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Abstract

Non-metric pairwise data with violations of symmetry, reflexiv-

ity or triangle inequality appear in fields such as image matching, web

mining or cognitive psychology. When data are inherently non-metric,

we should not enforce metricity as real information could be lost. The

multidimensional scaling problem is addressed from a new perspec-

tive. I propose a method based on the h-plot, which naturally handles

asymmetric proximity data. Pairwise proximities between the objects

are defined, though I do not embed these objects, but rather the vari-

ables that give the proximity to or from each object. The method is

very simple to implement. The representation goodness can be easily

assessed. The methodology is illustrated through several small exam-

ples and applied to the analysis of digital images of human corneal

endothelia. Comparisons with well-known methods show its good be-
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havior, especially with non-metric pairwise data, which motivate my

methodology. Other databases and methods are analyzed in the sup-

plementary material.

Keywords: Multidimensional Scaling, Proximity Data, non-Euclidean

pairwise data, Embedding, Visualization.

1 Introduction

Multidimensional scaling is a classical problem in many fields. However, there

has been a resurgence of interest in the dimensionality reduction problem,

as evidenced by the surge of publications in this field over the last few years

[4, 22, 24, 25]. This could be due to the acquisition of large volumes of high-

dimensional data produced by technological advances, and the fact that in

some fields such as bioinformatics, features are unavailable [10, Ch.18], and

only proximity information between pairs of objects is available. In some

fields such as image matching, text or web mining or cognitive psychology,

pairwise data are non-metric and the dissimilarity matrix does not satisfy

the mathematical requirements of a metric function (reflexivity, definiteness,

symmetry, triangle inequality). In these cases, non-metricity is not due to

noisy measurements, but due to data being inherently non-metric. In these

cases, we should not enforce metricity (for example, adding a constant to the

non-diagonal dissimilarities), as real information could be lost [17]. The great

majority of well-established machine learning methods have been formulated
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for metric data only, and often the metricity violation is not taken into ac-

count, transforming the dissimilarities (for instance, by symmetrization) or

simply omitting the negative eigenvalues as in classical scaling. I propose a

method based on the h-plot, which can take into account the non-metricity.

Many methods for multidimensional scaling carry out data projection by

iteratively minimizing some kind of distance-based error measure. In this

paper, I propose an alternative for the previous methods, with the advan-

tage of having an explicit solution in terms of eigenvectors. Furthermore,

the representation goodness can be easily assessed and it can be applied to

asymmetric proximity data in a natural way. Additionally, I show how my

basic method can be modified if clustering and pattern detection is a priority.

Applications of multidimensional scaling are numerous in many fields

(psychology, marketing, ecology, molecular biology, computational chemistry,

social networks, graph layout or music) [11]. Here, I consider the problem of

displaying dissimilarity matrices when the observations are images, i.e. dij

gives the dissimilarity between the images i and j.

My motivating problem is concerned with the analysis of digital images

of human corneal endothelia. The endothelial cell population decreases with

age or following stressful situations such as cataract surgery, corneal trans-

plantation or the implantation of intra-ocular lenses. When endothelial loss

occurs, the endothelial response is an enlargement and sliding of the existing

cells to cover the area previously occupied by the lost cells. As a result, the

cells lose their hexagonal appearance. Figure 1 shows an example of a human
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corneal endothelium.

Figure 1: A human corneal endothelium and the corresponding centroids
(squares) and triple points (crosses).

In Ayala et al. [1], a methodology for finding groups corresponding to dif-

ferent morphologies of the corneal endothelia was presented. Their basic idea

was to associate two point patterns to a given image. Under the ideal model,

the normal endothelium is expected to be a regular tessellation, which can

be characterized by the centroids of the cells or by those points correspond-

ing to the apical intersections, which are triple points (those points where

three different cells meet). In this theoretical model, both point sets would

be symmetrically located regular grids. The similarity between images was

reformulated as a similarity between the corresponding point patterns.

In this paper, the graphical exploration of those (non-metric) dissimilarity

matrices is carried out by using the method proposed based on h-plots. My

method is introduced in Section 2, and its benefits are illustrated through two

examples. In Section 3 my method is compared with other multidimensional

scaling methods through the dissimilarity matrix defined for the images of

human corneal endothelia. More comparisons with other methods and other

databases are available in the supplementary material. The code for repro-

ducing the examples is available at http://www3.uji.es/∼epifanio/RESEARCH/
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hplot.rar. Finally, some conclusions are given in Section 4.

2 Methodology

The biplot is a very useful tool for graphically observing the structure of

large matrices [8, 9]. The biplot provides a simultaneous summary of the

relationships among the observations and the relationships among the vari-

ables. Corsten and Gabriel [5] used it for comparing variance-covariance

matrices, where only variables were represented in the plot called an h-plot.

There are many variations in biplots, but the most widely-used one is

considered here, as introduced in Seber [23]. In the ensuing discussion, I

describe how the h-plot is computed.

Let X be a n × m data matrix (in which each column corresponds to

a variable and each row corresponds to an object or individual), and S the

unbiased estimate of the variance-covariance matrix. If we are interested in

the h-plot in two dimensions, the two largest eigenvalues λ1 and λ2, with

corresponding unit eigenvectors q1 and q2 of S, can be found. Note that the

eigenvalues are non-negative, since the covariance matrix S is always positive

semi-definite [15]. I then build (and represent) the matrix

H2 = (
√

λ1q1,
√

λ2q2).

Rows hj of matrix H2 have, approximately, the following properties:
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1. The sample covariance sji between variables j and i is h′

jhi, where ′

indicates the transposition. Hence, the sample variances sjj are ||hj||2.

2. The correlation between variables j and i is the cosine of the angle

between hj and hi.

3. ||hj − hi||2 = sjj + sii − 2sji, that is to say, the sample variance of the

difference between variables j and i.

These three properties hold exactly for the full matrix H (with all the

eigenvectors), but H2 only considers the first two columns of H . If most of

the variance is explained by the two leading eigenvalues, then H2 is a very

good summary. Corsten and Gabriel [5] proposed the following goodness-of-

fit measure for h-plotting in two dimensions, where a high measure (close to

1) indicates a better fit:

(λ2
1 + λ2

2)/
∑

j

λ2
j

Although I compute the eigenvectors of S, there is a clear difference with

respect to Principal Component Analysis (PCA). In PCA, we are mainly

interested in the representation of the n objects in the component space: the

scores (data matrix times eigenvectors). In fact, Euclidean distances between

objects in the component space will equal their Mahalanobis distances in

the observed-variable space. However, in h-plots we do not represent the n

objects but the m variables (scaled eigenvectors are represented).
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In this paper, I do not have a standard data matrix with objects and

variables but a dissimilarity matrix D among the n objects. The value dij

would indicate the observed dissimilarity from the object i to the object j.

However, this dissimilarity matrix itself can be treated as a data matrix, and

their variables could then be displayed as an h-plot. This new perspective

allows flexibility when non-metric dissimilarities have to be represented, as

we will see in the examples of the following section. I define the data matrix

X differently depending on whether D is symmetric or not.

In the case of an asymmetric relationship being given (i.e. dij $= dji), we

can consider the variable measuring the dissimilarity from j (dj.) to other

objects, and the variable measuring the dissimilarity from an object to j

(d.j), where the dot (.) indicates an object. For each object considered in

D, we obtain an observation of these two variables. Therefore, X = [D′|D]

is a n× 2n matrix (| indicates that the matrices are combined by columns).

We can study the 2n dissimilarity variables, but only because variables are

represented with the h-plot. Using PCA scores, this asymmetric relationship

study is not possible.

With a symmetric dissimilarity matrix, the variable j (dj. = d.j) would

represent the dissimilarity with respect to j, which is observed for those ob-

jects in D (in this case, dissimilarities from j and dissimilarities to j are

equal, and X = D is a n × n matrix). According to the previous proper-

ties of an h-plot, the Euclidean distance between hj and hi in the h-plot is

approximately the sample standard deviation of the difference between vari-
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ables dj. and di.. If these variables are similar, their difference and, therefore

the standard deviation of their difference, will be small.

To my knowledge, the work most related to my approach is the use of cor-

respondence analysis as a multidimensional scaling technique for similarity

matrices [20, 27]. However, data must be in the form of similarities, so dis-

similarity matrices must be first transformed to similarity matrices. Weller

and Romney [27, pp. 70-76] discuss some precautions that apply when us-

ing correspondence analysis on non-frequency data. These precautions are

summarized in the supplementary material, where this method is applied.

H-plot will be compared with three classical multidimensional scaling

methods [10, 26]: Classical (Metric) Multidimensional Scaling (cMDS), Kruskal’s

Non-metric Multidimensional Scaling (isoMDS) and Sammon’s Non-Linear

Mapping (Sammon), and a more recent method: Isomap [24], although this

method could fail when the data are spread among multiple clusters [28].

More methods are considered in the supplementary material. Note that

non-metric multidimensional scaling (despite the adjective) is not designed

specifically for non-metric dissimilarities. Non-metric or ordinal multidimen-

sional scaling seeks a configuration whose distances have similar order (rank)

properties. All methods take a matrix of inter-point dissimilarities as an in-

put and create a configuration of points. A scatter plot of the points created

by the methods provides a visual representation of the original dissimilarities.

The Euclidean distances between those points can be computed.

Although pictures could be considered as the best method to asses the
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configurations (as indicated in Borg and Groenen [2, sec. 19.7]), in order to

measure and compare the configurational similarity of two configurations X

and Y , I will also calculate the congruence coefficient (a correlation coefficient

about the origin), defined for symmetric dissimilarity matrices:

c(X, Y ) =

∑

i<j dij(X)dij(Y )

(
∑

i<j d
2
ij(X))1/2(

∑

i<j d
2
ij(Y ))1/2

where dij(X) indicates the dissimilarity between object i and j in configu-

ration X . The congruence coefficient (CC) ranges from 0 to 1, where 1 is

achieved if X and Y are perfectly similar geometrically. (In geometry, two

configurations are called similar if they can be brought to a complete match

by rigid motions and dilations). In the experiments, I compare the origi-

nal dissimilarities X with the reduced configuration Y obtained with each

method (generally the configuration in two dimensions), using the Euclidean

distance for building the interpoint distances in this configuration.

2.1 Comments on some benefits of the methodology

Classical multidimensional scaling methods try to preserve all pairwise prox-

imities, whereas many of the recent nonlinear dimension reduction methods,

such as Tenenbaum et al. [24] and Roweis and Saul [21], use only local neigh-

borhood information to construct a global low-dimensional embedding of a

hypothetical manifold near which the data fall. Both approaches could give

rise to restrictive constraints in some cases when metricity is violated.
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In other methods that also project the data (points in Rp) onto a lower-

dimensional manifold, such as principal surface or self-organizing map, points

close together originally map close together on the manifold, but points orig-

inally far apart might also map close together [10]. However, in these meth-

ods objects must be represented as feature vectors in a vector space as they

cannot work with a dissimilarity matrix. The missing vector space in my

motivating problem precludes their use.

If the dissimilarity is a metric, then |dix−djx| ≤ dij for any object x (|·| de-

notes the absolute value), due to the triangle inequality [15] (dix ≤ djx+dij).

Therefore, if dij is small, the variables di. and dj. will be close to each other.

However, if the triangle inequality does not hold, even if dij is small, vari-

ables di. and dj. can be very different, and the objects i and j should not be

represented near each other, something which is possible with h-plots. Note

that in my motivating application, the triangle inequality does not hold for

the dissimilarity measure. Below, I show how h-plots can visualize the in-

transitive dissimilarities appropriately (when the triangle inequality does not

hold) in Example 1. Example 2 highlights the ease with which h-plots deal

with non-Euclidean dissimilarities, comparing them with other multidimen-

sional scaling techniques for non-metric proximities. In the supplementary

material, other examples are considered. In Example 3 we will see how the

representations vary when we pass from a metric to a non-metric measure,

and when there are several high central objects. By a high central object,

I mean an object that is similar to a large portion of other objects. Exam-
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ple 4 shows how the h-plot can represent asymmetric data, and even lack of

reflexivity, successfully.

Example 1 Let D be the dissimilarity matrix, where dij denotes the transit

time in hours between city i and city j, using the cheapest flight. D appears in

Table 1 for 4 cities: Madrid (MA) and Valencia (VL) in Spain, and Moscow

(MO) and St. Petersburg (SP) in Russia. If we make a map representing

these dissimilarities, we would expect to find two separate groups of neigh-

boring cities: MA and VL, and MO and SP. MO and SP should be closer

together than MA and VL, since VL’s airport is not as busy as the others.

Table 1: Dissimilarity matrix with number of hours for the cheapest flights.
Madrid (MA) Valencia (VL) Moscow (MO) St. Petersburg (SP)

Madrid 0 1 5 7
Valencia 1 0 10 12
Moscow 5 10 0 1.5

St. Petersburg 7 12 1.5 0

Multidimensional methods introduced in Section 2 have been applied. Ta-

ble 2 shows the Euclidean distance of the reduced configurations in one di-

mension and the CC. The biggest value of the CC is attained by my method,

which also gives the most coherent configuration. Note that with cMDS, the

distance between MA and VL (1 h. in D) is quite similar to that from MA

to MO (5 h. in D); with isoMDS the distance from MA to SP (7 h. in D),

and VL to MO (10 h. in D) are identical; with Sammon and Isomap (with

2 neighbors) the distance from MA to SP is even bigger than that from VL

to MO, since more emphasis is put on the smaller pairwise distances.
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Table 2: Euclidean distances in the final configuration for the different meth-
ods, and their CC in one dimension.

cMDS isoMDS Sammon Isomap h-plot
CC 0.984 0.983 0.981 0.974 0.986

MA VL MO SP MA VL MO SP MA VL MO SP MA VL MO SP MA VL MO SP
MA 0 4.3 5.8 7.7 0 3.2 6.0 9.2 0 1.4 6.4 8.0 0 1.0 5.0 6.5 0 2.6 6.3 7.3
VL 4.3 0 10.1 12.0 3.2 0 9.2 12.4 1.4 0 7.8 9.4 1.0 0 6.0 7.5 2.6 0 8.9 9.9
MO 5.8 10.1 0 1.9 6.0 9.2 0 3.2 6.4 7.8 0 1.6 5.0 6.5 0 1.5 6.3 8.9 0 1.1
SP 7.7 12.0 1.9 0 9.2 12.4 3.2 0 8.0 9.4 1.6 0 6.5 7.5 1.5 0 7.3 9.9 1.1 0

I have considered only one dimension in Table 2 because with cMDS only

one dimension can be obtained, as the second eigenvalue in the eigendecom-

position for cMDS is negative, which indicates that D is not Euclidean [15,

chapter 14], and that the distances in D cannot be reproduced exactly. A

matrix is Euclidean if and only if the eigenvalues of the eigendecomposition

of the classical multidimensional scaling are positive. With cMDS the rela-

tive magnitudes of those eigenvalues indicate the relative contribution of the

corresponding columns in reproducing the original matrix D with the recon-

structed points (in this case 9.1 -3e-14 -7e-01). Note that the negative values

are not especially large in magnitude, so the configuration returned by cMDS

might still reproduce D well. In Fig. 2, the configuration for two dimen-

sions for all the methods except cMDS (with one dimension) are shown. See

the supplementary material for more methods (neither of them recover the

structure of the dissimilarity matrix).

When we have a metric dissimilarity matrix and the objective is to pre-

serve all the interpoint distances, cMDS should be the right method. The

first two dimensions are the common representation, but it may be that not
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Figure 2: Scatter plot for flights: cMDS, isoMDS, Sammon, Isomap and
h-plot.

all the information is in them. More dimensions could be necessary, although

many dimensions are difficult to represent and understand. Hence, the two-

dimensional representation may not be as good as we would wish. The other

methods are alternatives according to different objectives. For example, Sam-

mon pays more attention to the preservation of the smaller distances, which is

useful for clustering. IsoMDS is more interested in preserving the rank-order

of the dissimilarities. Isomap and other manifold learning techniques can be

seen in a broad sense to be similar to Sammon, as it is important to retain the

neighbor structure because its goal is to recover the representation of a non-

linear manifold. The objective of the h-plot is not to preserve the interpoint

distances exactly, or to give more weight to small distances or neighbors. In-

stead, h-plots aim to preserve relationships between dissimilarity variables.

This point of view is especially interesting when non-metric dissimilarities

are present (although also when metric dissimilarities are present, as not all

the information in the dissimilarity matrix can normally be collected in two

dimensions), as in this case the dissimilarities cannot be represented exactly

in a Euclidean space, because the matrix is not Euclidean.
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Example 2 In cMDS it is assumed that the dissimilarities (dij in D) are

Euclidean distances. Let A be a matrix with elements aij = -0.5* d2ij, and B

= (I−n−1ee′)A(I−n−1ee′), where I is the n×n identity matrix and e is the

n×1 vector with all its elements equal to unity. D is Euclidean if and only if

B is positive semidefinite [23]. (Note that the scaled eigenvectors of B are the

principal coordinates in classical scaling, and note also the difference between

the matrices for eigendecomposition for classical scaling and my method: B

= (I−n−1ee′)A(I−n−1ee′) and S = (n−1)−1D′(I−n−1ee′)D, respectively).

One approach to handling non-Euclidean pairwise data is to add a con-

stant to the non-diagonal dissimilarities such that all eigenvalues are non-

negative ([6, Ch. 2], [3]). However, the CC that I obtain in two-dimensions

for Example 1 (remember that the second eigenvalue of B is negative) is

0.975, less than the CC without adding a constant. The first plot in Fig. 3

shows the configuration obtained. In this figure, the distances between VL and

MA, and MO and SP, are similar to the distance between MA and MO. Note

that when the constant is added, the original structure and information is dis-

torted, but in that example metric violations are not an artifact of noise; they

carry relevant information. We are dealing with a genuinely non-Euclidean

data set that cannot sensibly be treated as “Euclidean but noisy”.

Recently, the problem of the information and the representation of non-

Euclidean pairwise data has been studied in Laub et al [12, 13], although

only symmetric dissimilarities were considered in those papers, where they

paid attention to the negative part of the spectrum of B. They represented
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the first two dimensions in one figure, corresponding to the first two leading

eigendirections of B, and in another figure the last two dimensions, corre-

sponding to the last two eigendirections of B, related to the metric violations.

If I consider the first and last dimension in one single figure, the CC for Ex-

ample 1 is 0.965, less than the other methods. In Fig. 3, the first and last

two components are shown. The map that corresponds to the positive part of

the eigenspectrum is a metric approximation of the dissimilarities, whereas

the negative map is constructed in such a way as to correct the errors in

the positive map. However, this last map is hard to interpret. According

to Maaten and Hinton [14], the negative map generally contains a lot of

noise. Maaten and Hinton [14] have proposed the use of multiple maps t-

SNE for visualizing non-metric similarities (as usual, I have transformed the

dissimilarity data into similarity data by subtracting them from a number

which is larger than the largest value in the dissimilarity matrix, 12 in Ex-

ample 1). They proposed this technique for representing intransitive pairwise

similarities and central objects. The algorithm for computing multiple maps

t-SNE is an iterative method from an initial random solution (available from

http://homepage.tudelft.nl/19j49/ multiplemaps). I have run the algorithm

50 times, and the solution with the smallest error has been considered. Fig.

3 displays the two maps obtained with this method. The importance weights

(represented by circles) in this example are nearly 1 (the maximum weight)

for all points in the first map (the biggest weight in map 2 is 5e-05), so we

can base the interpretation on map 1, where the distance between VL and
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MA, and MO and SP, are similar to the distance between MA and MO. In

both approximations specifically designed for non-metric data, we do not have

one single plot, but the information should be interpreted from multiple plots,

which is not always easy. With h-plot, if necessary, more dimensions can be

considered in one single plot.
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Figure 3: Scatter plot for flights: cMDS adding a constant, first two compo-
nents and last two components as in Laub and Müller [12] and maps 1 and
2 as in Maaten and Hinton [14].

I now consider the same example that Laub and Müller [12] proposed as

an illustration: D = D1 - D2 (an 8 × 8 dissimilarity matrix). In that exam-

ple, 8 objects present two salient features. They cluster into {1, 2, 3, 4} and

{5, 6, 7, 8} according to the first feature, and into {1, 3, 5, 7} and {2, 4, 6, 8}

according to the second. D1 and D2 are the dissimilarity matrices correspond-

ing to feature 1 and 2 respectively. Instead of using two figures for the first

and last components as in Laub and Müller [12], with my method all eigen-

values are positive, and I only represent the dimensions of highest variance.

The configuration for my method for the first two dimensions is displayed

in Fig. 4, together with the results for the method of Laub and Müller [12],

multiple maps t-SNE (only map 2 is shown, as all the weights for all the

points are on this map) and cMDS (Sammon and isoMDS cannot be com-
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puted because of the negative distances, and the result is nearly zero for all

the coordinates with Isomap). My method is able to discover the features in

the data: no information is lost when I consider the first two dimensions, the

first dimension is related to the cluster structure {1, 2, 3, 4} and {5, 6, 7, 8},

whereas the information represented in the second dimension relates to the

cluster structure {1, 3, 5, 7} and {2, 4, 6, 8}. This structure is not recovered

either with cMDS or multiple map t-SNE.
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Figure 4: Scatter plot for illustration data of Laub and Müller [12]: cMDS,
h-plot, first two components and last two components as in Laub and Müller
[12] and map 2 as in Maaten and Hinton [14].

2.2 Some theoretical results of h-plots

2.2.1 Scaling: Effect of a linear transform of the data

Let a1, a2, b1 and b2 be scalars, and let X and Y be random variables, then

the covariance of a1X+b1 and a2Y +b2 is given by Cov(a1X+b1, a2Y +b2) =

a1a2Cov(X, Y ). Therefore, if a linear transformation a1X + b1 is applied to

the dissimilarity matrix D, its covariance matrix is a12S, where S is the

covariance matrix for D. The matrix a12S has the same eigenvectors as S,

and the eigenvalues of S are multiplied by a12. As a consequence, the new hjs
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are the same as before the transformation but multiplied by a1, not affected

by b1. According to property 3 of the h-plot, the squared Euclidean distance

of hj and hi will be the same as before the transformation but multiplied

by a21. If the scale of the dissimilarities is linearly modified, the resulting

configuration does not change in the sense that the visual configuration will

be the same as before, and only the scale of the axes is changed (multiplied

by a1). In practice, it does not matter if the dissimilarity is expressed in

hours or minutes, or in kilometers or meters.

2.2.2 Noise sensitivity

It is well-known that extreme observations, outliers, may have a considerable

influence on the covariance matrix structure, and therefore they can influence

the h-plot. To counteract this influence, robust h-plots can be built with M-

estimates, as explained in Daigle and Rivest [7].

3 Corneal endothelia application

I have applied the method presented to my motivating problem. The corneal

endothelia analyzed belong to 153 individuals of between 17 and 84 years old.

Here, point patterns are the objects that form the data set. Ten different

dissimilarities were contemplated with univariate point patterns by Ayala

et al. [1]. I have considered dissimilarities based on the log-rank statistic

applied to the nearest-neighbor distances, the same dissimilarities with triple
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points used in the clinical application in Ayala et al. [1], where the best results

in clustering were obtained with that dissimilarity. This dissimilarity measure

is symmetric, but it is not a metric since the triangle inequality does not hold.

I have also considered this dissimilarity for the three simulated experiments

in Ayala et al. [1]. Details of the dissimilarities and the experiments with

their results are given in the supplementary material.

Figure 5 shows the results for the established methods and my method,

both using the original dissimilarities and their ranks (the original dissim-

ilarities are replaced with their sample ranks). If we have in mind cluster

and pattern detection, then an expansion or contraction of the configuration

could be more useful [23]. For this reason, I also consider the ranking of the

dissimilarities instead of the original dissimilarity values. Analogously, other

transformations could be considered such as raising dissimilarities to a power

[18]. The unhealthy cases obtained in Ayala et al. [1] are represented by red

triangles, while black circles are healthy cases. I have used ε = 1 with the

Isomap algorithm to obtain an appropriate representation. Note that seven

points have been automatically removed (and they are not displayed) with

this algorithm, for being considered as outliers. The CC for Isomap has also

been computed without these points. Table 3 shows the CCs. Even though

Isomap does not take into account some extreme points, its coefficient is the

smallest. However, all coefficients are quite high. The goodness-of-fit for my

method is 81.59% and 99.85% for one and two dimensions, respectively. We

can differentiate both groups in the figures, although the boundary between
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them is not clear. This is quite reasonable since the status could be con-

sidered as an ordered factor, from the most severe unhealthy cases to the

most healthy cases. Note that pictures (a), (b) and (e) in Fig. 5 seem sim-

ilar, but the healthy cases in the h-plot are not only discriminated by the

first dimension but also by the second dimension. I have carried out several

ANOVA-style analyses using the functions in Oksanen et al. [16]: adonis

and anosim. The Euclidean distances in the reduced configuration for each

method are explained by the factor status (healthy or unhealthy). For all

methods and functions, the effect is significant with p-value = 0.001. How-

ever, the R statistic of anosim (as R approaches 1, there is more dissimilarity

between groups) and R − squared for adonis are different for each method.

Their values are in Table 3. The biggest values for both are obtained with

the h-plot. With the h-plot of the dissimilarity ranks, the values are even

bigger: 0.915 and 0.733 for anosim and adonis respectively.

Table 3: CCs, anosim statistic R and R2 of adonis with endothelia.

cMDS isoMDS Sammon Isomap h-plot
CC 0.935 0.929 0.894 0.881 0.922

R anosim 0.578 0.761 0.708 0.674 0.829
R2 adonis 0.457 0.614 0.619 0.541 0.704

4 Conclusions

Despite non-Euclidean or non-metric measures becoming more popular, there

are not many methods in literature for the specific representation (without
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Figure 5: Endothelia: (a) cMDS, (b) isoMDS, (c) Sammon, (d) Isomap, and
h-plot using: (e) the original dissimilarities, and (f) the dissimilarity ranks.

data transformation) of non-Euclidean pairwise data. When data are inher-

ently non-metric, we should not enforce metricity, as real information could

be lost. I have presented a method for displaying (non-metric) dissimilarity

matrices, based on h-plots. It handles asymmetric data, and even lack of

reflexivity, naturally. Its good performance is shown through several exam-

ples, and particularly in my motivating application: the analysis of human

corneal endothelia, where the dissimilarity was not a metric. Furthermore,

this method is very simple to implement and computationally efficient. The

representation goodness can also be easily assessed.
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With the h-plot, we represent second order differences between variables

that indicate dissimilarity with respect to an object. In future work, higher

order differences or looking for associations [19] could be considered, although

the simplicity of the present method could be lost.
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