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Abstract This paper proposes the use of artificial neural
networks (ANNSs) in the framework of a biomechanical
hand model for grasping. ANNs enhance the model
capabilities as they substitute estimated data for the
experimental inputs required by the grasping algorithm
used. These inputs are the tentative grasping posture and
the most open posture during grasping. As a
consequence, more realistic grasping postures are
predicted by the grasping algorithm, along with the
information required by the dynamic
biomechanical model (contact points and normals).
Several neural network architectures are tested and
compared in terms of prediction errors, leading to
encouraging results. The performance of the overall
proposal is also shown through simulation, where a
grasping experiment is replicated and compared to the
real grasping data collected by a data glove device.
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1. Introduction

Most human mechanical interactions with the

environment are performed by the hands. Very different
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tasks can be carried out with them because of its complex
kinematics, with more than 20 degrees of freedom (dof)
controlled by muscles, tendons and ligaments. The study
of the human grasp is very interesting because of the
knowledge it can provide regarding human/robot
grasping and manipulation [1].

Over the past two decades, a lot of research has been carried
out in the field of robotic grasping [1-4] and it is currently a
very hot topic. Several of the existing techniques can be
extended to the field of biomechanics due to the similarities
between human and robotic hands, although the former are
kinematically simpler than the latter. In this sense, many
researchers state that advances in the field of robot
grasping and manipulation require a better knowledge of
human grasping [5]. This is especially true in the field of
robotics, robots in human
environments and interact with daily-life objects [6]. In
fact, humanoid robots tend to imitate the morphology and
operation of the human body in terms of motion and

service where move

actuation. Thus, developments in the biomechanical field
can shine a light on developments in the robotics field. A
promising research area lies ahead, with scientists aiming
to obtain a more powerful biomechanical model of the
hand, integrating knowledge and developments from the
fields of biomechanics and robotics.
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Hand biomechanical models describe the hand as a
mechanical device: the different elements are defined as
rigid bodies, joints and actuators, and the mechanical laws
are applied. These models are used to perform analyses
which cannot be done directly on humans or which have
unfeasible experimental costs such as, for instance, the
study of new alternatives for restoring hand pathologies.
To be useful, hand biomechanical models should be able to
properly simulate the hand while grasping. However,
existing models still present important limitations on this
matter which could be addressed using the current
techniques and knowledge of robot grasping.

The latest hand biomechanical models were developed
for very different and specific purposes [7-23], namely to
understand the role of anatomical elements, to study the
causes and effects of pathologies, to plan rehabilitation, to
simulate surgeries, to analyse the energetics of human
athletic performance, to design
prosthetics and biomedical implants, and to design
functional electric stimulation controllers, to name a few.
To simulate a task, these models need the hand posture,
the forces on the hand and their application points as
inputs, and they allow the estimation of the muscle forces
needed to perform the task. Such input data have to be
experimentally registered, which significantly reduces the
applicability of the models. Therefore, incorporating the
prediction of grasping postures and contact information
with the grasped object will increase their utility.

movement and

Hand posture prediction is an important issue as it allows
the evaluation of biomechanical and ergonomic
parameters related to grasping [4, 24]. The computation
of grasping postures associated with particular objects is
a very challenging topic, as it implies the fulfilment of a
large number of constraints that relate not only to hand
structure and the object, but also to the requirements of

the environment and the task to be performed.

The biomechanical studies in the literature usually
measure hand postures using specific devices - such as
data gloves [25] - rather than predicting hand postures.
Very few biomechanical works have tackled the
prediction of grasping postures for given objects and
tasks. Artificial intelligence techniques were used in [26]
for learning a hand’s inverse kinematics given the
fingertips’ positions and in [2] for estimating the hand
shape needed to grasp various shaped objects in a virtual
environment, with encouraging results. In [26], a
grasping algorithm was proposed to automatically
generate a natural grasping motion path of the hand
model - from a fully opened state to a clenched one -
obtained from the collision detection between the fingers
and the object when the finger joints are rotated.
Nevertheless, the posture predictions were highly
affected by the rotation rates of the finger joints [28]. In
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[24], an optimization model was proposed based on the
assumption that the best prehensile configuration of the
hand in a power grasp optimally conforms to the shape of
the object, which is not generalizable for other grasps.

From the robotics’ viewpoint, the questions posed by
grasping are slightly different to those of human
grasping. For a given object, grasp synthesis must
provide the most appropriate set of contact points and
hand posture for grasping the object, with regard to
object stability and manipulability. This problem has been
studied using analytical approaches that had nearly been
ruled out due to their poor results when it came to real
implementations [29]. Currently, artificial intelligence
algorithms are used, such as those based on artificial
neural networks (ANNs) [30]. These sensor-based
approaches learn the underlying rules of robot grasping
without the need of explicit kinematic models by means
of exploration. For instance, an ANN-based strategy was
developed in [31] for a 5-dof gripper. Similarly, a
grasping model was designed in [32] for the grasp
synthesis of a 7-dof planar hand for circular and
rectangular objects. ANN methods have also been used in
feasible contact point determination [2, 32] and in order
to guide robot grasp synthesis, as in [2] where a data
glove was used for training a neural network that
produced robot grasping postures from previously
computed contact zones for different objects.

Collision detection is also required in robotics in order to
address robot manipulation, and may also be required to
tackle human hand grasping simulation. Many different
collision detection algorithms have been used in the past
in the robotics literature [33, 34]. Recently, in [35], it was
shown that modelling the geometry of the robot and the
grasped object using the spherical extension of polytopes
(s-topes) allows fast and efficient collision detection.
Collision detection was carried out by calculating the
minimum distance between s-topes, based on the Gilbert—
Johnson—Keerthi algorithm [36].

Along these lines, the present work proposes the use of
ANNSs in combination with a grasping algorithm to predict
the grasping posture and contact information required by
an already validated 3D scalable biomechanical model of
the human hand developed by the authors in previous
works [14-17]. ANNs enhance the model capabilities, as
they provide estimated data that substitutes for the
experimental input required by the grasping algorithm.
The paper is structured as follows: section 2 explains the
complete grasping model proposal, detailing the kinematic
hand model used as well as the grasping algorithm; section
3 addresses the different ANNs which were tested for
posture prediction, along with the experiments carried out;
section 4 discusses the results obtained and section 5 states
the conclusions and future work.
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Figure 1. Block diagram of the model proposal.
2. Model Proposal

In [37], we presented a proposal for a self-contained and

realistic hand biomechanical model. In particular, a

method for incorporating the grasping posture prediction

into an existing 3D biomechanical model of the hand was

sketched. This proposal is developed in detail in the

present work by means of incorporating ANNs in the

generation of the input data required for the dynamic

biomechanical model of the hand (Figure 1). The

requirements for the grasping posture prediction model

in the self-contained and realistic hand model are:

1. The model has to simulate the complete hand in order
to allow the study of any grasp.

2. The model has to be scalable so as to allow the
simulation of different population groups.

3. The model has to simulate and show the grasping of
an object in a realistic way.

4. The model has to be able to predict feasible grasping
postures for a given object and provide the contact
information required for evaluating the grasp.

These requirements imply the availability of a geometric
model of the hand and the object to be grasped, and a
kinematic model for movement. In addition, a grasping
posture

Figure 2. Parameters used to scale the model: HL (hand length)
and HB (hand breadth).
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algorithm must be included to automatically predict the
hand posture during grasping, as well as the contact
points and normals, required by the dynamic
biomechanical model.

The model proposed in this section has been developed in
a scalable way, choosing two very well known
anthropometric parameters of the hand that are easy to
measure and representative of the hand’s size. The
parameters are the hand length (HL) and hand breadth
(HB), as shown in Figure 2.

The grasping posture algorithm (Figure 1) is based on the
calculation of appropriate rotation rates for the joint angles
from the use of two characteristic hand postures obtained by
ANNSs: the most open posture (MOP) and the tentative
grasping posture (TGP). Different feed-forward networks
have been tested for automatically providing these
characteristic hand postures given the size of the hand, the
features of the object to be grasped and the task to be
performed. The outputs of each ANN are the fingers’ joint
angles for each characteristic posture. The ANNSs have been
trained with data collected from grasping experiments with
daily-life objects (bottles) and tasks (moving and pouring).
Once trained, the network is able to predict the MOP when
the hand approaches the object to grasp it, and the TGP for
objects and subjects different to those used in the training
phase with an acceptable error. Both postures are then used
by the grasping posture algorithm to generate the angle
rotation rates for all hand joints. Hand segments are rotated
until collision with the object is detected, which allows the
prediction of an improved grasping posture, the contact
points and normals, required as inputs of the biomechanical
model. Collision detection is efficiently performed by the use
of spherical models to represent the object and the hand.
Finally, we can then compute muscle forces, contact forces
and torques needed for the biomechanical and ergonomic
evaluation of grasping postures through the biomechanical
3D model.
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Figure 3. Joints of the hand.
2.1 Kinematic Model

Care has been taken in the selection of the appropriate
DOF among the different hand bones in order to allow
the simulation of realistic grasping postures. The hand
has been considered as five skeletal open chains of rigid
bodies connected to the carpus through different joints
which characterize the kinematic behaviour of the chains
(Figures 3 and 4).

The proximal and distal interphalangeal joints (PIPs and
DIPs) of the fingers and the interphalangeal joint (IP) of
the thumb are of the trochlear type. They allow only
flexion-extension movements, which are basically a
rotation of the distal bone about an axis fixed to the
proximal bone [38]. Therefore, we have modelled them as
hinge joints.

All the metacarpophalangeal joints (MCPs) are of the
condylar type allowing both flexion-extension and
movements,  whereby  they
correspond to a rotation of the distal bone about a
flexion-extension axis that is fixed with respect to the
proximal bone and a rotation about an abduction-
adduction axis that is fixed with respect to the distal bone
[38]. The carpometacarpal joint (CMC) of the thumb is a
saddle joint, resulting in similar kinematic behaviour to
that of the MCPs [38]. All these joints have been modelled
as universal joints.
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Figure 4. Movements of the hand fingers.
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Finally, the model considers the little and ring CMC
joints, which are of the arthrodial type. They allow a very
limited movement range [39], and we have chosen to
model them as hinge joints.

The data for the axes location and orientation were
obtained from [40-42]. This data, along with the segment
lengths’ data, was appropriately scaled with respect to
the parameters HB and HL [16]. The Denavit-Hartenberg
method - from the robotics field [42] - was adapted to
define the position of any segment point of interest.

2.2 Grasping Posture Algorithm

When trying to simulate the grasping of an object with a
hand biomechanical model, the grasping postures
predicted with ANNs do not exactly match the grasped
object - becoming a non-conforming grasp - so that
contact information (contact points and normals) cannot
be obtained. To avoid this, we propose to use the
predictions of postures using ANNs within a grasping
algorithm based upon that of Choi [27]. This algorithm
uses a function to automatically generate a natural
grasping path of the hand model from a fully opened
state to a clenched one. The goal is to find contacts
between the surface hand skin and the object surface
while rotating the joint angles of the fingers. It is very
important to choose appropriate rotation rates for the
finger joints, as they affect the final posture prediction
[44]. We have solved this difficulty by using rotation rates
that try to match those that are experimentally observed.
The rotation rates are defined by the difference between
the angles of the most open posture (MOP) observed
when approaching the hand to grasp the object, and the
clenched posture once the grasp is performed, which will
be used as a tentative grasping posture (TGP). These
postures are not experimentally measured, but obtained
as predictions with ANNs, as described in the next
section.

A geometric model of the hand and a contact model are
required to generate the grasp because, at each rotation
step, contact has to be checked between the surface skin
model and the surface of the object model. In real
grasping, the surface of a hand deforms in a nonlinear
way when making contact with the object. To avoid long
execution times, we considered a geometric collision-
detection algorithm. The hand segments are considered
as rigid bodies and their deformation is simulated,
allowing the penetration of the surface skin model and
the object model. This penetration is limited by a
tolerance that relates to the hand stiffness at each contact
region. A maximum penetration of 3 mm has been
considered for all hand segments as a first approximation.

www.intechopen.com



Figure 5. External geometrical representation of the hand with s-
topes.

The distances between the points on the skin surface and
the object are calculated while each joint rotates according
to the specific joint rotation algorithm. When this distance
reaches the given maximum penetration tolerance for a
given segment, the contact of that segment is achieved
and the joint rotation ends together with the rotation of
all the proximal joints. When the distal segments of all
four fingers make contact with the object, the grasping
simulation terminates.

In order to perform these calculations in an efficient way,
the geometry of the hand surface and the grasped object
have been modelled using the spherical extension of
polytopes (s-topes). This graphical representation has
been successfully used previously in robotics [35],
allowing for fast and efficient collision detection between
the grasping hand and the grasped object while
displaying a sufficient level of realism (Figure 5). The
collision detection is performed by calculating the
minimum distance between s-topes, based on the Gilbert-
Johnson-Keerthi algorithm [36]. The algorithm also
calculates the minimum distance points that define the
normal direction to the contact surface.

3. Model Development and Assessment

The previously described grasping algorithm requires the
knowledge postures MOP and TGP in order to compute a
feasible grasping posture, along with the contact points
and normals. Usually, these postures are experimentally
measured by means of data gloves or motion capture
systems. However, the experiments are tedious and time-
consuming as they have to be carried out for every
subject, task and object. For this reason, there are no hand
valid models for the study of general grasping. In order
to overcome such a drawback and to automatically
generate the characteristic postures MOP and TGP for a
set of daily-life objects (bottles), we have used ANNs.

3.1 Neural Networks for Characteristic Posture Prediction
An ANN can be described as a large number of simple
processing elements - neurons - running in parallel. The

system performance depends on the characteristics of the
network: the architecture (the number of layers and
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neurons), the number of synaptic connections and the
processing function for every neuron (the activation
function). Experimental knowledge is stored in the
strength of the neuron connections - known as synaptic
weights - in a manner similar to the human brain. The
method used to iteratively compute these weights as the
network receives new information is the training
algorithm. It is applied to train the network in learning a
particular task. If the inputs and targets (the desired
outputs) are known, supervised learning takes place.
Otherwise, if only the inputs are known, an unsupervised
learning process is carried out.

There are three typical problems that are usually
addressed by means of ANNSs: the approximation of
functions, pattern recognition and clustering [45, 46].
Multiple-layer networks are quite powerful for the
approximation of functions, which is the subject of this
specific work. Kolmogorov [47] demonstrated that any
continuous function can be computed with three layers of
neurons between the inputs and outputs, given enough
neurons in each layer. Moreover, the connectivity plays
an important role in successfully solving the problem (see
[45, 46] for detailed information).

In the present work, the design of the different ANNs
was inspired by the works presented in [2] and [26]. In
particular, we have chosen a single neural network in
order to predict the joint angles of the hand, as in [2].
Most of the existing biomechanical works [4, 30, 32] use
different networks for the different fingers of the hand,
due to the better performance of smaller neural networks.
However, the coupling between fingers could hardly be
predicted by means of independent networks, but should
instead be predicted through a single network for the
whole hand.

Various ANN architectures have been tested with data
provided by different grasping experiments. Both topics
are thoroughly described in the following subsections.

3.1.1 Data Acquisition Device and Preliminary Study

The design of a neural network requires an in-depth
study of the process to be modelled. The more knowledge
we have about the process, the better we can find a
proper neural network to model its behaviour.

The authors have previous experience in human grasping
and have carried out several studies in the field of
biomechanics [48-53]. These works have focused on the
experimental characterization of common grasps in daily
life, including not only grasping postures but also the
forces produced by the different hand segments. These
studies have been performed from data collected by a
Cyberglove™ device, among others.

Marta C. Mora, Joaquin L. Sancho-Bru and Antonio Pérez-Gonzélez:
Hand Posture Prediction using Neural Networks within a Biomechanical Model
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Figure 6. Cyberglove joint sensors.

The Cyberglove™ system provides the main joint angles
of the hand with an acquisition rate of 15Hz. Figure 6
displays an image of the glove with the abbreviations
used for the joint angles studied in this work: the thumb
(ROLL, ABD1-2, MCP1, IP1), index finger (ABD2-3,
MCP2, PIP2), medium finger (MCP3, PIP3), ring finger
(ABD3-4, MCP4, PIP4) and little finger joint angles
(ABD4-5, MCP5, PIP5). This glove has been proven valid
for the measurement of hand postures during grasping
tasks, ranging its sensors’ repeatability errors from 1.2° to
5°. In particular, in [49] a quantitative study was carried
out to determine the influence of different parameters for
the grasping of several bottles of different sizes, weights
and materials. It was demonstrated that the hand posture
was repeatable for the same subject, bottle, filling level
and task. Another remarkable result was that the weight
did not have a significant influence on the grasping
posture.

3.1.2 Set of Experiments

The data from the experiments developed in the previous
work [49] was used. They consisted of sixteen grasping
experiments with the Cyberglove™ device over 4 bottles
of different sizes, weights and materials (Figure 7). Six
right-handed subjects with different anthropometric
characteristics were selected for the experiments, which
consisted in 2 grasping tasks with each bottle and 2
different filling levels, all of them carried out randomly
within the same session (4 bottles x 2 tasks x 2 filling
levels). The tasks were: to move the bottle to a different
position and to pour the bottle’s contents into a recipient
vessel. Each experiment implied 5 repetitions of the same
task, bottle and weight, carried out after a rehearsal
session (5 identical tests). The subjects were asked to
perform the tasks in a natural way. Table 1 shows the
bottles” features: the bottle number, material, height (h),
diameter at the contact area (d), empty weight (Wo), and
weights at filling levels 1 (W1) and 2 (W2).

Int J Adv Robotic Sy, 2012, Vol. 9, 139:2012

Figure 7. Bottles B1, B2, B3 and B4 (left to right).

Bottle | Material | h(m) | d(m) | Wo(kg) | Wi(kg) | Wa(kg)
1 glass | 0.300 | 0.08 | 0.5235 | 0.550 | 1.00
2 plastic | 0.350 | 0.08 | 0.0490 | 0.150 | 0.55
3 plastic | 0.245 | 0.075 | 0.0445 | 0.150 | 0.55
4 Plastic | 0.222 ] 0.065 | 0.0285 | 0.150 | 0.55

Table 1. Features of the bottles employed in the experiments.

Table 2 shows the subjects’ data, including HB and HL.

. Height | Weight| HL | HB
Subject | Gender | Age (m) (ke) (m) (m)

1 Male | 47 1.74 82 0.186 | 0.088

2 Male | 38 1.85 78 0.202 | 0.081

3 Female | 28 1.64 69 0.165 | 0.077

4 Male | 40 1.73 84 0.190 | 0.086

5 Male | 25 1.77 76 0.195 | 0.085

6 Female | 35 1.71 60 0.180 | 0.080

Table 2. Features of the subjects participating in the experiments.

Figure 8 shows an image of one of the 16 experiments.
Each experiment implied 5 new input-target sequences
for the ANN, yielding a set of 480 data sequences for
training and test purposes.

Figure 8. Experiment example: pouring water into a glass.

www.intechopen.com



A statistical analysis over the output data standard
deviations (SDs) was performed. For each subject
grasping each bottle, the SD was computed at each joint
angle. The overall SD values of each joint angle were
computed in order to compare the ANNSs’ errors with the
deviations of the real data.

3.1.3 Neural Network Design

In this case, the inputs and targets were available from
grasping experiments. Therefore, supervised learning was
the best option for learning the nonlinear relationships
between them. In supervised learning, the optimum
weights are obtained by an optimization technique for data
not used in the training phase. This is the test phase.

In order to decide the inputs to the neural network, the
results from the preliminary grasping study were
considered. As the weight was not a significant parameter
[49], it was not taken into account as an input to the
neural network. Therefore, the input variables were: the
hand parameters HL. and HB, the object size (diameter in
the case of bottles) and the task to be performed. The
outputs of the neural network were the joint angles for
the characteristic hand postures during the grasping
process: the MOP and the TGP. A different neural
network was used for predicting each posture.

Accounting for the nature of our problem, we decided to
use a multi-layer fully-connected feed-forward network,
which was able to learn complex relationships. The
selected training algorithm was the backpropagation
technique [45, 46], which is the generalization of the Least
Mean Squares algorithm for multiple-layer networks. It
minimizes the mean square error (MSE) between the
network outputs and the targets, where a set of examples
of proper network behaviour are provided for learning.

We developed, trained and tested ANNs for the TGP and
the MOP with different architectures. The number of
hidden layers ranged from one to three. Different
numbers of neurons were tested for each layer, as well as
different activation functions commonly used in the
literature (linear and sigmoid [45, 46]). Over each ANN,
two tests were performed:

e Test B2: The training set was composed of data from all
the subjects and tasks, except for bottle 2. The test set was
composed of the data not used for training (from all
subjects and tasks, but only from bottle 2).

¢ Test S4: The training set was composed of data from all
the bottles and tasks, except for subject 4. The test set was
composed of the remaining data (from all bottles and
tasks but only from subject 4).

The ANNs performances were computed based on the
prediction results of the abovementioned tests, in terms

www.intechopen.com

of the mean RMS (root mean square) errors and standard
deviation SD of the RMS errors for each joint angle of the
TGP and MOP.

3.2 Posture Prediction Assessment

The global model proposed for the prediction of grasping
postures and contact information was assessed through
the simulation of the two tasks of moving a bottle and
pouring its contents, using the grasping posture
algorithm. The simulations were performed with the
prediction results of the tasks for subject 4 and bottle 2,
and consisted in using the MOP and the TGP estimated
by the ANNs (the selected ones among the ANNs
developed after their assessment) as input for the
grasping posture algorithm.

The errors in the joint angles were calculated as the
difference between the predictions and the measured
values. The RMS errors and standard deviations of these
errors for the whole hand were used to globally validate
the technique, and the RMS errors and standard deviation
of these errors per finger were used for a detailed analysis
of the distribution of the errors and their relative
importance in the subsequent analysis of dynamic
grasping with the hand biomechanical model.

The visual representation of the input postures and the
predicted grasping posture was also made in order to
visually corroborate the validity of the model.

4. Results and Discussion

Before assessing whether the estimations made by the
grasping algorithm are good enough, we must take into
account the variability in the grasping postures when
performed by the same subject several times. Less
precision must be demanded of joints with large

Joint Angle | Mean SD ()
ROLL 1.49
MCP1 2.27

IP1 4.57
ABD1-2 3.09
MCP2 2.92
PIP2 3.05
MCP3 291
IFP3 3.04
ABD2-3 1.22
MCP4 3.35
PIP4 3.69
ABD3-5 2.54
MCP5 7.87
PIP5 5.73
ABD4-5 2.22

Table 3. Mean standard deviation (SD) values for the joint angles
of the experimental grasping postures (variability).

Marta C. Mora, Joaquin L. Sancho-Bru and Antonio Pérez-Gonzalez:
Hand Posture Prediction using Neural Networks within a Biomechanical Model
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variability. Table 3 shows the joint angles’ variability
whereby the higher values are found in IP1, MCP5 and
PIP5. The little finger posture is the least repetitive.
Moreover, the role of this finger in grasping is minor
compared with the other fingers.

4.1 Selection and Performance of the Neural Network

Tables 4 and 5 summarize the best ANN performances
from the different tested architectures. These values are
given in terms of the mean RMS errors of the test phase
and their associated standard deviations (SD) for the joint
angles” prediction for the TGP and MOP. It can be seen
that in Test B2 the minimum mean error is attached to
ANNY7, a four-layer feed-forward network. However, the
results are very close to those from ANNI, a two-layer
feed-forward network. The high computational cost
involved in the use of a four-layer ANN did not
compensate for the slightly better results of ANN7. In
Test S4, ANNT1 clearly displays the best performance for
both the TGP and MOP. Nevertheless, this test has
considerably higher errors than Test B2, which suggests
that we may lack experimental data regarding the

6-8 for both the moving and pouring tasks carried out by
subject 4 with bottle 2.

MOVE TGP MoP
M M
Joint | 2™ ANN fan | ANN
Exp. .. Error | Exp. .. Error
Angle Prediction Prediction|
Value Value

ROLL | 96.46 96.94 0.48 | 93.62 93.66 0.05
MCP1 | 14.18 391 1027 | 1.93 -0.01 1.94
IP1 30.45 38.98 8.53 | -19.40 | -13.15 6.25
ABD1-2 | 63.36 66.74 3.38 | 20.77 14.34 6.43
MCP2 | 32.28 32.53 0.25 | 2.04 3.99 1.95
PIP2 | 20.55 22.61 2.06 | -12.94 | -11.13 1.80
MCP3 | 32.28 32.53 024 | 2.04 4.01 1.98
IFP3 20.55 22.61 2.06 | -12.94 | -11.18 1.76
ABD2-3 | 11.83 13.77 194 | 2.70 2.77 0.07
MCP4 | 31.11 23.55 756 | 5.19 5.38 0.19
PIP4 11.99 2334 |11.34| -17.08 | -14.95 2.13
ABD3-5| 13.89 20.08 6.19 | 435 4.76 0.41
MCP5 | 29.94 1455 | 1540 | 8.34 6.76 1.58
PIP5 16.05 16.05 0.00 | -9.96 -8.09 1.87
ABD4-5 | 8.62 17.37 874 | 478 6.09 1.31
Table 6. ANN1 Prediction results (°) for task MOVE.

. .. POUR TGP MOP
subjects for proper generalization. Therefore, the selected Mean Mean

architecture was a two layer feed-forward neural network Joint Exp. ANN | or Exp. ANN o or

with 100 neurons in the hidden layer, for the prediction of Angle | o, o [Prediction Value [Frediction
both TGP and MOP postures. ROLL | 96.08 95.68 | 040 | 94.10 93.79 | 0.31
MCP1 18.02 9.24 8.78 2.67 4.36 1.69
Mean Mean SD IP1 25.09 36.19 11.09 -5.65 -8.65 3.01
ANN |Hidden| Neurons | Activ. | RMS | SD | RMS MOP ABD1-2| 64.23 63.88 0.36 26.71 20.69 6.02
ID |Layers| per layer |function| error [TGP(") error © MCP2 | 2393 32.71 8.79 9.02 5.66 3.36
TGP() MOP() PIP2 | 10.70 26.06 |15.36| -10.18 -7.35 | 2.83
1 1 100  |Sigmoid| 8.64 | 407 | 4.63 | 2.03 MCP3 | 23.93 3272 | 879 | 9.02 562 | 3.40
2 2 75550 |Sigmoid| 8.84 | 3.89 | 8.01 | 3.38 IFP3 | 10.70 2602 |1532| -10.18 732 | 2.86
3 2 100,75 |Sigmoid| 8.70 | 3.87 | 7.51 | 3.27 ABD2-3| 26.32 1350 |[12.82| 257 236 | 0.20
4 2 150;100 |Sigmoid| 8.64 | 3.80 | 4.72 | 2.27 MCP4 | 32.66 32.83 0.18 9.15 7.50 1.65
5 3 |3583535 |Sigmoid| 871 | 3.67 | 4.82 | 2.00 PIP4 1.24 2684 [2560| -1630 | -11.17 | 5.13
6 3 100,75;50 |Sigmoid| 8.80 | 3.83 | 4.85 | 2.20 ABD3-5 15.65 14.57 1.08 3.58 3.74 0.16
7 3 |75;100;150 |Sigmoid| 8.50 | 3.93 | 5.02 | 2.27 MCP5 | 41.38 32.91 8.47 9.29 936 0.08
8 3 150;150,150|Sigmoid| 8.71 | 3.97 | 4.89 | 2.43 PIP5 2.88 11.78 8.90 -7.20 -6.35 0.85
Table 4. ANNs’ performance for the TGP and MOP in Test B2. ABD4-5| 6.59 9.79 3.19 3.33 3.12 0.22

Table 7. ANNI1 Prediction results (°) for task POUR.

75,50 |Sigmoid| 16.94 [6.79| 20.03 |13.45
100,75 |Sigmoid| 15.25 |6.75| 19.21 |13.23
150;100 |Sigmoid| 15.12 |6.70| 14.95 |14.35
35,3535 |Sigmoid| 14.93 [9.01| 16.12 |12.49
100;75,50 |Sigmoid| 15.01 |9.25| 17.22 |12.14
75,100,150 |Sigmoid | 14.88 [8.93| 16.07 |12.32
3 |150;150;150|Sigmoid | 14.97 |9.45| 17.73 |12.67

WW[WIN|IN[N|=

(o= IENN o) N6 [ I HOV R I O )

Table 5. ANNs’ performance for the TGP and MOP in Test 54.

To illustrate the performance of the ANN1, the detailed
results for each joint angle prediction are shown in Tables

Int J Adv Robotic Sy, 2012, Vol. 9, 139:2012

Mean sD Mean sD
ANN |Hidden| Neurons | Activ. | RMS TGP RMS MOP TGI; . MOI; i
ID |Layers| perlayer |function| error o | emor |7 Task RMS Error () | SD() | RMS Error (°) | SD()
TGP(") MOP() Move 7.02 4.85 2.72 1.92
100 Sigmoid| 12.76 |7.93| 14.51 |12.36 Pour 10.98 7.05 2.80 1.89

Table 8. Summary of the ANNI prediction results when
performing tasks MOVE and POUR for subject 4 and bottle 2.

We can observe that the MOP predictions are very
accurate, with errors lower than 3°. The TGP predictions
present higher errors, although they are lower than 11°.
Taking into account the real variability in the repetition of
the postures as experimentally observed (Table 3), which
reaches 8" in some joints, the errors obtained by the
neural network are reasonable. The maximum errors for
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the TGP prediction for the task MOVE occur in the MCP5
joint, which is the joint with a higher repeatability error.
The errors for the task POUR are larger than those for the
task MOVE, which may be due to the difficulty involved
in the selection of the representative instant of the task,
since the hand does not hold the bottle in a static posture
but rather it changes its grasping posture for the bottle’s
manipulation.

4.2 Performance of the Grasping Algorithm

The TGP and MOP predictions of the two-layer feed-
forward network for subject 4 and bottle 2 were
introduced in the grasping algorithm for the assessment
of the global model in the realization of the two tasks:
MOVE and POUR. This model produced a final grasping
posture and contact through the simulation of both tasks.
Table 9 shows the RMS error, the standard deviation and
the maximum error of the joint angles for the final
grasping posture’s computation. Table 10 displays the
RMS errors for every finger
simulations of both tasks, as well as the global mean RMS
error per finger. It is important to note that these values
are satisfactory when taking into account the joint angles’
variability mentioned above (Table 3).

obtained from the

Subject | Task | RMS Error ()| SD(°) | Maximum Error (°)
4 Move 11.43 7.02 2291
4 Pour 13.23 7.49 25.60

Table 9. RMS errors and SDs of the grasping algorithm in the
computation of the grasping posture from the MOP and TGP
obtained predictions.

Subject | Task | Thumb | Index | Middle | Ring | Little
4 Move 9.44 2.53 8.68 14.17 | 15.79

4 Pour 12.59 12.61 | 17.03 14.81 8.65
Mean RMS Error| 11.02 7.57 12.39 | 1049 | 10.66

Table 10. RMS errors and SDs of the grasping algorithm
described for each finger in the computation of the grasping
posture from the MOP and GP predictions.

Figure 9a-b displays the MOP and TGP prediction results
provided by the ANNs. Note that the phalanxes of the
fingers in the TGP do not make contact with the object
(Figure 9b), so it is not possible to use this posture to
directly obtain the contact information required for a
dynamic analysis of the grasp. Figure 9c-d shows the
grasping posture obtained from the grasping algorithm.
Here, the hand has finally contacted the object and is able
to grasp it in a realistic way. In addition, the muscle
forces, contact forces and torques could be computed by
means of the dynamic biomechanical model.

5. Conclusions and Future Work

This paper has described a valid methodology for the
computation of grasping posture by introducing artificial

www.intechopen.com

neural networks in a biomechanical grasping model. The
artificial neural networks are used to predict two
characteristic hand postures needed in the grasping
algorithm: the tentative grasping posture and the most
open posture. The results show that a relatively simple
architecture is enough to obtain satisfactory posture
predictions. In fact, two layer feed-forward neural
networks with 100 neurons in the hidden layer are used
for posture prediction. The performance of the neural
networks, in terms of prediction errors for the joint
angles, is similar to the joint angles variability, which
implies that a good prediction has been made. However,
the results also indicate that more experimental data
regarding the subjects is needed.

N

o) d)

Figure 9. Simulation results of the grasping algorithm for the
task MOVE of Test B2: a) MOP, b) TGP, c) and d) different views
of the grasping posture.

The use of the artificial neural networks within a grasping
algorithm allows the computation of a feasible and realistic
grasping posture. Moreover, this algorithm produces the
contact information needed for the biomechanical analysis
of the grasping process. The global error increases slightly
when compared to the error of the artificial neural
networks (around 10°), although this result is reasonable if
we take account of the joint angles’ repeatability when
grasping objects in daily life.

Future works would include the use of this methodology
for objects of a non-cylindrical shape - but with a similar
grasp configuration - and the realization of more
experimental work for the generalization of proper

grasping.
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