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Abstract
We find that the empirical distribution of firm profit rates, measured
as returns on assets, is markedly non-Gaussian and reasonably well
described by an exponential power (or Subbotin) distribution. Thus
we propose a statistical equilibrium model that leads to a station-
ary Subbotin density in the presence of complex interactions among
competitive heterogeneous firms. To investigate the dynamics of firm
profitability, we also construct a diffusion process that has the Sub-
botin distribution as its stationary probability density, leading to a
phenomenologically inspired interpretation of variations in the shape
parameter of the Subbotin distribution. Our findings have profound
implications both for the previous literature on the ‘persistence of prof-
its’ as well as for understanding competition as a dynamic process. Our
main finding is that firms’ idiosyncratic efforts and the tendency for
competition to equalize profit rates are two sides of the same coin.
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Profit is so very fluctuating, that the person who carries on a
particular trade, cannot always tell you himself what is the aver-
age of his annual profit. It is affected, not only by every variation
of price in the commodities which he deals in, but by the good
or bad fortune both of his rivals and of his customers, and by a
thousand other accidents [...].

Adam Smith (1776, p. 58)

1 Competition and Profitability

We propose a statistical equilibrium model that accounts for the empirical
distribution of firm profit rates, which turns out to be well described by
a Laplace distribution. Our findings have profound implications both for
the specific time evolution of individual firm profitability and the previous
‘persistence of profits’ literature, as well as for the general understanding of
competition as a dynamic process.

The notion of economic competition comes in many forms and varieties,
and it is certainly one of the most pervasive concepts in the history of eco-
nomic thought (see, e.g., Stigler, 1957; Vickers, 1995). The dominant strand
of thought, following Cournot, associates (perfect) competition with a par-
ticular market form, and emphasizes the efficient allocation of resources at
points where prices equal marginal costs (see, e.g., McNulty, 1968). An-
other important strand of thought originates with Adam Smith’s notion of
competition as a dynamic process that leads to a tendency for profit rate
equalization, which we henceforth label as classical competition.1 Classical
competition essentially describes a negative feedback mechanism. Capital
will seek out sectors or industries where the profit rate is higher than the
economy-wide average, typically attracting labor, raising output, and reduc-
ing prices and profit rates, which in turn provides an incentive for capital
to leave the sector, thereby leading to higher prices and profit rates for
firms that remain in the sector (see, e.g., Foley, 2006). As a result, classi-
cal competition tends to equalize profit rates, yet it simultaneously leads to
perpetual changes in technologies and competitive practices. Coupled with
continually changing tastes of consumers, and the entry and exit dynamics
of rival firms, the very nature of (classical) competition renders a complete
elimination of differences in and across sectoral profit rates improbable.

Modeling the process of competition is made all the more difficult by the
interactions among firms, which in themselves create a complex environment
that feeds back into the destinies of individual companies. One company’s

1Schumpeter’s (1950) theory of innovation and creative destruction, or evolutionary
theories of industrial dynamics (see, e.g., the edited volume by Dosi et al., 2000), also
highlight the intrinsically dynamic character of economic competition and would be con-
sistent with the notion of ‘classical’ competition from this viewpoint.
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gain is often the loss of others, particularly in situations where resources
are limited, for instance when it comes to the hiring of exceptional talent,
the retainment and acquisition of clients, or the patenting of new technolo-
gies. Positive feedbacks, typically arising from symbiotic relationships and
synergetic interactions, further increase the complexity of the competitive
environment.

The interactions of competitive firms and their idiosyncratic efforts to
stay ahead of the game give rise to an enormous amount of information and
complexity that is hard to approach from a deterministic viewpoint. In light
of the intricate connections and interactions among business firms, our focus
shifts accordingly from a fixed-point equilibrium to the notion of a statistical
equilibrium in the spirit of Foley (1994). Formally, Foley’s statistical equi-
librium theory of markets revolves around the maximum entropy principle
(MEP) of Jaynes (1978). After all, MEP derives the combinatorially most
likely (or informationally least biased) distribution of a random variate sub-
ject to moment constraints. Thus, instead of considering competitive equi-
librium as a situation in which all economic agents face an identical profit
rate, our statistical equilibrium model stresses the stationary distribution of
profit rates.

Approaching the profitability of business firms from a probabilistic per-
spective is of course not unique to statistical equilibrium modeling, but
rather follows a long-standing tradition that revolves around distributional
regularities in a wide range of socio-economic variables (see, e.g., Cham-
pernowne, 1953; Gibrat, 1931; Kalecki, 1945; Pareto, 1897; Simon, 1955;
Steindl, 1965). In order to apply the maximum entropy formalism to any
kind of economic phenomenon, one essentially needs to encode the economic
content in terms of moment constraints (see, e.g., Castaldi and Milaković,
2007; Foley, 1994; Stutzer, 1996). Hence, modeling classical competition by
way of MEP boils down to expressing competition in the form of moment
constraints. We take the position that the average profit rate corresponds
to a measure of central tendency, while the complex movements of capital
in search of profit rate equalization and the resulting feedback mechanisms
translate into a generic measure of dispersion around the average. When
the number of competitive firms in a decentralized type of market organiza-
tion is large, probabilistic factors can give rise to statistical regularities in
the distribution of profit rates. The distribution of profit rates that can be
achieved in the most evenly distributed number of ways under the dispersion
constraint is then the statistical equilibrium or maximum entropy distribu-
tion of profit rates, and turns out to be an exponential power or Subbotin
distribution.

The Subbotin (1923) distribution has three parameters: a location, a
scale, and a shape parameter. Structural differences in the statistical equi-
librium model stem from differences in the shape parameter, because op-
erating on the location or scale parameter does not change the qualitative
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features of the Subbotin distribution. If the shape parameter is equal to
two, the Subbotin distribution reduces to the Gaussian (normal) distribu-
tion, and if it is equal to unity, the Subbotin distribution reduces to the
Laplace (double-exponential) distribution.

To demonstrate the empirical relevance of our model, we investigate
the empirical density of profit rates, which is indeed reasonably described
by a Laplace distribution. This prompts us to ask why the empirical shape
parameter is close to unity, what this implies about the competitive environ-
ment that firms are facing, and whether variations in the shape parameter
correspond to qualitative changes in the competitive environment. Since the
maximum entropy principle only informs us of the stationary distribution, it
does not shed light on the dynamics that lead to the stationary distribution.
In order to extend the model in a dynamic direction, we utilize a particular
class of stochastic processes known as diffusion processes, and construct a
diffusion process that has the Subbotin as its stationary density. The ra-
tionale for resorting to diffusion processes is twofold. First, the process is
parsimoniously described by only two functions, the so-called drift and dif-
fusion function and, second, a considerable analytical apparatus relating to
diffusion processes is already in place. This diffusion process will be intro-
duced heuristically at first, starting from the assumption that the Subbotin
distribution is the stationary distribution. Since the arising drift function
has a singularity at m, we also provide a rather careful mathematical treat-
ment of this process in Appendix A.

Examination of the diffusion process extends the maximum entropy re-
sults in two important ways. First, it provides additional insights into vari-
ations of the shape parameter of the stationary distribution. We show that
the benchmark Laplace case, where the shape parameter equals unity, cor-
responds to a drift term that is independent of a firm’s current state of
profitability, implying that competition is a ‘global’ mechanism that acts
with equal force on all companies, irrespective of a firm’s particular devi-
ation from the average rate of profit. Second, the diffusion process shows
that the complex mechanisms of competition simultaneously generate (i)
the fluctuations in the destinies of individual companies and (ii) the drift
towards an average profit rate. Thus competition cannot be described by a
deterministic skeleton with superimposed noise, because the drift function
depends on the scale of fluctuations in the diffusion function. Put differently,
switching off the noise in the diffusion process also eliminates the system-
atic drift towards the average rate of profit. Viewed from this perspective,
classical competition becomes a truly stochastic phenomenon, where the
fluctuations of individual destinies and the dissipation of profitable business
opportunities are two sides of the same coin.

Finally, our findings also have a direct bearing on the persistence of
profits (PP) literature that started with Mueller (1977). Studies of PP (see,
e.g. Geroski and Jacquemin, 1988; Glen et al., 2001, 2003; Goddard and
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Wilson, 1999; Gschwandtner, 2005; Kambhampati, 1995; Maruyama and
Odagiri, 2002; Mueller, 1990) employ a first-order auto-regressive process
as its standard workhorse, which in light of our results is clearly misspec-
ified because the (stationary) process is the discrete-time analogue of the
Ornstein-Uhlenbeck process, whose stationary distribution is Gaussian and
therefore counter-factual. What PP methodology essentially lacks is the re-
alization that the variance of the ‘error term’ (noise) is crucially intertwined
with the ‘speed of convergence’ (drift function) towards the ‘norm’ (average
profit rate), which only becomes apparent once we focus our attention on
the distribution of profit rates.

2 Maximum Entropy Distribution of Profit Rates

We view profit rates as an inherently stochastic phenomenon, and take the
position that competition among firms disperses their profit rates, denoted x,
around an exogenously given measure m of central tendency. More formally,
we assume that dispersion is measured by the standardized α-th moment,
σα = E|x−m|α, with x,m ∈ R and α, σ > 0. At first, the assumption that
the complexities of economic competition disperse profit rates around some
average rate does not seem to get us anywhere. But by further assuming
that in the absence of further information all profit rate outcomes around
m are most evenly distributed, MEP establishes a correspondence between
the moment constraint and a statistical distribution (see Jaynes, 1978).

Formally, MEP under a standardized α-th moment constraint defines a
variational problem that maximizes the entropy H[f(x)] of the profit rate
density f(x), defined as

H[f(x)] ≡ −
∫ +∞

−∞
f(x) log f(x) dx, (1)

subject to the constraint on the standardized α-th moment,∫ +∞

−∞
f(x)

∣∣∣∣x−m

σ

∣∣∣∣α dx = 1 . (2)

and subject to the natural constraint that normalizes the density,∫ +∞

−∞
f(x) dx = 1 . (3)

Proposition 1. The maximum entropy distribution of profit rates under
the standardized α-th moment constraint (2) is a Subbotin distribution,

f(x;m,σ, α) =
1

2σα1/αΓ(1 + 1/α)
exp

(
− 1

α

∣∣∣∣x−m

σ

∣∣∣∣α) . (4)
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Figure 1: Subbotin distribution with m = 0, σ = 1, and varying shape
parameter α. On semi-log scale, the Laplace distribution (α = 1, solid curve)
has linear slope while the Gaussian (α = 2, dash-dotted curve) becomes a
parabola.

Proof. The Lagrangian associated with the variational program (1)–(3) is

L = H[f(x)]− µ

[∫ +∞

−∞
f(x) dx− 1

]
− λ

[∫ +∞

−∞

∣∣∣∣x−m

σ

∣∣∣∣α f(x) dx− 1
]

,

where µ and λ denote the multipliers. Letting ξ ≡ 1 + µ, the first order
condition implies that the solution will have the functional form

f(x) = exp(−ξ) · exp
(
−λ

∣∣∣∣x−m

σ

∣∣∣∣α) . (5)

Integrating by substitution in order to invert the constraints, and using the
definition of the gamma function, Eq. (3) yields the normalizing constant,
or partition function,

exp(−ξ) =
1
2σ

1
α1/αΓ(1 + 1/α)

, (6)

and consequently Eq. (2) yields

λ =
1
α

. (7)

Since f(x) is a positive function, ∂ 2L/∂f(x)2 = −1/f(x) < 0, and the
solution is a maximum.
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The Subbotin distribution (4), illustrated in Figure 1, is characterized
by a location parameter m, a scale parameter σ > 0, and a shape parameter
α > 0. If α is smaller (greater) than two, the distribution is leptokurtic
(platykurtic). If α = 1 the Subbotin reduces to the Laplace distribution, if
α = 2 it reduces to the Gaussian, and if α →∞ it tends to a uniform. If α →
0, the statistical equilibrium distribution turns into Dirac’s δ-distribution at
m, including the more conventional competitive equilibrium concept of a
situation in which each firm ‘faces’ an identical profit rate as a special case.2

From a methodological viewpoint, statistical equilibrium modeling is less
ambitious than conventional Walrasian theory because it does not seek, nor
is it able, to predict the actual profit rate outcome for each individual busi-
ness firm. On the other hand, the statistical equilibrium approach is capable
of translating a parsimonious description of the system, given by the disper-
sion constraint (2), into the distributional outcome (4). The distribution is
a stationary or statistical equilibrium outcome in the sense that it measures
the competitive tendency for profit rate equalization on a characteristic time
scale that is large enough to accommodate the time scale of idiosyncratic
shocks.

Paraphrasing Foley’s economic interpretation of MEP, the outcome of
the particular maximum entropy program (1)–(3) corresponds to the profit
rate distribution that arises from the most decentralized activity of com-
petitive firms. Business firms typically engage in a plethora of competitive
strategies that aim more or less directly at the maximization of profit, for
instance by seeking increases in market share or revenues through product
differentiation, price undercutting, advertising, customer relationship man-
agement, etc. In addition, firms might simultaneously or separately seek to
reduce costs by downsizing operations, by exploiting increasing returns to
scale, or by adopting or inventing cost-cutting technologies. It is exactly
in the presence of such complex and multi-dimensional environments that
MEP comes into its own. While MEP cannot identify the impact of par-
ticular competitive strategies, all such strategies, along with the ensuing
complex feed-back mechanisms, are in principle included in the statistical
equilibrium outcome of Proposition 1. The only prerequisite for interpreting
the MEP distribution as the outcome of the most decentralized economic
activity under the dispersion constraint (2), or as the outcome that can be
achieved in the most evenly distributed number of ways under the dispersion
constraint, is that the number of firms in the economy is large (see Foley,
1994). Statistical equilibrium modeling thus excludes situations of system-
wide collusion, which in any case should become increasingly difficult to
realize as the number of firms increases.

2From the viewpoint of entropy maximization, this particular case is the most improb-
able of all feasible results because it has a multiplicity of unity, which generally applies to
unique competitive Walrasian equilibria (see Foley, 1994).
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Figure 2: Pooled empirical density of annual profit rates (16 821 observations
for the period 1980-2006), measured by the ratio of operating income over to-
tal assets, for 623 publicly traded non-bank companies in the United States.
The median profit rate is m = 9.5% over this time span, and coincides with
the mode of the empirical density. Maximum likelihood estimation of the
Subbotin shape parameter yields α = 0.94 ± 0.01 with a scale parameter
σ = 0.0577± 0.0006. The (thick) dashed curve illustrates the corresponding
fit, while the (thin) dash-dotted curve shows a Gaussian fit using the sample
mean and standard deviation.

3 Empirical Distribution of Profit Rates

MEP cannot provide information about the individual destinies of compa-
nies, yet it manages to associate a distributional outcome with the dispersion
constraint that presumably reflects the behavioral process of competition.
The usefulness of such a theoretical prediction naturally depends on how
well it describes the empirical profit rate distribution. Our data are from
Thomson Datastream and consist of annual observations for 623 US publicly
traded non-bank companies (operating in 36 different sectors on a two-digit
classification level) that are present in every year during the period 1980-
2006.3 We calculate annual profit rates as the ratio of operating income to

3The entire sample of companies at our disposal consists of 9025 firms, yet our focus on
long-lived companies and the corresponding sample size is consistent with most studies in
the PP literature. Notice that the sum of total assets of long-lived companies accounts for
well over half of the overall sum of total assets in each year. Even so, we also briefly discuss
our preliminary results regarding the entire sample in the last section. We excluded banks
because their balance sheets differ structurally from those of non-banks. It is noteworthy,
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total assets, and start out by plotting the empirical density of pooled profit
rates in Figure 2. It is a rather remarkable feature of Figure 2 that the
pooling of profit rates across all years results in a sharply peaked uni-modal
distribution despite the fact that these are raw data, which have not been
normalized or standardized in any way. The maximum likelihood estimate of
the shape parameter is close to unity for the pooled data and points towards
a Laplace distribution of profit rates.

To ensure that these findings are not an artifact of aggregation, we con-
sider the year-by-year distribution of profit rates as well, shown in Figure 3,
and we also estimate the corresponding year-by-year Subbotin parameters
with maximum likelihood, whose time evolution is shown in Figure 4. Both
figures rebut potential concerns that the pooled Laplace benchmark in Fig-
ure 2 is due to aggregation. On one hand the year-by-year distributions of
profit rates are tent-shaped on semi-log scale, as in the pooled case, and
on the other hand both the shape and scale parameters do not fluctuate
erratically over time. In addition, the shape parameter is not significantly
different from a Laplacian at the five percent level in almost seventy-five
percent of the cases.

In light of the preceding evidence, the Laplace distribution would appear
to represent a reasonable benchmark case for the empirical density of profit
rates, begging the question what a shape parameter close to unity implies
about the competitive environment in which firms are operating. More
generally, what kind of qualitative changes in the competitive environment
could be reflected in significant deviations of α from unity? Such questions,
however, are hard to answer with MEP because the principle offers little
in the direction of an economic interpretation of the parameters α and σ.
Hence we extend the statistical equilibrium model into a dynamical setting
by considering a diffusion process whose stationary distribution will be given
by the Subbotin density.

4 The Dynamic Evolution of Profit Rates

There are essentially three reasons why we take recourse to diffusion pro-
cesses among the much broader class of stochastic processes to describe the
dynamic evolution of profit rates {Xt, t ≥ 0}. First, a diffusion is par-
simoniously described by two functions, the drift and the diffusion func-
tion. Second, an analytical apparatus relating for instance to existence and
uniqueness theorems is available for diffusions, and third, a simple closed-
form solution for the stationary distribution turns out to exist in our case
of interest.

though, that the pooled distribution of bank profit rates is also close to a Laplacian, with
α = 0.91± 0.03 and σ = 0.0052± 0.0001, and with a mode of m = 1.5%. The material is
available upon request.
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We consider a time-homogeneous diffusion on the real line, which takes
the general form

dXt = A(Xt) dt +
√

D(Xt) dWt , (8)

where A(x) and D(x) > 0 denote the drift and diffusion function, and dWt

denotes Wiener increments. A diffusion thus decomposes the profit rate
increment dXt into two factors: a random term governed by the diffusion
function, and a systematic effect captured by the drift term, both of which
are due to the complex and continually evolving environment that business
firms create, as we will argue shortly. Finally, from an economic point
of view, the assumption of a time-homogeneous diffusion implies that the
nature of the underlying competitive mechanism is time invariant.

Our strategy is to heuristically construct a diffusion that has the Sub-
botin density as its stationary distribution, and to demonstrate subsequently
with mathematical rigour that this indeed yields a regular diffusion on the
real line. Regularity here means that from any starting point x any other
real y is reached in finite time with positive probability. If a stationary dis-
tribution with density pe(x) to the diffusion process (8) exists,4 it obeys (in
most cases of interest) the textbook formula

pe(x) =
κ

D(x)
exp

(
2
∫ x

x0

A(y)
D(y)

dy

)
, (9)

where κ is the normalizing constant. We will subsequently show that this
is indeed the case in our situation. Here x0 may be chosen freely and κ of
course depends on x0. Therefore, Eq. (9) serves to establish a relationship
between our stationary distribution of interest, and the drift and diffusion
function that we want to identify. Knowledge of the functional form of the
stationary distribution is, however, not sufficient to uniquely characterize
the diffusion process since there is still a degree of freedom. Following the
principle of parsimony, we opt to exploit this degree of freedom in a simple
manner by assuming a constant diffusion function D(x) = D, meaning that
idiosyncratic shocks are independent of the current state of a firm’s profit
rate.5 Then, straightforward manipulation of Eq. (9) uniquely expresses
the drift A(x) as a function of the stationary distribution and its derivative
p′e(x),

A(x) =
D

2
p′e(x)
pe(x)

. (10)

4The existence of a stationary distribution, in fact, implies additional conditions on
the drift and diffusion, and a full characterization of the process at the boundaries for the
different values of the underlying parameters, which we consider in Appendix A.

5Alternatively one could, for instance, prescribe a linear drift term and then construct
diffusion functions that yield particular stationary distributions of interest Bibby et al.
(2005).
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Figure 5: The qualitative behavior of the drift function A(x), given by
Eq. (11), depends on the parameter α. The axes originate in (m, 0), and the
curves are plotted for α = 0.5 (solid curve), α = 1 (dashed), and α = 1.5
(dash-dotted). The strength with which profit rates are pulled back towards
m is equal for all parametrizations of α > 0 when x = ±σ.

Hence, utilizing the functional form of the Subbotin distribution (4) in
Eq. (10), we obtain the drift function

A(x) = −D

2σ
sgn(x−m)

∣∣∣∣x−m

σ

∣∣∣∣α−1

, (11)

where sgn(·) denotes the signum function, and A(m) = 0. This result moti-
vates the following proposition:

Proposition 2. The stochastic differential equation

dXt = −D

2σ
sgn(Xt −m)

∣∣∣∣Xt −m

σ

∣∣∣∣α−1

dt +
√

D dWt (12)

defines a regular diffusion on the real line for all α, σ > 0 and m ∈ R, with
a Subbotin stationary distribution given by (4).

Proof. See Appendix A.

Our economic interpretation of the dynamic evolution of profit rates rests
on the assumption that all firms are subject to the same process (12), pos-
sibly with different diffusion constants, since pe(x) is independent of D, but
with identical parameters α, σ and m. Then each firm’s destiny corresponds
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to a different realization of (12), such that the stationary distribution rep-
resents the cross-sectional statistical equilibrium outcome (4) arising from
the interactions of competitive firms. Put differently, the diffusion process
decomposes the complexities of a competitive environment into a drift and
diffusion function, whereby the latter captures idiosyncratic factors, while
the former describes the systematic tendency for competition to equalize
profit rates. Figure 5 illustrates that this mean-reverting drift towards m is
generally non-linear, and depends qualitatively on the value of α.

5 Diffusion, Dispersion, and the Process of Com-
petition

Viewed from the perspective of the diffusion process, deviations of the empir-
ical shape parameter from unity measure qualitative changes in the economic
environment created by competitive firms. If α > 1, the systematic force
towards profit rate equalization becomes stronger the further profit rates
deviate from m, and symmetrically, if α < 1, this force becomes weaker
the further profit rates deviate from m. In a more applied setting, it would
probably pay off to study the defining characteristics of sectors that show
deviations of α in either direction in order to understand why certain in-
dustries are more or less prone to large deviations of profit rates from the
average. A firm that operates in an environment where α < 1, and succeeds
in being very profitable at a given point in time, should look more opti-
mistically into the future than a firm whose profitability is equally far from
the average, but which operates in an environment where α > 1. Looking
at profitability from this angle suggests that α is an aggregate measure of
competitive pressures within and across industries.

Notably, an equilibrium Laplace distribution (α = 1) is obtained from
the diffusion

dXt = −D

2σ
sgn(Xt −m) dt +

√
D dWt , (13)

showing that the empirical benchmark case corresponds to a scenario in
which the drift is constant, and therefore independent of a firm’s current
profit rate. To be more precise, the magnitude of the drift is constant while
the dependence on the profit rate is incorporated into the signum function,
thus yielding the only case where the Subbotin diffusion is independent of
the current level of the profit rate. Consequently, the extension of MEP into
a diffusion model provides a further step in the direction of understanding
the peculiarity of the empirically observed Laplace case, because it reveals
that competitive pressures act with equal force on all companies irrespective
of their current profitability.

Furthermore, if α = 0 the diffusion turns into a particular case of a Bessel
process, with an equilibrium δ-distribution at m. Actually, Karlin and Taylor
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(1981, Example 6, pp. 238–9) show that the point m then behaves as an exit
boundary with total absorption in finite time. Here, the case α = 0 leads
to a change in the nature of the diffusion’s boundary condition, whereas
MEP relates this case to an outcome with minimal multiplicity. None the
less both, the diffusion and MEP, highlight the peculiarity of a situation in
which all firms are equally profitable.

The most salient point of our model is that the level of idiosyncratic
noise D turns up in the drift A(x), given by (11). Hence, our diffusion
model decomposes the metaphor of competition into the contemporaneous
presence of individual fluctuations and a systematic tendency towards profit
rate equalization. Redefining the coefficients of the drift and diffusion as

µ =
D

2σα
and λ =

√
D , (14)

we obtain the fundamental relationship

λ2

2µ
= σα , (15)

which adeptly ties up the diffusion model with the entropy formalism, since
the Subbotin distribution arises from MEP if we prescribe the dispersion

σα = E |x−m|α . (16)

It is the simultaneous and inseparable presence of individual fluctuations and
a mean-reverting drift towards m that ultimately leads to the emergence of
an equilibrium distribution. Strikingly, Eq. (15) reveals that the dispersion
of profit rates measures the relative strength of one effect over the other.

Our pre-analytical vision of competition as a complex feed-back mech-
anism results in the diffusion (12), and as a consequence methodologically
rules out a deterministic skeleton with some added noise on top of it. The
introductory quote from Smith already illuminates the intrinsically random
and inter-connected nature of competition among economic agents, high-
lighting that the success of one firm cannot be attributed to its effort alone,
but crucially depends on what other agents are doing as well. Therefore
Eq. (12) does not represent the fate an atomistic firm might desire for itself,
but rather demonstrates the impossibility of such an endeavor in a compet-
itive environment.

It is precisely the intertwined presence of centrifugal and centripetal
forces in the process of competition, whereby the competitive practices of
individual firms lead to the dissipation of profitable business opportunities,
that is absent from PP methodology. Typically, the econometric workhorse
of PP consists of an AR(1) process of profit rates of the form

xi,t = λixi,t−1 + βi + εi,t , (17)
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where βi represents the ‘permanent’ profit of firm i, possibly being zero,
and εi,t designates random shocks to firm i’s profitability (see, e.g., Cable
and Mueller, 2008, for a recent review of the subject). Rewriting (17) in
first-difference form yields

∆x = xi,t − xi,t−1 = −(1− λi)xi,t−1 + βi + εi,t , (18)

which corresponds to the discrete-time analogue of the well-known Ornstein-
Uhlenbeck process if 0 ≤ λi < 1 such that the process is stationary.6 Since
the stationary distribution of the Ornstein-Uhlenbeck process is Gaussian,
an AR(1) process is clearly misspecified because the distribution of profit
rates is markedly non-Gaussian, as we have shown in Section 3. The funda-
mental difference between PP and statistical equilibrium modeling is that
the former focuses on the time-series behavior of individual firms, address-
ing the question whether there is individual convergence towards some profit
rate ‘norm,’ while the latter starts from the distributional properties of a
cross-section of firms and stresses the concept of a convergence in distribu-
tion.

6 Discussion and Conclusion

To capture the stochastic and intertwined aspects of competition, we have
proposed a statistical equilibrium model that starts from a dispersion con-
straint, motivated by the notion of classical competition, which MEP trans-
lates into a Subbotin distribution of profit rates. Extending the statistical
equilibrium model to a diffusion that has an equilibrium Subbotin distri-
bution, we are then able to decompose the process of competition into two
interdependent terms, the drift and diffusion function, which respectively
capture the systematic tendency towards profit rate equalization on the one
hand, and idiosyncratic factors on the other. As it turns out, dispersion
measures the relative strength of these two effects.

Essentially, our model considers the distribution of profit rates as a sta-
tistical equilibrium outcome arising from the decentralized complex inter-
actions of competitive firms, and the corresponding diffusion suggests that
the empirical benchmark of a Laplace distribution represents a collection of
firms whose interactions create a ‘competitive field’ that influences individ-
ual firms independently of their current profit rate.

From a methodological viewpoint, our diffusion model reveals that the
process of competition is an inherently stochastic phenomenon, because the

6The studies of Goddard and Wilson (1999) or Kambhampati (1995) cannot even reject
the unit root hypothesis in a substantial number of cases, yet a simple inspection of profit
rate time series already reveals the mean-reverting nature of the process. More formally,
the absence of a mean-reverting drift would imply a linear increase of the variance in the
distribution of profit rates, which is rebutted by our results in Figures 2 and 3.
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level of idiosyncratic fluctuations enters the systematic tendency for profit
rate equalization. Thus it is not possible to switch off the idiosyncratic noise
without eliminating the systematic drift towards an average profit rate, cast-
ing some doubt on models that approach competition from a purely deter-
ministic perspective, as well as on those that fail to capture the interaction
effects of a single firm with the competitive environment created by the
economy-wide ensemble of firms.

Needless to say that our model is far from being complete. By treating
the average profit rate as an exogenous variable, we have effectively elim-
inated its determining factors from consideration. Nevertheless it is quite
remarkable in our opinion that the average profit rate, measured by the
mode of the distribution, is constant over a period of almost three decades
at about ten percent. Another important aspect that needs to be addressed
in future work concerns the systematic influence of firm entry and exit.
The empirical results we have presented here refer to the subset of long-
lived companies, which provides an important yet partial description of the
macroscopic properties of competition. We can consider long-lived firms
as a kind of measurement device that is ‘dipped’ into the competitive en-
vironment as a whole, and therefore captures the effects of entry and exit
dynamics at least indirectly. At this point we have conducted a preliminary
analysis that includes all publicly traded US companies in the Datastream
database, which reveals that the pooled profit rate distribution across all
firms and years is highly asymmetric around the mode of ten percent. It
is straightforward to generalize the Subbotin distribution with respect to
asymmetries by adding another shape and scale parameter such that one
set of shape and scale parameters respectively describes the distribution
to the left and to the right of the mode, say αr, σr and αl, σl. While the
shape parameter for observations to the right of the mode remains Laplacian
(αr ≈ 1), we find that it is much smaller for observations that are to the left
of the mode (αl < 1), also implying that the distribution has considerably
more mass to the left of the mode. Intuitively, the asymmetry tells us that
it is much easier for firms to fail than to be successful over long periods of
time. These findings certainly call for a theoretical extension of our statis-
tical equilibrium model to explicitly include firm entry and exit dynamics,
and to explain the observed asymmetries in the competitive process.

Last but not least, there is also evidence that the cross-sectoral distri-
bution of firm growth rates is Laplacian (see Alfarano and Milaković, 2008;
Stanley et al., 1996), as are many distributions on the sectoral level, though
some deviations from the Laplace distribution do show up on the sectoral
level as well (see Bottazzi and Secchi, 2006). Notice, however, that growth
and profit rates are dimensionally very different quantities. Growth rates are
time differences in (logarithmic) firm size, while profit rates are measured
by the ratio of operating income to total assets during a time period. Firms
sometimes have to shrink in order to restore profitability, while at other
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times they might become unprofitable by expanding the size of operations
in an effort to increase their market power, which possibly restores prof-
itability in future periods. These simple examples illustrate that both the
direction of causality and the level of correlation between growth and profit
rates are far from trivial, and we are currently investigating this relationship
in more detail.
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A Proof of Proposition 2

A.1 General considerations

We recall the definition of

A(x) = −D

2σ
sgn(x−m)

∣∣∣∣x−m

σ

∣∣∣∣α−1

with A(m) = 0. If α = 2, then A(x) is Lipschitz continuous, which is the
usual condition for the existence of a regular diffusion on the real line as a
solution to the stochastic differential equation (12). The arising diffusion is
the well-known Ornstein-Uhlenbeck process. Lipschitz continuity no longer
holds for α 6= 2. The case 0 < α < 2 is the more intricate one because there
is a singularity at m for α < 1, and we will consider it in detail in sections
A.2 to A.6. We shortly remark on the case α > 2 in section A.7. For easier
notation we henceforth use m = 0, σ = 1.

A.2 The diffusion on (0,∞)

First we obtain a solution to (12) on the positive half-line. For α = 1, A(x) is
constant on (0,∞). Hence, according to A.1, we obtain a diffusion on (0,∞)
that solves (12). For 0 < α < 2, α 6= 1, A(x) is not Lipschitz continuous on
(0,∞) due to the behaviour in x = 0. To obtain a diffusion on (0,∞) we
apply the usual localization argument. For each n ∈ N we choose a bounded
Lipschitz continuous function An(x) on (0,∞) such that An(x) = A(x) for
x ∈ ( 1

n ,∞). Then we solve (12) with An(x) instead of A(x). This yields a
diffusion Y n

t . Here Y n+1
t extends Y n

t in the way that they are equal (with
probability one) up to the random time when one of them leaves the state
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space interval ( 1
n ,∞). Hence they may be glued together to define a regular

diffusion Yt on (0,∞) that solves (12). To extend this to a diffusion on the
entire real line, it is necessary to investigate the boundary behaviour at 0
utilizing the scale and speed measure.

A.3 Scale and speed measure

In general, the scale function and scale measure are given by

S(x) =
∫ x

x0

s(y)dy with s(y) = exp
(
−
∫ y

1

2A(z)
D(z)

dz

)
, x ∈ (0,∞),

S[a, b] = S(b)− S(a), 0 < a < b < ∞.

Here any x0 ∈ (0,∞) may be inserted, and subsequently we will use x0 = 1.
The speed density and speed measure are given by

m(x) =
1

D(x)s(x)
, x ∈ (0,∞), M [a, b] =

∫ b

a
m(y)dy, 0 < a < b < ∞.

For the boundary 0, we define

S(0, b] = lim
a↓0

S[a, b], M(0, b] = lim
a↓0

M [a, b].

Obviously 0 < S[a, b] < ∞, 0 < M [a, b] < ∞ for all 0 < a < b < ∞, and we
compute

s(y) = exp
(
−
∫ y

1
(−1)zα−1dz

)
= exp

(
yα

α
− 1

α

)
,

S(0, 1] =
∫ 1

0
s(y)dy =

∫ 1

0
exp

(
yα

α
− 1

α

)
dy < ∞,

thus S(0, b] < ∞ for all 0 < b < ∞. Similarly,

m(y) =
1
D

exp
(
−yα

α
+

1
α

)
,

M(0, 1] =
1
D

∫ 1

0
exp

(
−yα

α
+

1
α

)
dy < ∞,

hence M(0, b] < ∞ for all 0 < b < ∞. Furthermore,

S[a,∞) = lim
b↑∞

S[a, b] = ∞, M [a,∞) < ∞ for all 0 < a < ∞.
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A.4 Boundary behaviour

For any arbitrarily chosen a > 0, let

Σ(0) =
∫ a

0
M [y, a]dS(y), N(0) =

∫ a

0
S[y, a]dM(y),

Σ(∞) =
∫ ∞

a
M [a, y]dS(y), N(∞) =

∫ ∞

a
S[a, y]dM(y).

Using Karlin and Taylor (1981, Lemma 6.3, Chapter 15), we obtain from A.3

Σ(0) < ∞, N(0) < ∞ and Σ(∞) = ∞,

and an easy argument shows that

N(∞) =
∫ ∞

a

∫ y

a

1
D

exp
(

zα

α
− 1

α

)
dz exp

(
−yα

α
+

1
α

)
dy = ∞.

In the terminology of Karlin and Taylor (1981, p. 234), ∞ is a natural
boundary (as ∞ is for Brownian motion) and can be omitted from the state
space, whereas 0 is a regular boundary. A regular boundary can be added
to the state space. To specify the behavior in 0, we set M({0}) = 0 which
stands for instant reflection. So we have defined a diffusion Yt with state
space [0,∞) that is a solution of (12) and is immediately reflected when it
reaches 0. Using Karlin and Taylor (1981, pp. 192–197), one can show that
Yt reaches 0 with probability one in finite expected time from any starting
point x.

A.5 The diffusion on (−∞,∞)

Having defined Yt as a diffusion on [0,∞) that satisfies (12) with instant
reflection, we have, with Y ′

t = −Yt, a diffusion on (−∞, 0] which again
satisfies (12) with instant reflection in 0, and is characterized by s′(y) =
s(−y), S′[c, d] = S[−c,−d], m′(y) = m(−y), M ′[c, d] = M [−c,−d]. These
two may be glued together to define a diffusion Xt on (−∞,∞). An informal
way to describe this is the following: We use an independent randomization
each time the process reaches the boundary zero. Using this randomization
we let Xt = Yt or Xt = Y ′

t , each with probability 1
2 , up to the next time point

when the process reaches the boundary zero. Starting the process with a
symmetric distribution on (−∞,∞), this defines a symmetric distribution on
(−∞,∞). More formally, we consider the functions s̄, m̄ with s̄ = s(x), x >
0, s̄ = −s(x), x < 0, m̄ = m(x), x > 0, m̄ = m(−x), x < 0, and define the
corresponding scale measure S̄ and speed measure M̄ on (−∞,∞). Then
there exists a diffusion Xt on (−∞,∞) that has scale and speed measures
corresponding to our informal construction (see, e.g., Stummer, 1993).
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A.6 The stationary distribution

Since the restoring force −D
2 sgn(x)|x|α−1 is directed towards zero, the dif-

fusion Xt is positive-recurrent because from any starting point x the point
zero is reached in finite expected time according to A.4. Hence there ex-
ists a unique stationary distribution. Utilizing the scale function and speed
density, this stationary distribution can be expressed as

pe(x) = m(x)[K1S(x) + K2],

where K1,K2 > 0 are normalizing constants, see Karlin and Taylor (1981, p.
221). Recalling N(∞) = ∞ in A.4, we have in our case

∫
m(x)S(x)dx = ∞,

and hence K1 = 0. This yields

pe(x) =
κ

D(x)
exp

(
2
∫ x

x0

A(y)
D(y)

dy

)
,

which is formula (9). So for any m ∈ R, σ > 0 we obtain

pe(x) =
κ

D
exp

(∫ x

0
− 1

σ
sgn(y −m)

∣∣∣∣y −m

σ

∣∣∣∣α−1

dy

)
=

κ

D
exp

(
− 1

α

∣∣∣∣x−m

σ

∣∣∣∣α) ,

which proves formula (4).

A.7 The case α > 2

For α > 2, the function A(x) is not Lipschitz continuous on the entire real
line, but on any interval [−n, n]. For any n ∈ N we use a bounded Lipschitz
continuous function An which is equal to A on [−n, n]. Similarly to (A.2),
we obtain a diffusion on the real line which satisfies (12). As in the previous
case, this diffusion has a unique stationary distribution with density given
by (4).

B Simulation

We simulate the processes Yt and Xt with the Euler-Maruyama method. Let
X0 be normally distributed and Y0 = |X0|. Let ∆t > 0. For all n ∈ N we
compute

Ỹn∆t = Y(n−1)∆t + A(Y(n−1)∆t)∆t + σZn

where Zn is normal distributed with mean 0 and variance ∆t. Since Ỹn∆t

can become negative, we define Yn∆t = max
(
Ỹn∆t, 0

)
. If X(n−1)∆t 6= 0 let

Xn∆t = sgn(X(n−1)∆t)Yn∆t. If X(n−1)∆t = 0, we set Xn∆t equal to Yn∆t or
−Yn∆t, both with probability 1

2 . The results are shown in Figure 6.
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