trends of free

standing coated NRs related to aspect ratio and shell thickness.

The results reveal that while hydrostatic strain eH is almost in-

dependent of the aspect ratio, ek and ezz undergo severe

changes versus it. As for the thickness of the coating shell, we

see that after covering the NR core with a few MLs, the strain

resembles that of a core buried in an infinite matrix. However,

severe changes occur for thin shells of 1-2 ML thick. Finally,

FIG. 4. (Color online) Diagonal strain components of a core-shell NR as the

shell thickness in the lateral direction (S1) is reduced while it is fixed in the

longitudinal direction (S2¼ 4 ML). The radius and length of the core are

R¼ 0.7 nm and L¼ 4.2 nm.

FIG. 5. Diagonal strain components profiles along the centered axial (left)

and in-plane (right) axis for a system with R¼ 0.7 nm, L¼ 4.2 nm, and

S1¼ S2¼ 2 ML, calculated with different models: wurtzite parameters (solid

line), cubic approximation to these wurtzite parameters (dashed line), iso-

tropic approximation (dashed dotted line), and actual zinc blend parameters

(dotted line).
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following the suggestion by Tadic et al.19 that strain distribu-

tion of flat cylinders buried in a matrix is almost the same for

isotropic or cubic (Zinc-Blende) materials, we have extended

their study to hexagonal symmetry (wurtzite) and elongated

cores coated with just a few MLs of covering material and con-

clude that, with the appropriate parameters, isotropic, and hex-

agonal strain profiles are hardly distinguishable.
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6D. V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J. M. Lupton, A. L.

Rogach, O. Benson, J. Feldmann, and H. Weller, Nano Lett. 3, 1677 (2003).
7E. Yoskovitz, G. Menagen, A. Sitt, E. Lachman, and U. Banin, Nano Lett.

10, 3068 (2010).
8A. Sitt, A. Salant, and U. Banin, Nano Lett. 11, 2054 (2011).
9V. I. Klimov, J. Phys. Chem. B 110, 16827 (2006); M. Kazes, D. Y. Lewis,

Y. Ebenstein, T. Mokari, and U. Banin, Adv. Mater. 14, 317 (2002).
10X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. A. Peng, and X. G. Peng,

Phys. Rev. B 64, 245304 (2001).
11T. Y. Zhai, X. S. Fang, Y. S. Bando, Q. Liao, X. J. Xu, H. B. Zeng, Y. Ma,

J. N. Yao, and D. Golberg, ACS Nano 3, 949 (2009).

12S. Deka, A. Quarta, M. G. Lupo, A. Falqui, S. Boninelli, C. Giannini, G.

Morello, M. De Giorgi, G. Lanzani, C. Spinella, R. Cingolani, T. Pelle-

grino, and L. Manna, J. Am. Chem. Soc. 131, 2948 (2009).
13F. Pisanello, L. Martiradonna, P. Spinicelli, A. Fiore, J. P. Hermier, L.

Manna, R. Cingolani, E. Giacobino, M. De Vittorio, and A. Bramati,

Superlattices Microstruct. 47, 165 (2010).
14R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W.

Wang, and A. P. Alivisatos, Science 317, 355 (2007).
15J. M. Spurgeon, H. A. Atwater, and N. S. Lewis, J. Phys. Chem. C 112,

6186 (2008).
16L. Manna, E. Scher, L. Li, and A. Alivisatos, J. Am. Chem. Soc. 124, 7145

(2002).
17Y. Luo and L.-W. Wang, ACS Nano 4, 91 (2010).
18A. M. Smith and S. Nie, Acc. Chem. Res. 43, 190 (2010); A. M. Smith

A. M. Mohs, and S. Nie, Nat. Nanotechnol. 4, 56 (2009).
19M. Tadic, F. M. Peeters, K. L. Janssens, M. Korkusinski, and P. Hawrylak,

J. Appl. Phys. 92, 5819 (2002); M. Tadic, F. M. Peeters, and K. L. Jans-

sens, Phys. Rev. B 65, 165333 (2002).
20L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon,

Oxford, 1986).
21B. Jogai, J. Appl. Phys. 88, 5050 (2000).
22A. Sadao, Handbook of Physical Properties of Semiconductors (Kluwert

Academic Group, Holand, 2004), Vol. 3.
23Note that in Ref. 19, comparison with isotropic elasticity was made for

materials with a Poisson relation �¼ 1/3. Since, in terms of the Young

modulus E and Poisson relation �, the Lamé coefficients read
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check the isotropic approximation, one might employ the Cxxxx coefficient

of a given material only and calculate any other in terms of it, as done in

Ref. 19.
24J. H. David, J. Appl. Phys. 84, 1358 (1998).
25See supplementary material at http://dx.doi.org/10.1063/1.3673256 for

details on the underlying theory, precise prescription employed for finite

differences and implementation.
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