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Abstract. Imbalanced credit data sets refer to databases in which the class of de-
faulters is heavily under-represented in comparison to the class of non-defaulters.
This is a very common situation in real-life credit scoring applications, but it
has still received little attention. This paper investigates whether data resampling
can be used to improve the performance of learners built from imbalanced credit
data sets, and whether the effectiveness of resampling is related to the type of
classifier. Experimental results demonstrate that learning with the resampled sets
consistently outperforms the use of the original imbalanced credit data, indepen-
dently of the classifier used.
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1 Introduction

Credit scoring constitutes a major instrument for financial institutions to evaluate credit
risk, improve cash flow, reduce possible risks and make managerial decisions [16]. In
practice, credit scoring refers to a classification problem where a new credit applicant
must be categorized into one of the predefined classes (typically, “good” and “bad” ap-
plicants, depending on how likely they are to default with their repayments) based on a
number of observed variables or attributes that describe socio-demographic character-
istics and economic conditions of the applicant.

The most classical approaches to credit scoring are based on parametric statistical
models (e.g., linear regression, discriminant analysis, logistic regression and multivari-
ate adaptive regression splines). However, modern credit scoring has been addressed
to implement non-parametric methods and artificial intelligence techniques (decision
trees, linear programming, artificial neural networks, support vector machines, evolu-
tionary algorithms, rule learners, etc.). In contrast with parametric statistical methods,
these alternative models do not assume any specific prior knowledge, but automatically
extract knowledge from training observations.

From the many comparative studies carried out, it is not possible to claim the su-
periority of a method over other competing algorithms regardless of data characteris-
tics (noise, missing values, skewed class distribution, attribute relevance, etc.), which
may significantly affect the success of most classification techniques. Whilst some data



complexities have been widely studied, the low-default portfolio problem (also known
as the class imbalance problem) has received relatively little attention so far. Neverthe-
less, imbalanced class distribution naturally happens in credit scoring where in general,
the class of creditworthy applicants vastly outnumbers the class of defaulters [11, 14].
For example, it is common to find that defaulters constitute less than 10% of the whole
database. This phenomenon of class imbalance may have most influence on the per-
formance of conventional classification techniques because they assume a relatively
well-balanced class distribution and equal misclassification costs [9].

During the last decade, the low-default portfolio problem has attracted growing at-
tention, both to detect fraudulent financial activities and to predict creditworthiness of
new credit applicants. In the credit scoring domain, research has mainly focused on an-
alyzing the behavior of conventional prediction models, showing that the performance
on the minority class drops down significantly as the imbalance ratio increases [2, 10].
However, only a few works have been addressed to design solutions for imbalanced
credit data sets. For example, Vinciotti and Hand [18] introduced a modification to lo-
gistic regression by taking into account the misclassification costs when the probability
estimates are made. Huang et al. [8] proposed two strategies for classification and clean-
ing of skewed credit data. One method involves randomly selecting instances to balance
the proportion of examples in each class, whereas the second consists of combining the
ID3 decision tree with a filter.

Yao [21] carried out a systematic comparative study on three weighted classifiers:
C4.5 decision tree, support vector machine and rough sets. The experiments over two
credit data sets showed that the weighted models outperform the standard classifiers in
terms of type-I error. Within the PAKDD’2009 data mining competition, Xie et al. [20]
proposed an ensemble of logistic regression and AdaBoost with the aim of optimizing
the area under the ROC curve (AUC) for a highly imbalanced credit data set. Florez-
Lopez [6] employed several cooperative strategies (simple and weighted voting) based
on statistical models and artificial intelligence techniques in combination with boot-
strapping to handle the low-default portfolio problem. Kennedy et al. [10] explored the
suitability and performance of one-class classifiers for several imbalanced credit scor-
ing problems with varying levels of imbalance. The experimental results suggest that
the one-class classifiers perform especially well when the minority class constitutes 2%
or less of the data, whereas the two-class classifiers are preferred when the minority
class represents at least 15% of the data. Tian et al. [17] proposed a new method based
on the support vector domain description model, showing that this can be effective in
ranking and classifying imbalanced credit data.

An exhaustive comparative study of various classification techniques when applied
to skewed credit data sets was carried out by Brown and Mues [2]. They progressively
increased the levels of class imbalance in each of five real-world data sets by randomly
under-sampling the minority class of defaulters, so as to identify to what extent the
predictive power of each technique was adversely affected. The results show that tra-
ditional models, such as logistic regression and linear discriminant analysis, are fairly
robust to imbalanced class sizes.

This paper presents a comprehensive suite of experiments over real-life credit data
sets, which have artificially been modified to derive different imbalance ratios (propor-



tion of defaulters and non-defaulters examples), using eight resampling methods and
four prediction models. All techniques are evaluated in terms of the AUC, and then
compared for statistical differences using the Friedman’s statistic and the Bonferroni-
Dunn post hoc test. The aim of this study is to explore the suitability of data resampling
for accurate prediction of credit risk under the class imbalance problem.

2 Resampling Strategies for Handling Imbalanced Data Sets

Much work has been done to deal with the class imbalance problem, at both data and al-
gorithmic levels. Conclusions about what is the best solution are divergent, but the data
level methods are the most investigated because they are independent of the underlying
classifier and can be easily implemented for any problem. The most popular strategies at
the data level consist of resampling the data to obtain an altered class distribution. This
can be done by either over-sampling the minority (positive) class or under-sampling the
majority (negative) class until both classes are approximately equally represented. This
section provides a brief overview of the resampling methods considered in this work.

2.1 Over-sampling

The simplest strategy to expand the minority class corresponds to random over-sampling
(ROS), which is a non-heuristic method that balances the class distribution through the
random replication of positive examples. Nevertheless, this method may increase the
likelihood of overfitting since it makes exact copies of the minority class instances.

In order to avoid overfitting, Chawla et al. [4] proposed a technique, called Synthetic
Minority Over-sampling TEchnique (SMOTE), to up-size the minority class. This al-
gorithm generates artificial positive examples by interpolating existing instances that
lie close together. It first finds the k nearest neighbors of the minority class for each
positive example; the synthetic examples are then generated in the direction of some
or all of those neighbors, depending on the amount of over-sampling required (in the
experiments here reported, k is set to 5).

Although SMOTE has proved to be an effective tool for handling the class imbal-
ance, it may overgeneralize the minority class as it does not take care of the distribu-
tion of majority class neighbors. As a result, it may increase the overlapping between
classes. Numerous modifications to the original SMOTE have been proposed with the
aim of determining the region in which the positive examples should be generated. For
example, the Safe-Level SMOTE (SL-SMOTE) algorithm [3] calculates a “safe level”
coefficient (sl) for each positive example, which is defined as the number of positive
cases in its k neighbors. If sl ≈ 0, such an example is considered as noise; if sl ≈ k,
then the example may be located in a safe region of the minority class. The idea is to
direct the generation of new synthetic examples close to safe regions.

Batista et al. [1] proposed a method that combines SMOTE and data cleaning, pursu-
ing to reduce the possible overlapping introduced when the synthetic positive examples
are generated. In order to create well-defined classes, after over-sampling the minority
class by means of SMOTE, Wilson’s editing [19] is applied to remove any example
(either positive or negative) that is misclassified by its three nearest neighbors. This
method is here called SMOTE+WE.



2.2 Under-sampling

Random under-sampling (RUS) aims at balancing the data set through the random re-
moval of negative observations. Despite its simplicity, it has empirically been shown to
be one of the most effective resampling methods. However, this technique may discard
data potentially important for the classification process. Consequently, other methods
have been designed to provide a more intelligent selection strategy. For example, Kubat
and Matwin [12] proposed the One-Sided Selection technique (OSS), which selectively
removes only those negative examples that are redundant or “noisy” (majority class ex-
amples that border the minority class). The border examples are detected by applying
Tomek links, and the redundant cases (those that are distant from the decision boundary)
are discovered by means of Hart’s condensing [7].

Laurikkala [13] introduced a new algorithm called Neighborhood CLeaning rule
(NCL) that operates in a similar fashion as OSS. In this case, Wilson’s editing is used
to remove negative examples whose class label differs from the class of at least two of
its three nearest neighbors. Besides, if a positive instance is misclassified by its three
nearest neighbors, then the algorithm also eliminates the neighbors that belong to the
majority class. A quite different alternative corresponds to under-Sampling Based on
Clustering (SBC) [22], which rests on the idea that there may exist different clusters
in a given data set, and each cluster may have distinct characteristics depending on
the ratio of the number of positive examples to the number of negative examples in
the cluster. Thus the SBC algorithm first gathers all examples in the data set into some
clusters, and then determines the number of negative cases that will be randomly picked
up. Finally, it combines the selected majority class instances and all the minority class
examples to obtain a resampled data set.

3 Experiments and Databases

The aim of these experiments is to evaluate the performance of the resampling algo-
rithms described in Section 2 (RUS, OSS, NCL, SBC, ROS, SMOTE, SL-SMOTE,
SMOTE+WE) in the context of credit scoring, and also investigate to what extent the
behavior of each technique is more appropriate for each type of learner. The classi-
fication methods correspond to four models widely applied to credit risk prediction:
nearest neighbor (1-NN) rule, multi-layer perceptron (MLP) and radial basis function
(RBF) neural networks, and support vector machine (SVM) with a linear kernel.

Five real-world credit data sets have been taken to test the performance of the resam-
pling strategies and classifiers. The widely-used Australian, German and Japanese data
sets are from the UCI Machine Learning Database Repository (http://archive.
ics.uci.edu/ml/). The UCSD data set corresponds to a reduced version of a
database used in the 2007 Data Mining Contest organized by the University of Cali-
fornia San Diego and Fair Isaac Corporation. The Iranian data set [15] comes from a
modification to a corporate client database of a small private bank in Iran. Each original
set, except the Iranian because of its extremely high imbalance ratio (iRatio = 1:19),
has been altered by randomly under-sampling the minority class of defaulters, thus pro-
ducing six data sets with varying imbalance ratios, iRatio = {1:4, 1:6, 1:8, 1:10, 1:12,
1:14}. Therefore, we have obtained a total of 25 data sets (see Table 1).



Table 1. Some characteristics of the data sets. The last column contains, for each database, the
number of defaulters for each imbalance ratio (iRatio = {1:4, 1:6, 1:8, 1:10, 1:12, 1:14})

Data set #Attributes #Good #Bad

Australian 14 307 77 51 38 31 26 22
German 24 700 175 117 88 70 58 50

Japanese 15 296 74 49 37 30 25 21
UCSD 38 1836 459 306 230 184 153 131
Iranian 27 950 50

Ten different runs of five-fold cross-validation have been executed. For each itera-
tion of cross-validation, the training set has consisted of four folds, and the remaining
fold has been used as a test set. Each resampling technique (and also no resampling)
has been applied to the training data, then the four learners have been constructed from
the transformed data set, and each of the classifiers has been evaluated on the test set
using the AUC measure averaged across the 50 runs. Statistical significance of differ-
ences between the resampling algorithms have been assessed using Friedman’s statistic
followed by pairwise comparisons with the Bonferroni-Dunn post hoc test [5] at signif-
icance levels of 5% and 10%.

In total, 10 five-fold cross-validation trials and 25 data sets give 1250 different train-
ing sets. Eight resampling techniques, plus no resampling, have been applied to each of
the 1250 training data sets, resulting in 9 × 1250 = 11250 transformed data sets, each
of which has been used for learner construction. Since there are 4 learners, a total of
4× 11250 = 45000 classifiers have been constructed and evaluated in the experiments.

4 Results and Discussion

Table 2 reports the average AUC values and the average Friedman’s ranks of each re-
sampling method for the four classifiers. The results achieved with the imbalanced data
sets (IDS) are also included for comparison purposes. For each classification model,
the algorithm with the lowest (best) average rank across the five credit data sets is un-
derlined, whereas the one with the highest (worst) rank is highlighted in italics type.
As can be seen, the use of the imabalanced data sets yields the poorest results in terms
of the average Friedman’s rank, independently of the classifier. When comparing the
different resampling methods, it is worth noting that there is not a unique algorithm that
gives the best results for all classifiers: the NCL method appears to perform better than
the remaining schemes when using the 1-NN and MLP models, whereas random over-
sampling is the best method for RBF classification and the SMOTE+WE algorithm is
superior to the others when using a SVM. However, it seems that over-sampling gener-
ally behaves better than under-sampling, especially in the case of using some intelligent
selection strategy.

After applying the Friedman test in order to discover whether there exist significant
differences in the AUC results, the Bonferroni-Dunn post hoc test has been employed



Table 2. Average AUC values and ranks calculated by Friedman’s test

1-NN MLP RBF SVM

Algorithms AUC AVR AUC AVR AUC AVR AUC AVR

IDS 0.6596 7.22 0.6722 7.72 0.6168 7.66 0.5122 7.26
RUS 0.7205 3.68 0.7539 3.18 0.7389 3.48 0.5883 3.92
OSS 0.6874 5.60 0.7132 5.76 0.7021 5.60 0.5566 5.20
NCL 0.7240 2.96 0.7541 2.98 0.6959 4.58 0.5382 6.42
SBC 0.6097 6.96 0.6235 6.48 0.6265 6.48 0.5222 6.80
ROS 0.6596 7.22 0.7115 6.00 0.7454 3.12 0.5633 5.78

SMOTE 0.7080 4.24 0.7372 4.52 0.7236 5.00 0.6138 2.60
SMOTE+WE 0.7207 2.96 0.7469 3.56 0.7288 4.56 0.6240 1.92

SL-SMOTE 0.7107 4.16 0.7259 4.80 0.7280 4.52 0.5730 5.10

to report any significant differences with respect to the best performing algorithm for
each classifier. The results of this test are then depicted to illustrate the differences
among the Friedman average ranks. Figure 1 plots the resampling methods against av-
erage rankings, whereby all algorithms are sorted according to their ranks. The two
horizontal lines, which are at height equal to the sum of the lowest rank and the critical
difference computed by the Bonferroni-Dunn test, represent the threshold for the best
performing resampling technique at each significance level (α = 0.05 and α = 0.10).
This means that all algorithms above these cut lines perform significantly worse than
the best method.

From the Bonferroni-Dunn graphics in Figure 1, one can remark a series of findings.
First, in all cases, prediction with the imbalanced data sets is significantly worse than the
best performing resampling method, and even worse than the top three algorithms with
both α = 0.05 and α = 0.10. Second, random over-sampling and the OSS and SBC
under-sampling methods are generally the worst techniques, showing significant dif-
ferences when compared with the best algorithms. Third, the performances of random
under-sampling, NCL and the SMOTE-based methods are not significantly different.

5 Conclusions

This paper has studied a number of resampling techniques for credit scoring models
when addressing the class imbalance problem. The performance of these methods has
been assessed by means of the AUC measure, and then the Friedman statistic and the
Bonferroni-Dunn post hoc test have been applied to determine whether the differences
between the average ranked performances were statistically significant.

The experiments carried out over five real-life credit data sets with varying imbal-
ance ratios have demonstrated that resampling can be a good solution to the class im-
balance problem. On the other hand, the results have also allowed to see that NCL
under-sampling and SMOTE-based over-sampling outperform the other methods in
most cases. The most interesting finding refers to the fact that for all classifiers, the



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

NCL
SMOTE+WE

RUS
SL-SMOTE

SMOTE
OSS

SBC
ROS

IDS

A
ve

ra
ge

 R
an

ki
ng

α0.05
α0.10

(a) 1-NN

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

NCL
RUS

SMOTE+WE

SMOTE
SL-SMOTE

OSS
ROS

SBC
IDS

A
ve

ra
ge

 R
an

ki
ng

α0.05
α0.10

(b) MLP

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

ROS
RUS

SL-SMOTE

SMOTE+WE

NCL
SMOTE

OSS
SBC

IDS

A
ve

ra
ge

 R
an

ki
ng

α0.05
α0.10

(c) RBF

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

SMOTE+WE

SMOTE
RUS

SL-SMOTE

OSS
ROS

NCL
SBC

IDS

A
ve

ra
ge

 R
an

ki
ng

α0.05
α0.10

(d) SVM

Fig. 1. Bonferroni-Dunn graphic for the classifiers

resampling approaches have produced important gains in performance when compared
to the use of the imbalanced data sets. In credit scoring applications, a small increase
in performance may result in significant future savings and have important commercial
implications. Therefore, the improvement in performance achieved by the resampling
strategies may become of great importance for banks and financial institutions.
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