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In this file, I show more results and examples from the paper “H-plots for

displaying non-metric dissimilarity matrices”, together with more illustra-

tive results on other databases: an image database of handwritten “3”s, the

classical Iris data set, and the Swiss roll dataset, considered in Tenenbaum

et al. [16] and Roweis and Saul [12]. Each database corresponds to a different

section.

This work has been mainly done by using free software, R [10], and espe-

cially the MASS library [17]. The Matlab code for computing Isomap can

be obtained from http://isomap.stanford.edu. The code is available at

http://www3.uji.es/ ∼epifanio/RESEARCH/hplot.rar.
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1 Example 1: flights

In Fig. 1 the configuration for two dimensions for several manifold learn-

ing techniques are shown, specifically for the Locally Linear Embedding

(LLE) [12], the Laplacian eigenmap (LAP) [2], the Diffusion Map (DIF)

[9], and the Local Tangent Space Alignment (LTSA) [20] (the algorithms of

these techniques are available from the MANIfold Learning Matlab Demo:

http//www.math.ucla.edu/∼wittman/mani/). For LLE, the distance between

MA and MO is nearly the same as MA and VL, which also happens with

LAP where the distance MA and MO is less than MO and SP. With DIF,

VL is nearer to MO and SP than MA. However, VL and MA are at the same

point with LTSA. Several σ values for DIF have been considered. For bigger

values than 10, MO and SP approximate to each other, whereas MA and VL

remain distant. For σ = 5, the configuration is similar to that of LLE, and

for smaller values it resembles the LTSA configuration.
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Figure 1: Scatter plot for flights: LLE (2 neighbors), LAP (2 neighbors),
DIF (σ = 10, α = 1) and LTSA (2 neighbors).
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2 Example 3: brands

Let us suppose that the observed difference between di. and dj. is zero for all

the observed objects, except for the objects i and j. According to property

3 of the h-plot, the distance of the variables di. and dj. in the h-plot will

depend on the sample variance of their difference, and in this particular case

it will depend on the size of dij in relation to the rest of the distances. This

would be the ’opposite’ situation to Example 1.

Let D (see Table 4) be the perceived dissimilarity matrix between five

different brands of a certain kind of product on a five-point scale from 0

(indicating no dissimilarity) to 4 (maximum dissimilarity). Let us suppose

that dissimilarities between brands A and B, and each of the others, are

identical. Let us vary the dissimilarity between A and B from 0 to 4, which

is called a, in order to see how this affects the final configuration. For a >

2, the triangle inequality does not hold. Note also that there are three high

central objects (C, D and E).

Table 1: Dissimilarity matrix between five brands.
A B C D E

A 0 a 1 1 1

B a 0 1 1 1

C 1 1 0 1 2

D 1 1 1 0 4

E 1 1 2 4 0

CCs for the different methods and values of a appear in Table 2. Fig.

2 displays the configurations for my method for the different values of a.

As Sammon and isoMDS need dissimilarities to be positive, except for self-
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dissimilarity, I have considered a = 0.00001 instead of 0.

Table 2: CCs for the different methods with brands, varying a.

a cMDS isoMDS Sammon Isomap (2 neighbors) h-plot
0.00001 0.957 0.936 0.957 0.884 0.957

1 0.946 0.940 0.951 0.884 0.934
2 0.946 0.917 0.947 0.870 0.949
3 0.933 0.901 0.934 0.873 0.935
4 0.913 0.870 0.914 0.818 0.914

My method obtains the biggest CC in all cases, except when a = 1, where

brands A and B are represented by the same point in the h-plot. With this

example, I also wanted to show that, obviously, I do not expect the h-plot to

be the best for all problems. Depending on the structure of the dissimilarity

matrix, better results can be obtained by other methods.
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Figure 2: Scatter plot for brands with the h-plot for a from 0 (on the left)
to 4 (on the right).

The configuration for all the methods when a = 2 is displayed in Fig. 3.

For a = 2, all the eigenvalues in the eigendecomposition for classical scaling

are positive (this indicates that D is Euclidean). Only for a = 3 and a =

4 is the fourth eigenvalue negative; for the rest of the considered values of

a all the eigenvalues are positive, and therefore D is Euclidean. Note that

the configuration is quite similar for the h-plot and Sammon. For cMDS, the
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configuration is also similar, but brand C is nearer to brand E than in those

methods, when their difference is 2. For isoMDS (A and C are superimposed)

and Isomap (E is far from A and B), the configurations do not reflect the

structure of the dissimilarity matrix so well. It seems that these two methods

do not visualize the high central objects appropriately.
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Figure 3: Scatter plot for brands: cMDS, isoMDS, Sammon, Isomap (2 neigh-
bors) and h-plot.

Fig. 4 displays the configuration for two dimensions for the same manifold

learning techniques as the previous example. For LLE, E is nearer to B than

A when originally they are at the same distance, and C is more or less at the

same distance from D and E. B is also nearer to E than D with LAP, and C

is quite far from D. A and B are superimposed on DIF (σ = 10), while with

DIF (σ = 2) a representation which is more similar to the h-plot is obtained

(with σ = 0.5 C and D are superimposed). A and B are not at the same

distance from C, D and E with LTSA.
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Figure 4: Scatter plot for brands: LLE (2 neighbors), LAP (2 neighbors),
DIF (σ = 10, α = 1), DIF (σ = 2, α = 1) and LTSA (2 neighbors).
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3 Example 4: asymmetric dataset

There are situations where d is not a distance, such as dealing with asym-

metric data. My methodology can handle this kind of situation naturally,

even in the case where djj > 0.

Let us consider a classical asymmetric dataset: the confusion percent-

ages between 36 Morse code signals [11], which were exhaustively analyzed

in Borg and Groenen [4, Sections 4.2 and 22.2]. (The dataset is avail-

able at the home page of their book: http://people.few.eur.nl/groenen/

mmds/datasets/chapter 4/index.html#7). The dissimilarity matrix is a 36×

72 matrix formed by the variables giving the dissimilarity (100% - rate of con-

fusion%) from each Morse code (i.e. di. denotes the dissimilarity when the

i-th code is presented first), and the variables giving the dissimilarity to each

Morse code (i.e. d.i denotes the dissimilarity when the i-th code is presented

second). Fig. 5 shows the h-plot in two-dimensions, although its goodness-

of-fit is not very good (78.94%). The variables di. are represented in black,

whereas the variables d.i are circled in red.

Similar observations to those appearing in Borg and Groenen [4] can be

made: as we move from left to right in the figure we can see that what is

changing is the temporal length of the signal (long to short), whereas as we

move from the lower to the upper part of this figure the aspect of the signals

that is changing is the ratio of dots to dashes (mostly dots to mostly dashes).

According to property 3 of the h-plot, the more asymmetric codes will be
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Figure 5: Scatter plot for Morse data with h-plot.

those with the greatest Euclidean distance of the variables di. and d.i in the

h-plot, which coincide with the results from the Gower decomposition [4]:

H , X , and V , with d.i on the right of di.. However, Gower only considers

the skew-symmetry part, not the whole matrix, so part of the information is

lost. For example, S and A are very near in the Gower diagram, but they

are not so near if we consider the whole matrix.

It is possible to display the symmetric part (with cMDS) together with

drift vectors to model asymmetry [4, 3]. However, the representation could

be misleading in some points as the symmetric and skew-symmetric parts

are considered separately, not jointly as in the h-plot. For example, T , N , M

are together in the Gower diagram, indicating that they are asymmetrically
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similar, but in the cMDS configuration with drift vectors those letters are not

very near because only the symmetric part is considered in the representation.

With the h-plot we can see that those letters are similar.

4 Point patterns

4.1 Details of the dissimilarity

Dissimilarity between two point patterns is determined through the samples

of the observed nearest neighbor distances. The nearest neighbor distance

is defined as the distance from a point of the pattern to the closest of the

other points of the pattern. Note that the point pattern is observed through

a sampling window W , there are unobserved events outside the window,

which can lead to mistaken estimates. This is illustrated in Fig. 6, where

the observed nearest neighbor distance from the red point is bigger than the

real one (to the point outside the window W ). Therefore, these distances

are really censored values, as was pointed out in Baddeley and Gill [1]. Let

di denote the observed distance from the i-th point of the point pattern, s,

to its nearest neighbor within the sampling window W , and ci its distance

to the complement of the sampling window W . If ci < di, the real nearest

neighbor could be outside the window and, in that case, the real and unknown

nearest neighbor distance d′i fulfills d
′

i > ci, and the observation is censored.

In summary, the dissimilarity between two point patterns is computed by

comparing the samples of the observed nearest neighbor distances, which are
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really censored values.

One of the most natural ways of defining a dissimilarity measure is to

borrow the ideas of two-sample hypothesis tests in survival analysis with the

right censored data. The log-rank statistic [8] can be used as a judicious

dissimilarity measure. Note that the usual time or duration in the context

of survival analysis is replaced here by the observed distance.

In survival analysis, the time instant where an event is observed is fre-

quently called the (observed) failure time. Here this phrase is replaced with

the (observed) failure distance, i.e. the distance between a point of the pat-

tern and its nearest neighbor, provided that these distances are smaller than

the distances to the boundary of the window. In order to construct the log

rank test, a sequence of 2× 2 tables is built over the distances (one for each

failure distance, dj), where the risk set at that distance is classified into a

2 × 2 table, according to the group and event status. Let us present some

notation: rj stands for the size of the risk set in the interval [dj−1, dj) and

fj the number of failures. The size of the risk and failure sets for each group

can also be defined. In this way, for the first group they are denoted by

r1j and f1j , respectively. Differences between the observed and the expected

events (conditioning on the margins of the 2× 2 table) in the first group are

totalled over distances and squared in order to calculate the numerator of

the log-rank statistic:

U =
∑

j

(f1j − g1j), (1)
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where g1j stands for the expected number of failures in the first group, g1j

= fj ∗ r1j/rj. The denominator is the sum of variances for the number of

events in the first group within each 2× 2 table, which is obtained by using

the hyper-geometric distribution:

V ar(U) =
∑

j

r1j ∗ fj/rj(1− fj/rj)(rj − r1j)/(rj − 1). (2)

The code for computing the dissimilarity between two point patterns

using the log-rank statistic with the nearest neighbor distance samples is

available, as previously mentioned.

4.2 Details on the generation of the experiments

Three experiments have been considered. The simulated data is meant to

look similar to the corneal endothelium data. Different Strauss processes

have been chosen. (A Strauss process is a Markov point process where the

conditional intensity of an event at a point x, given the realization of the

process in the remainder of any set B, is αcsx, where sx is the number of

events within a distance r from x. They are called the neighbors of x and

parameter c, with 0 ≤ c ≤ 1 describes the interaction between neighbors,

while parameter α controls the intensity of the process.)

The first experiment considers different Strauss processes in a unit window

i.e. different degrees of regularity, all of them with α = 120 and c = 0, and the

three groups correspond to three values of r (i.e. three interaction distances):
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0.01, 0.04 and 0.07. One hundred patterns have been simulated from each

group. Figure 7 displays one of the 100 point patterns generated for each

group. Note that I compute the dissimilarity between these point patterns,

not within them.

In the second experiment the same processes are considered but the

window is changed. One half of these patterns are now generated in the

unit window W1 = [0, 1] × [0, 1] with the other half in the window W2 =

[0, 0.5]× [0, 0.5], i.e. 50 point patterns in W1 and 50 in W2, for each group.

This situation occurs frequently in my motivating example, where the win-

dow size is variable, as corneal endothelia are of variable sizes.

The third experiment is also similar to the first one, but instead of chang-

ing the interaction radius I will change its strength. Different Strauss pro-

cesses with α = 120 define every group with a fixed r = 0.07, but with

different values of c: 0, 0.5 and 1. When parameter c increases, the proba-

bility of finding pairs of points at a distance of less than r increases.

4.3 Simulated examples

The three experiments that I have done share the same experimental setup.

In each of them, three different groups of point patterns are considered. Each

group is composed of 100 point patterns generated from the same model with

the same parameters. Obviously, in this way I know the true partition.

For the dissimilarity matrices of the previous data (I have three matrices

of 300×300), I have computed the CC shown in Table 3. The goodness-of-fit

11



for my method with these experiments appears in Table 4, giving an excellent

fit for two dimensions. In all cases the highest CC is achieved by the h-plot

but, as before, pictures provide a better comparison of the results.

As the true partition is known, the real groups are represented by different

points. The first group appears as blue squares, the second one as red circles

and the third one as green triangles.

Results for the first experiment are shown in Fig. 8, for the established

methods and for my method, both using the original dissimilarities and their

ranks (the original dissimilarities are replaced with their sample ranks). I

get a clear separation of the groups with my method in both dimensions,

as opposed to the other methods which separate the clusters with varying

success with respect to the first dimension. Note that some blue squares are

in the red circle group for all the methods except the h-plot.

Table 3: CCs for the different methods with simulated point patterns.
Experiment cMDS isoMDS Sammon Isomap (25 neighbors) h-plot

First 0.965 0.971 0.967 0.929 0.974
Second 0.875 0.875 0.791 0.283 0.879
Third 0.95 0.956 0.955 0.891 0.962

Table 4: Goodness-of-fit of my method for one and two dimensions with
simulated point patterns.

Experiment One dim. Two dim.
First 97.573 99.99
Second 88.895 99.7
Third 97.99 99.996
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Table 5: Average of the original dissimilarities for the subgroups of the second
experiment.

Average dissimilarities 1 W1 1 W2 2 W1 2 W2 3 W1 3 W2

1 W1 1.7 2.02 20.38 6.44 61.71 13.71
1 W2 2.02 1.82 15.32 6.33 47.08 12.3
2 W1 20.38 15.32 1.98 1.9 27.21 6.15
2 W2 6.44 6.33 1.9 1.83 20.17 5.61
3 W1 61.71 47.08 27.21 20.17 2.25 2.22
3 W2 13.71 12.3 6.15 5.61 2.22 1.76

Results for established methods are displayed in Figs 9 and 11 for ex-

periments 2 and 3, respectively, while results for my method are shown in

Figs 10 and 12, both using the original dissimilarities and their ranks. The

lightest colors in Figs. 9 and 10 indicate that the group was generated in the

window W2 = [0, 0.5]× [0, 0.5].

We can appreciate a clear separation of the groups with my method in the

third experiment. However, this separation does not appear in the majority

of methods in the second experiment. An analysis of the second experiment

dissimilarities reveals the reason for the point arrangement in the methods.

Table 5 shows the average of the dissimilarities for the three groups according

to the window where they were generated: W1 = [0, 1] × [0, 1] or W2 =

[0, 0.5]× [0, 0.5]. The precision was different for those different window sizes.

If I use the rank of the dissimilarities with the h-plot for discovering clusters,

a much better arrangement is obtained (see Fig. 10 (b)).
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5 Images of Handwritten “3”s

This dataset is available at http://www-stat.standford.edu/ElemStatLearn,

the website for the book [6]. It consists of normalized handwritten digits,

automatically scanned from envelopes by the U.S. Postal Service. The orig-

inal scanned digits have been normalized to be of approximately the same

size and orientation, resulting in 16 x 16 grayscale images [7]. I have chosen

the 824 available images of the digit 3.

In order to apply the different methods of multidimensional scaling, I have

computed a well-known objective measure between each pair of images [15]:

the mean square error (MSE). Therefore, the element dij of the dissimilarity

matrix takes the following form:

dij =
1

MN

M∑

x=1

N∑

y=1

(fi(x, y)− fj(x, y))
2

where M and N are the horizontal and vertical dimensions of the images,

and fi and fj stand for the i-th and j-th images, giving the brightness values

for each pixel. Although MSE is related to the Euclidean distance, which

was used for determining the distance between two images in Tenenbaum

et al. [16], I have preferred MSE because it is more common in the image

processing field. This dissimilarity is not a metric, since triangle inequality

is violated. In this example, the smallest 667 eigenvalues of the matrix B in

classical multidimensional scaling (B is defined in the paper) are negative.

Table 6 shows the CC for the different methods. In all cases, it is near
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Table 6: CCs for the different methods with Handwritten “3”s.
cMDS isoMDS Sammon Isomap h-plot
0.940 0.958 0.940 0.925 0.916

one. On the other hand, the goodness-of-fit for my method for one and two

dimensions is 77.12% and 92.01%, respectively. However, what are really

meaningful are the pictures themselves, since they show the reduced config-

urations in detail. The scatter diagrams for isoMDS (the method with the

highest CC) and Isomap (considering the 25 nearest neighbors) appear in

Fig. 13, while my method is displayed in Fig. 14. A sample of the images

is superimposed onto the 2D projection of all input images. The red point

indicates the point representing the image next to it. This representation

makes it easier to show the data’s underlying geometric structure. For my

method, the upper-left region seems to represent “slim” threes, and looking

from left to right, we observe “3”s with longer upper and lower tails. The

roundest “3”s are in the bottom-left part. It is difficult, however, to dis-

tinguish visually any clear structure in the configuration given by isoMDS.

The roundest “3”s are in the central part, but the periphery is not so easy

to interpret. With regard to Isomap configuration, the slimmest “3”s are in

the bottom to center right-hand part, and the majority of “3”s with longer

upper and lower tails are in the left and upper part, although there are also

some in the central part, together with the roundest “3”s. It seems that my

representation provides a more perceptually meaningful structure.
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Table 7: CCs for the different methods with the Iris data set.
cMDS isoMDS Sammon Isomap h-plot
0.999 0.999 0.999 0.995 0.988

6 Iris data set

The Iris data set gives the measurements in centimeters of the variables sepal

length and width and petal length and width, respectively, for 50 flowers from

each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

This is a classical dataset used in many articles [19]. I have considered the

Euclidean distance in order to build the dissimilarity matrix. In this way,

the Iris setosa class is well-separated from the other two classes which are

not as easily separated from each other.

Table 7 shows the CC for the different methods. Now they are nearer

to one than in the previous example. Furthermore, the goodness-of-fit for

my method for one dimension is very high, 98.58%, providing 99.99% for

two dimensions. The scatter diagrams for the established methods appear in

Fig. 15, where each symbol represents a different species (blue square for Iris

setosa, red circle for versicolor and green triangle for virginica). My method

is shown in Fig. 16 (a).

There is a clear separation of the setosa species from the others, in my

method and Isomap being a tighter cluster than in the other representations.

In my representation, the phenomenon called horseshoe or Guttman ef-

fect appears [14]. The solution has a U shape, which would indicate that
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Table 8: Means for each group and variable of Iris data.

Group Sepal Length Sepal Width Petal Length Petal Width
setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

the data is basically one dimensional. In this case, the one-dimensional co-

ordinate could refer to the size of the flowers. Direct inspection reveals that

setosa is physically much smaller than the other two species, and versicolor

is somewhat smaller than virginica (see Table 8). The intrinsic dimension-

ality of the data estimated by the ‘elbow’ of the residual variances plot as

suggested in Tenenbaum et al. [16] is, however, four (see Fig. 17).

My method applied to the dissimilarity ranks (original dissimilarities are

replaced with their sample ranks) is shown in Fig. 16 (b). It seems that now

the species versicolor and virginica are somewhat more separated (there is a

small gap at (5000,-1000)).

7 Swiss roll

The Swiss roll dataset is a randomly sampled plane rolled up into a spiral. It

has appeared in several studies [16, 12]. I have considered the first 1000 points

of the Swiss roll from the package Isomap for Matlab http://Isomap.stanford.

edu, and each component has been standardized. Afterwards, the dissimi-

larity matrix is computed with the Euclidean distance (a metric measure).

Figure 18 shows these points. Figs 19, 20 and 21 show the configurations
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cMDS isoMDS Sammon Isomap (7) LLE (7) LLE (25) HLLE (7)
0.965 0.970 0.969 0.843 0.863 0.956 0.922

LAP (7) LAP (25) LTSA (7) CA DIF (σ=10) DIF (σ=0.5) h-plot
0.883 0.910 0.922 0.963 0.965 0.954 0.962

Table 9: CCs for the different methods with Swiss roll.

for different multidimensional scaling methods (using the same colors as in

Fig. 18 for representing the same points): cMDS, isoMDS, Sammon, together

with several manifold learning techniques from the MANIfold Learning Mat-

lab Demo. These methods are: Isomap, LLE, the Hessian eigenmaps (HLLE)

[5], LAP, DIF, and LTSA. These methods are controlled by one or several

parameters, and very different results can be obtained depending on the val-

ues of the parameters [13]. Correspondence analysis (CA) as in Weller and

Romney [18] is also considered. The dissimilarity data must first be trans-

formed into similarity data. The same strategy as in Weller and Romney [18]

is followed: subtracting them from a number larger than the largest value

in the dissimilarity matrix, 5 in this example. Note that when using CA

for non-frequency data, some precautions should be born in mind [18, pp.

70-76]. The five precautions discussed by Weller and Romney [18, pp. 70-76]

are: first, inferential tests are not valid; second, the data must be in the

form of similarities; third, it is critical that the diagonal values have a large

positive value; fourth, all values must be positive (zeros are acceptable) and

all row and column totals must be greater than zero; five, in sparse matrices

be alert to “defects” in data, such as two or more disjoint sets, which have

to be analyzed separately.
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Table 9 shows the CC for the different methods. This example reflects the

different approaches considered by classical multidimensional scaling meth-

ods and the recent manifold learning techniques developed for non-linear

dimensionality reduction. Classical multidimensional scaling techniques try

to preserve pairwise distances in order to study the proximity structure be-

tween pairs of objects, whereas for the new nonlinear dimension reduction

methods such as Isomap, LLE, etc., data are assumed to lie on a nonlin-

ear manifold [13], and in this specific example, their goal is to “flatten” the

Swiss roll, thus eliminating the dimensions that are used up by curvature.

This is the reason why blue points are represented in two separate groups

(see, for example, points with coordinates -6 and 2 in the first dimension for

the Isomap in Fig. 19), despite their closeness (see Fig. 18). This situation

does not occur in the classical multidimensional scaling methods and CA, but

in these representations pink points are intermingled with green and brown

points when they are not neighbors (see Fig. 18). Neither of the situations

previously mentioned for the classical and the new methods such as Isomap

appear with the h-plot. The configuration obtained with the h-plot resem-

bles a spiral, being visually similar to that obtained with the Diffusion map

(σ=0.5, α=1). Note also that the configuration obtained with the Diffusion

map (σ=10, α=1) is quite different, showing that parameter selection is a

critical and key factor, as previously mentioned.
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Figure 6: Edge effect illustration.
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Figure 7: First experiment: different Strauss point patterns with c=0, α=120
and (a) r=0.01, (b) r=0.04 and (c) r=0.07.
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Figure 8: First experiment: (a) cMDS, (b) isoMDS, (c) Sammon, (d) Isomap
(25 neighbors), and h-plot using: (e) the original dissimilarities, and (f) the
dissimilarity ranks.
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Figure 9: Second experiment: (a) cMDS, (b) isoMDS, (c) Sammon, and (d)
Isomap (25 neighbors).
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Figure 10: Second experiment with the h-plot using: (a) the original dissim-
ilarities, and (b) the dissimilarity ranks.
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Figure 11: Third experiment: (a) cMDS, (b) isoMDS, (c) Sammon and (d)
Isomap (25 neighbors).
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Figure 12: Third experiment with the h-plot using: (a) the original dissimi-
larities, and (b) the dissimilarity ranks.
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Figure 13: Scatter plot for handwritten “3”s with: (a) isoMDS and (b)
Isomap.
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Figure 14: Scatter plot for handwritten “3”s with the h-plot.
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Figure 15: Scatter plot for Iris data set with: (a) cMDS, (b) isoMDS, (c)
Sammon and (d) Isomap (considering the 25 nearest neighbors as in Yang
[19]).
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Figure 16: Scatter plot for Iris data set with the h-plot using: (a) the original
distances, and (b) the distance ranks.
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Figure 17: Residual variance of Isomap versus Dimension.
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Figure 18: Swiss roll.
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Sammon Isomap (7 neighbors as in Tenenbaum et al. [16])
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Figure 19: Scatter plots for Swiss roll (part I).
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Figure 20: Scatter plots for Swiss roll (part II).
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Diffusion map (σ=0.5, α=1) h-plot

Figure 21: Scatter plots for Swiss roll (part III).
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