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An approach to distance sensor data integration that obtains a robust interpretation
of the robot environment is presented in this paper. This approach consists in obtaining

patterns of fuzzy distance zones from sensor readings; comparing these patterns in order

to detect non-working sensors; and integrating the patterns obtained by each kind of
sensor in order to obtain a final pattern that detects obstacles of any sort. A dissimilarity

measure between fuzzy sets has been defined and applied to this approach. Moreover,

an algorithm to classify orientation reference systems (built by corners detected in the
robot world) as open or closed is also presented. The final pattern of fuzzy distances,

resulting from the integration process, is used to extract the important reference systems

when a glass wall is included in the robot environment. Finally, our approach has been
tested in an ActivMedia Pioneer 2 dx mobile robot using the Player/Stage as the control

interface and promising results have been obtained.

Keywords: Sensor data integration; fuzzy set theory; qualitative reasoning; robotics.

1. Introduction

Human beings use many kinds of sensory information (sight, hearing, smell, taste,
touch, etc.) in order to obtain a complete and reliable representation of their sur-
roundings. Results of neuroscience studies 1 explain that the information captured
by human senses is perceived by the cerebral cortex as spatiotemporal patterns that
are stored as memories. In the same way, robots can incorporate different kinds of
sensors -each one sensitive to a different property of the environment- whose data
could be integrated to make the perception of the robot more robust and to obtain
new information, otherwise unavailable. Information captured through the robot
sensors can be expressed as patterns of concepts, by transforming numerical data
obtained into qualitative terms, and then, these patterns can be stored in a know-
ledge base.

Some robot sensors, such as laser and sonar sensors, capture the same physical
magnitude of the environment that is the distance to objects. Although these kinds
of sensors are sensitive to different properties of the environment (light and sound
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properties, respectively), they present different drawbacks which can be overcome
by integrating or fusing data obtained by them. If no method to combine data
provided by all the robot sensors is effectively used, important information about
the robot environment may be lost. This is the reason why sensor data integration
is important for robot navigation, as it provides the robot with knowledge about its
surroundings that can help it to carry out a task successfully and more efficiently.

Finally, observations in robot-oriented industrial applications 2 emphasize that
robots should have the capabilities of integrating reasoning, perception and action
with conventional industrial tasks. In order to achieve such capabilities, the quali-
tative representation in a robotic system is required to have a natural connection to
its quantitative representation and it also provides the atomic representation that
could be used to build higher level cognitive functions for robots to enable them to
reason, act, and perceive in dynamic, partially unknown, and unpredictable envi-
ronments. Our research work is a little step to contribute in this direction.

2. Related Work on Distance Integration

Sensor data fusion represents the process of combining data or information from
multiple sensors for detecting obstacles, object recognition, tracking of objects, etc.
Generally, in the literature there are many approaches that deal with the problem
of distance sensor data integration by using different probabilistic methods and
incorporating different kinds of sensors. These methods obtain a high precision
in their application but at a high computational cost, and they usually obtain a
description of the world that has a higher degree of precision than that required by
the task to be performed by the robot.

Sonar and laser data integration for mobile robot navigation has been charac-
terized by the use of probabilistic techniques: covariance intersections 3, grid maps
and Bayes’ theorem 4, grid maps and the Dezert-Smarandache theory 5, Kalman
filters 6, 7, Gauss approximation methods and vector maps 8, fuzzy segment maps
9, etc.

However, the extraction of knowledge from the world by numerical methods is
very limited. A later interpretation of the coordinates where the robot is located
is needed so that the robot can extract knowledge from the numerical values ob-
tained. If the aim of sensor data integration is not localizing the robot accurately in
the world, but extracting knowledge from it, qualitative representations are usually
used. These representations define qualitative concepts for each important charac-
teristic to distinguish in the world that can be used later on in decision processes.

In the literature, qualitative representations of sensor data have been applied to
very few sensor data fusion approaches. We have found only Reece and Durrant-
Whyte’s works 10, 11, 12, 13 which mainly obtain qualitative descriptions of sensor
cues. In their earlier work 10, they extracted regions of constant depth (RCD) from
sonar sensor cues and interpret qualitatively the evolution of these RCD as the
robot moves through the environment in order to identify planes, edges and cor-
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ners. This work was extended 11, 12 in order to classify the surface curvature of
the robot environment as convex, concave, plane, close-concave, far-concave, etc.
and by combining a qualitative model based on intervals and qualitative differential
equations (QDE) with a Kalman filter in order to interrelate the values of sensor
observations with the system parameters and to estimate the parameters of the
system for noisy processes or when the models obtained are incomplete or impre-
cise. Finally, another Reece’s work13 used qualitative descriptions of sensor cues
for image understanding. A sensor cue contains a qualitative descriptor of the tool
that processed the image, a qualitative representation of the spectral bands of the
observed image -green, red, near-infrared or none of these- and a label denoting
the interpretation of the representation. A qualitative reasoning system was built
in order to distinguish soil from water in thermal daytime and nighttime images.

The motivation of our approach for distance sensor data integration is not lo-
calizing the robot accurately in the world, not interpreting sensor cues. Our main
aim is to extract information about distances in the robot world by means of quali-
tative concepts that improve the knowledge of the robot of its surroundings and
which could be used in later decision processes. Moreover, this qualitative informa-
tion about distances is also used to detect obstacles in a robust way and also to
characterize the obstacles or landmarks found in the world. Moreover, the semantic
meaning of these qualitative names could be improved and related to others in the
future by means of an ontology, as it has been previously done by the authors in
their approach for generating ontology-based qualitative description of images17.

A more recent research trend in literature is integrating results from distance sen-
sor fusion with images taken from a camera in order to extract knowledge from the
environment by means of an XML dataset 14, an ontology 15, symbolic/qualitative
information 16, etc. This is the direction of our approach. However, first our aim
is to extract knowledge from distance data fusion in an earlier stage and, later on,
integrating it with the knowledge extracted from images by our approach based on
description logics17.

Our approach for distance sensor data integration (1) obtains patterns of fuzzy
distances for each kind of distance sensor incorporated in a robot; (2) compares the
patterns obtained in order to detect sensor errors; (3) integrates the patterns coming
from different kinds of sensors to overcome the drawbacks presented individually
and to obtain a more reliable perception of the environment; (4) provides knowledge
to the robot by means of qualitative terms that categorize the distance of the robot
to the obstacles and also types of obstacles; (5) can be extended and generalized for
any kind of distance sensor and any kind of robot that includes distance sensors.

To the best of our knowledge, there is no approach for distance sensor data
integration that presents these characteristics so it is not possible to carry out any
comparative study with our approach.
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3. Integration of Distance Sensor Data and Interpretation

Our approach for Distance Sensor Data Integration and Interpretation consists of
the following steps, connected as Figure 1 shows.

(i) Obtaining Robust Fuzzy Distance Patterns (FDPs) from each kind of
distance sensor (described in Section 4), which involves:

(a) Transforming the distance sensor readings into patterns of fuzzy distance
zones.

(b) Comparing the patterns of fuzzy distance zones obtained in order to detect
those sensors that are not working properly.

(c) Obtaining a robust fuzzy distance pattern for each kind of distance sensor.

(ii) Integrating patterns provided by each kind of sensor in order to overcome each
sensor’s disadvantages and to obtain a final distance pattern that can detect
any sort of obstacles (explained in Section 5).

(iii) Calculating the discontinuities of distances in the final distance pattern and
relating them to the corners detected by the approach by Peris and Escrig 18 in
order to classify Reference Systems (RSs) in the robot world as open

or closed (as explained in Section 6).
(iv) Defuzzifying the final distance pattern in order to provide the robot with a

smooth speed depending on its frontal distance to the obstacle (described in
Section 7).

Our approach can be extended and generalized for any kind of robot incorpo-
rating sonar and laser distance sensors and other kinds of distance sensors such as
infrared an so on. In Section 8, the results of our tests on a real robot platform are
detailed and, finally, in Section 9, our conclusions are explained.

4. Obtaining Robust Fuzzy Distance Patterns (FDP s)

One of the main objectives of our approach is obtaining a reliable
Fuzzy Distance Pattern (FDP ) for each kind of distance sensor on robot. In
order to achieve this, first we obtain patterns of fuzzy distance zones from sensor
numerical readings, as described in Section 4.1. Then we compare these patterns to
detect sensors with technical problems, as described in Section 4.3. In order to com-
pare fuzzy distance sets (FdSets), we have developed a Dissimilarity Factor(DF ),
as explained in Section 4.2.

4.1. Building FDP s

In order to transform numerical distances obtained from the sensor readings into
fuzzy distances, a fuzzy distance set is used. The concept of the fuzzy set was
introduced by Zadeh 19 as a ‘class’ with a continuum of grades of membership.
Since then they have become the foundation of a methodology for translating the
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Fig. 1. Scheme of our approach for Distance Sensor Data Integration and Interpretation.

numerical data obtained from the world into linguistic categories or classes that can
be given a meaning and used for reasoning.

In our approach, fuzzy distance values are used because (1) they provide lin-
guistic values of distance, which can be given a meaning that can be useful to the
robot later on for decision processes, and because (2) they can be easily defuzzified
into the original numerical values.

Let us define a fuzzy set as a pair (FdSet, µFdSet) where FdSet is a set
and µFdSet : FdSet → [0, 1] ∈ <. For a finite set FdSet = {x1, ..., xn}, for
each x ∈ FdSet, a µFdSet(x) is obtained and called the grade of membership of
x ∈ (FdSet, µFdSet).

Let x ∈ FdSet. Then x is called not included in the fuzzy set (FdSet, µFdSet) if
µFdSet(x) = 0.0, x is called fully included if µFdSet(x) = 1.0, and x is called fuzzy
member if 0.0 < µFdSet(x) < 1.0.

For each numerical distance obtained from the sensor readings, its grade of
membership to each defined Fuzzy distance Set (FdSet) is calculated and those
fuzzy distances obtained ({x1, ..., xn}) whose grade of membership is other than zero
(µFdSet(xi) 6= 0) are selected. Those numerical sensor readings that are negative
or exceed the sensor range are characterized as out of range distances with the
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maximum grade of membership (1.0).
After transforming all sensor readings into fuzzy distances, those qualitative

distances with the same name are grouped into zones and fuzzy distance patterns
are obtained.

Let us consider a Fuzzy Distance Pattern (FDPt) as a collection of fuzzy
distance zones related to the same sensor scan at a time t. Each zone includes its
starting and ending angular position, the event corresponding to the zone and a list
of fuzzy distances related to it. The grade of membership of these fuzzy distances
is obtained as the mean of all the grades of membership originally included in the
zone. And the rest of parameters are defined as:

FDPtime(SensorType) =([Zone0, . . . ,ZoneK ]).

SensorType = {sonar, laser, infrared, etc.}
Zonei = [[Start, End], FdSet, Event]
FdSet = [(x1, µFdSet(x1)), ..., (xi, µFdSet(xi)), ..., (xn, µFdSet(xn))]
Start ∈ [0,MaxAngularRange] ∈ N
End ∈ [0,MaxAngularRange] ∈ N
Event = {simple obstacle, glass or mirror, sound reflection, SensorType error}

An example of a situation of a general robot with a common distance sensor
inside a room and the corresponding FDPt obtained is shown in Table 1. This
FDPt(sensor) is made up of five Zones (K = 5). The starting angular posi-
tion of Zone1 is a1

◦ and its ending angular position is a2
◦ and its angular am-

plitude is determined by a2 − a1. The fuzzy distances related to the first zone
are determined by the distance names ({x1, ..., xn}) and grades of membership
{µFdSet(x1), ..., µFdSet(xn)} contained by FdSetZone1 . The sort of obstacle the
robot is facing is determined by Event. The remaining zones of the pattern are
described in the same way.

4.2. Defining a Dissimilarity Factor (DF ) between FdSets

In order to compare Fuzzy distance Sets (FdSets), a Dissimilarity Factor (DF )
has been defined. This DF compares both the qualitative distances and their cor-
responding grades of membership.

Given two general FdSets, FdSetA and FdSetB , containing n and m elements
respectively:

FdSetA = {A1, A2, ..., An} where Ai = (xAi
, µA(xAi

))
FdSetB = {B1, B2, ..., Bm} where Bj = (xBj

, µB(xBj
))

The dissimilarity (dSim) between two elements, each corresponding to a
different fuzzy set, Ai and Bj , is defined by:

dSim(Ai, Bj) = dSimQd(xAi
, xBj

) · µA(xAi
) · µB(xBj

) (1)
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Table 1. An example of a situation of the robot in a room and the FDPt(sensor) obtained.

Robot Situation FDPt

FDPt(sensor) = ([Zone1, . . . ,Zone5])

=([ [[a1, a2], [ FdSetZone1 ], Event],

[[a2 + 1, a3], [ FdSetZone2 ], Event],

[[a3 + 1, a4], [ FdSetZone3 ], Event],

[[a4 + 1, a5], [ FdSetZone4 ], Event],

[[a5 + 1, a6], [ FdSetZone5 ], Event]]).

Note that xAi
corresponds to the fuzzy set name associated with fuzzy distance

Ai, while µA(xAi
) is the grade of membership associated with the fuzzy set name

xAi
.
The dissimilarity between labels of qualitative distances (xAi , xBj ) or dSimQd

in Eq. 1 is solved by analyzing the conceptual neighborhood relations between the
concepts defined. The term conceptual neighborhood was introduced by Freksa 21

in his analysis of the 13 interval relations defined in Allen’s temporal logic 20:
“Two relations between pairs of events are conceptual neighbors if they can be di-
rectly transformed one into another by continuous deformation (i.e., shortening or
lengthening) of the events”.

Conceptual neighborhood relations can be found between the qualitative labels
defining distances. For example, the distances xi (i.e. far) and xi+1 (i.e very far)
can be considered conceptual neighbors since a quantitative extension of the dis-
tance xi leads to a direct transition to the distance xi+1. However, the distances xi

and xi−2 (i.e. close) are not conceptual neighbors, since a transition between them
must go through the distance xi−1 (i.e. near) first. Therefore, let us define the
dissimilarity value between two qualitative distances that are conceptual neighbors
as one positive unit if the first distance is smaller than the second distance and one
negative unit otherwise:

x1
+1−−→ x2

+1−−→ x3 · · ·xi
+1−−→ xi+1 · · ·xn−2

+1−−→ xn−1
+1−−→ xn

x1 ←−−−1
x2 ←−−−1

x3 · · ·xi ←−−−1
xi+1 · · ·xn−2 ←−−−1

xn−1 ←−−−1
xn

All the possible dissimilarity values between general qualitative distances are
calculated in Table 2.
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Table 2. Dissimilarity matrix for qualitative distances.

x1 x2 x3 .. xi

x1 0 1 2 .. i− 1

x2 -1 0 1 .. i− 2

x3 -2 -1 0 .. i− 3

.. .. .. .. .. ..

xj 1− j 2− j 3− j .. i− j

The dissimilarity value between the same qualitative distances is zero
(dSimQd(xAi , xAi) = 0) and the dissimilarity between the fuzzy distances defined
as the limits of the set is the maximum dissimilarity, which is the cardinality of the
defined FdSet (dSimQd(xAi , xAn) = card(FdSetA)− 1).

Finally, the number of dissimilarities among all the elements that is needed to
calculate in order to obtain the final dissimilarity between two fuzzy sets, FdSetA
and FdSetB , are given by the Cartesian product of their elements (n·m). Therefore,
the Dissimilarity Factor (DF ) between two fuzzy sets is obtained by accumulating
the dissimilarity value between each pair of elements that composes each relation
obtained by the Cartesian product of the two sets involved, as Eq. 2 shows.

DF (FdSetA, FdSetB) =
∑

dSim([A1..An]× [B1..Bm]) (2)

Considering n = 2 and m = 3,

FdSetA = [A1, A2] = [[xA1 , µA(xA1)], [xA2 , µA(xA2)]]
FdSetB = [B1, B2, B3] = [[xB1 , µB(xB1)], [xB2, µB(xB2)], [xB3 , µB(xB3)]]

Eq. 2 corresponds to:

DF (FdSetA, FdSetB) = dSimQd(xA1 , xB1) · µA(xA1) · µB(xB1)
+ dSimQd(xA1 , xB2) · µ(xA1) · µ(xB2)
+ dSimQd(xA1 , xB3) · µ(xA1) · µ(xB3)
+ dSimQd(xA2 , xB1) · µ(xA2) · µ(xB1)
+ dSimQd(xA2 , xB2) · µ(xA2) · µ(xB2)
+ dSimQd(xA2 , xB3) · µ(xA2) · µ(xB3)

4.3. Comparing FDPs for detecting unreliable sensor readings

In order to detect sensor malfunctions, the environment is scaned three times while
the robot is static and the three fuzzy distance patterns obtained are compared
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(FDPt, FDPt−1, FDPt−2). Assuming that all the objects in the robot environment
are also static, if a sensor obtains different readings depending on time and not on
the situation, it is possible that this sensor has a technical problem.

The static comparison of patterns consists of comparing the current pattern
(FDPt) with the two previous ones (FDPt−1, FDPt−2) and determining which is
the most new and reliable.

In order to compare fuzzy distance patterns, first a measure of similarity between
the Zones that build them must be defined. Therefore, let us consider that two
Zones are qualitatively similar (Qsimilar) if the fuzzy distance sets (FdSets) con-
tained in them have a DF = 0 and that they are close in meaning (CloseMeaning)
if they have a |DF | < 2.

Therefore, two fuzzy distance patterns (FDPt, FDPt−1) are considered quali-
tatively similar (QsimilarPatterns) if they are composed of the same number of
Zones which are qualitatively similar (Qsimilar).

As Algorithm 1 shows, if the current pattern (FDPt) and at least one of the
two previous ones are QsimilarPatterns, the current pattern is selected as the
final pattern (FinalFDPt). Otherwise, the two previous patterns are compared
(FDPt−1, FDPt−2) and if they are QsimilarPatterns, the most recent pattern
(FDPt−1) is selected as the final one (FinalFDPt). However, if none of the patterns
are completely Qsimilar, a new pattern is built.

Algorithm 1 Description of the static comparison of fuzzy distance patterns
From Sensor(x) obtaining: FDPt, FDPt−1 and FDPt−2

if QsimilarPatterns(FDPt, FDPt−1) or QsimilarPatterns(FDPt, FDPt−2)
then
FinalFDPt ← FDPt

else if QsimilarPatterns(FDPt−1, FDPt−2) then
FinalFDPt ← FDPt−1

else
FinalFDPt ← Building new FDP (FDPt, FDPt−1, FDPt−2)

end if

As Algorithm 2 shows, in order to build a new FDP s from the most reliable
zones of the previous ones, for each angular position (a), the most current FdSet
that is Qsimilar or have CloseMeaning to the others is selected to build the
FinalFDP .

If there is any angular position (a) where all the FdSets are very different
from each other, nothing about the real distance can be known. Therefore this
reading is characterized as none, meaning no distance, with the maximum grade of
membership. A value of none suggests technical problems with the sensor located
in the angular position where the reading was taken.
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Algorithm 2 Building a new FDP from the previous FDP obtained
for each Angular position(a) in FDPt, FDPt−1 and FDPt−2 do
FdSett ← Extract FdSet(FDPt, a)
FdSett−1 ← Extract FdSet(FDPt−1, a)
FdSett−2 ← Extract FdSet(FDPt−2, a)
if Qsimilar(FdSett, FdSett−1) or Qsimilar(FdSett, FdSett−2) then
FdSetfinal ← FdSett

else if Qsimilar(FdSett−1, FdSett−2) then
FdSetfinal ← FdSett−1

else if CloseMeaning(FdSett, FdSett−1) or
CloseMeaning(FdSett, FdSett−2) then
FdSetfinal ← FdSett

else if CloseMeaning(FdSett−1, FdSett−2) then
FdSetfinal ← FdSett−1

else
FdSetfinal ← (none, 1.00)
Event← SensorType error

end if
FinalFDPt ← Add FdSet(FdSetfinal, a)

end for

5. Integration of Sonar and Laser FDPs and Detection of Static
Special Obstacles

As sonar and laser sensors have problems in different situations of the robot envi-
ronment, their readings can be integrated to overcome these problems and also to
identify the specific situation that the robot is facing.

The main problems of sonar sensors are: multiple reflections in corners; uncer-
tainty in locating the target due to the cone-shaped beam; and external ultrasound
sources or crosstalk. Although laser sensors usually provide accurate readings, they
may also present some drawbacks related to the nature of the target surfaces. Low
reflectance surfaces, like dark colors or soft materials, absorb the laser beam and
return it with a feeble intensity; while high reflectance surfaces present more serious
problems: mirrors reflect the laser beam in any direction, while glasses can react
to the laser beam as transparent, partial mirrors or perfect mirrors, depending on
the glass type, thickness and angle of incidence. Therefore, as these sensors fail in
different situations, a method to extract the advantages of both of them can be
developed.

In Algorithm 3, the integration of sonar and laser FDPs is described. After
obtaining a robust FinalFDP from both sonar and laser sensors (Section 4.3), we
check if any of the sensors has technical problems, that is, if they obtain distances
defined as none or out of range. If both kinds of sensors show technical prob-
lems for the same Zone, the corresponding Zone of the FinalFDP will indicate
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Sonar Laser error as the Event. If, for the same Zone, one sensor has technical
problems while the other one works well, the distance obtained by the second one
is included in the FinalFDP and the type of sensor that has technical problems
(sonar error or laser error) is indicated as the Event for that Zone. If none of the
sensors has technical problems in a Zone, then the sonar FdSet and the laser FdSet
corresponding to that Zone are compared by calculating a Dissimilarity Factor
(DF ). If there is a large DF between both FdSets, we can determine that:

• If the DF is larger than a threshold and positive, the distance obtained by the
laser sensor is much larger than the sonar one. Therefore the robot could be facing
a glass window or mirror that reflects the laser beam in any direction and this
will be the Event determined.
• If the DF is larger than a threshold and negative, the distance obtained by the

sonar sensor is much larger than the laser one. Therefore the robot could be facing
a corner that could have made the sound waves rebound and not return to the
receiver. Then the Event determined would be sound reflection in corner.

If there is not a large DF between the FdSets obtained by each type of sensor,
then the final FdSet for any angular position is that obtained by the laser sensor,
since it is the most accurate sensor, and the Event determined is simple obstacle.

Algorithm 3 Description of the integration of sonar and laser FDP s
for all FdSet(sonar) in FDP (Sonar) and FdSet(laser) in FDP (Laser) do

if FdSet(sonar) and FdSet(laser) are none then
FdSet(final), Event ← (none, 1.00), Sonar Laser error

else if FdSet(sonar) and FdSet(laser) are out of range then
FdSet(final), Event ← (out of range, 1.00), Sonar Laser out of range

else if FdSet(laser) is none or out of range then
FdSet(final), Event ← FdSet(sonar), Laser error

else if FdSet(sonar) is none or out of range then
FdSet(final), Event ← FdSet(laser), Sonar error

else
DF (FdSet(sonar), FdSet(laser))
if |DF | ≥ Threshold and DF > 0 then
FdSet(final), Event ← FdSet(sonar), glass or mirror

else if |DF | ≥ Threshold and DF < 0 then
FdSet(final), Event ← FdSet(laser), sound reflection

else
FdSet(final), Event ← FdSet(laser), simple obstacle

end if
end if
FinalFDP ← FdSet(final), Event

end for
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6. Characterizing Reference Systems (RS) using the defined FDPs
and DF

In this section, a DF is obtained between the pairs of FdSets that compose the
final FDP in order to discover if there are large discontinuities in the distances ob-
tained. If these exist, it is supposed that there is an area that cannot be seen by the
current position of the robot. This information combined with the corner informa-
tion provided by Peris and Escrig’s approach 18, enables the robot to characterize
Reference Systems (RS) as closed or open.

6.1. Overview of Peris and Escrig’s approach for building RSs

In Peris and Escrig’s approach 18, the corners in a room that are detected by a robot
are defined as the main landmarks of that room. Two consecutive corners (which
can be concave or convex) in a robot scan define a Reference System (RS) and a
set of RSs determines the final map of the room. Two kinds of RSs can compose
a hybrid map defined in Peris and Escrig18: closed RS and open RS. Closed RSs
are those in which a new landmark cannot appear between those landmarks, which
are the limits of the RS and define it. However, open RSs are those in which new
landmarks can appear between the two landmarks that define the RS and, as a
consequence, a more accurate exploration is needed in order to define clearly all the
main landmarks in the room.

As an example, let us consider the robot situation shown in Figure 2, where
the robot has detected four corners: C1 and C4 are concave, while C2 and C3 are
convex. By joining these consecutive corners, three RSs are obtained, RS12, RS23

and RS34. As shown in Figure 2 RS12 and RS34 are open while RS23 is closed. This
characterization can also be inferred from the FDPs obtained by our approach, as
explained in Section 6.3.

Fig. 2. Example of a robot situation inside a room

6.2. Calculating Discontinuities in the Final FDP

The final fuzzy distance pattern (FinalFDP ) resulting from the integration of the
sonar and laser FDPs (see Section 5) can be used to classify RSs, defined by Peris
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and Escrig18, as open or closed.
By calculating the DissimilarityFactor (DF ) between the FdSets of each

Zonei (simplified by Zi) of the FinalFDP , large dissimilarities between Zones

can be detected, which correspond to discontinuities in the robot environment:

• If the DF is larger than a threshold (|DF | >> T ) and negative (DF < 0), it
corresponds to a change from a Zone containing large fuzzy distances to a Zone
with small fuzzy distances, which is called an approaching discontinuity in our
approach.
• If the DF is larger than a threshold (|DF | >> T ) and positive (DF > 0), it

corresponds to a change from a Zone containing small fuzzy distances to a Zone
with large fuzzy distances, which is called a moving away discontinuity in our
approach.

An example of the possible discontinuities that our approach could obtain from
the FinalFDP in the general situation shown in Fig. 2 is the following:

FDP (final)=([

[[a1, a2],[FdSetZ1 ]],

[[a2, a3],[FdSetZ2 ]], DF(FdSetZ1 , FdSetZ2)

..., ...

[[..., aC2],[FdSetZi ]], DF(FdSetZi−1 , FdSetZi
)

[[ aC2, aC3],[FdSetZi+1 ]], DF(FdSetZi
, FdSetZi+1) → |DF | >> T and DF < 0

[[aC3, aj ],[FdSetZi+2 ]], DF(FdSetZi+1 , FdSetZi+2) → |DF | >> T and DF > 0

..., ...

[[ak, ak+1],[FdSetZk
]]). DF(FdSetZk−1 , FdSetZk

)

If we analyze the previous general distance pattern obtained by the robot when
it is placed in the situation described in Figure 2, we observe that two large dissim-
ilarities can be found:

• One between Zonei and Zonei+1, reflected by a DF large and negative, which
corresponds to an approaching discontinuity in the angular position where corner
C2 is located approximately (aC2); and

• One between Zonei+1 and Zonei+2, reflected by a DF large and positive, which
corresponds to a moving away discontinuity in the angular position where corner
C3 is located approximately (aC3).

6.3. Characterizing RSs as open or closed

By relating the approximate angular location of the discontinuities obtained from
the final FDP with the approximate angular location and the type of the corners
(concave or convex ) detected, an algorithm to classify the reference systems (RSs)
of the robot environment as open or closed can be defined.
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The main situations in which the robot can find consecutive corners are shown
in Figure 3 and detailed next:

• Situation 1: a concave corner (C1) and a convex corner (C2),

(a) If a moving away discontinuity coincides with the convex corner (C2), if it
happens after the convex corner, and then RS defined is closed (Situation
1a), but if it happens before the convex corner, and then RS defined is open
(Situation 1b).

(b) If there are no discontinuities that coincide with these corners, they define a
closed RS (Situation 1c).

• Situation 2: a convex corner (C1) and a concave corner (C2),

(a) If an approaching discontinuity coincides with the convex corner (C1), it hap-
pens after the convex corner, and then the RS defined is closed (Situation 2a),
but if it happens before the convex corner, and then the RS defined is open
(Situation 2b).

(b) If there are no discontinuities that coincide with these corners, they define a
closed RS (Situation 2c). This situation is symmetrical to the previous one.

• Situation 3: two convex corners,

(a) If there is a moving away discontinuity coinciding with the first convex corner,
the discontinuity happens after the corner, therefore the RS defined is open
(Situation 3a).

(b) If there is an approaching discontinuity coinciding with the second convex cor-
ner, the discontinuity happens before the corner and the RS defined is open
(Situation 3b).

(c) If an approaching discontinuity coincides with the first convex corner it happens
before this corner and it corresponds to a previous RS. Similarly, if a moving
away discontinuity coincides with the second convex corner, it happens after
this corner and it corresponds to the following RS. This is the reason that
although both convex corners coincide with discontinuities in situation 3c the
RS determined by them is closed.

(d) If no discontinuity coincides with both convex corners, the RS defined by them
is closed.

• Situation 4: Two concave corners. These corners always define a closed RS,
since there cannot be a discontinuity of the robot environment between them,
as a discontinuity involves the detection of another corner between the original
ones.

Finally, it is important to consider that the same discontinuity in the distance
pattern cannot be related to more than one open reference system.

As Algorithm 4 shows, by analysing the previous situtations, it can be deduced
that if the first corner is convex and coincides with a moving away discontinuity,
this discontinuity takes place before the second corner and, therefore, they define
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Fig. 3. Situations described related to the lines of Algorithm 4.

(a) Situation 1a (b) Situation 1b (c) Situation 1c

(d) Situation 2a (e) Situation 2b (f) Situation 2c

(g) Situation 3a (h) Situation 3b (i) Situation 3c

(j) Situation 4

an open RS. Similarly, if the second corner is a convex corner and coincides with
an approaching discontinuity, this discontinuity also takes place before the second
corner and, therfore, they define an open RS. In other situation, the RS determined
by the two consecutive corners is closed.

Algorithm 4 Classification of RS as open or closed
if (C1.type = convex) and (discontinuity in(C1) = moving away) then

SR(C1,C2).type ← open

else if (C2.type = convex) and (discontinuity in(C2) = approaching) then
SR(C1,C2).type ← open

else
SR(C1,C2).type ← closed

end if



December 13, 2010 20:29 WSPC/INSTRUCTION FILE
ws-ijufks˙zfalomir˙for˙publication

16 Falomir et al.

6.4. Integrating Final FDP with RS information

Because of its high precision, the corners in the robot world are obtained by ana-
lyzing the distances provided by the laser sensor.

However, when a glass surface is located in front of the robot, corners corre-
sponding to the obstacles on the other side of the glass are detected. These corners
are false corners that do not correspond to the real world. Therefore, in this si-
tuation, an integration of the information provided by the final FDP with the
information of the RSs obtained is needed.

The integration done in our approach consists in not considering those corners
whose angular distance coincides with the location of a glass or mirror, as Algorithm
5 shows.

Algorithm 5 Integration of the final FDP with the Corners information to build
the real RS.

for Corner(id, angle, type) in CornersV ector[0 .. N] do
if angle not included in a Zonei with Event← Glass or mirror then
NewCornersV ector ← Corner(id, angle, type)

end if
end for
BuildNewRSs(NewCornersV ector[0 .. M])

7. Defuzzification of FDPs to Obtain a Smooth Robot Speed

As our approach for distance sensor data integration obtains patterns of fuzzy dis-
tances, fuzzy set theory can be used in order to control the speed of the robot and
to obtain smooth movements while the robot is approaching an obstacle.

Therefore, a fuzzy controller has been designed in order to define the robot speed
depending on the frontal Zone (90◦ aproximately) of the FinalFDP resulting from
the integration. This controller is composed of:

• the fuzzy distance set FdSet representing distance to the obstacles:
(FdSet, µFdSet) where FdSet is a finite set FdSet = {x1, ..., xn} and µFdSet :
FdSet→ [0, 1] ∈ <

• the fuzzy speed set FSpeed representing the robot speed:
(FSpeed, µFSpeed) where FSpeed is a finite set FSpeed = {y1, ..., yp} and
µFSpeed : FSpeed→ [0, 1] ∈ <

• a set of rules that relate each element of the fuzzy distance set FdSet with the
corresponding fuzzy speed set FSpeed:
if distance is xi ∈ FdSet then speed is yr ∈ FSpeed
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• a defuzzification method which obtains the corresponding numerical speed from
the obtained fuzzy distances. Our approach uses the Centre of Gravity (CoG)
weighted by height for defuzzification, although other methods could also be
used (more details are given by Galindo22).
The rules defined relate the FdSets obtained with the corresponding fuctions that
define the FSpeed sets. The selected functions of the FSpeed set are truncated
by height according to the grade of membership of the corresponding FdSets
and finally, the Centre of Gravity (CoG) of the area defined by those functions
is obtained as the final numerical robot speed.
The formula of the CoG is shown in Eq. 3, where FSpeedi(x) are the functions
representing speed selected by the rules; and the formula of the CoG weighted
by height is shown in Eq. 4, where Hi is the height to truncate FSpeed functions
and which correspond to the grade of membership obtained by the FdSets in the
frontal Zone of the FDP (90◦ aproximately).

CoGi =
AreaXi

Areai
=

∫
FSpeedi(x) · x dx∫
FSpeedi(x) dx

(3)

x̂ =
∑n

i=1Hi∑n
i=1Hi · CoGi

(4)

8. Experimentation

Our physical robotic platform was an ActiveMedia Pioneer 2 dx mobile robota

containing eight sonar sensors and a SICK LMS-200 laser range scanner b. As
Figure 4 shows, the laser sensor is mounted on the top of the robot and it does
a 180 degree rotational scan, providing one reading per degree, whereas the eight
sonar sensors are arranged in a half circle around it, providing only one reading
per sensor for each scan. The sonar sensors incorporated by Pioneer 2 dx have a
maximum range of 4 meters, while the SICK laser scanner can reach a maximum
of 50 meters, but our approach defined the maximum in 8 meters.

The software application used to carry out the experimentation of our approach
was Player/Stage c as the network server for robot control, which provides a simple
interface to the robot’s sensors and actuators.

Finally, the testing scenarios were those available in our University building:

• Scenario I: Pioneer 2 dx located at the end of a corridor, which is closed with a
glass window (see Fig. 5 (a)).
• Scenario II: Pioneer 2 dx located in front of the back doors, which also have glass

windows (see Fig. 5 (b)).

ahttp://www.mobilerobots.com
bhttp://www.sick.com
chttp://playerstage.sourceforge.net
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Fig. 4. Robotic platform used to test our approach.

(a) Pioneer 2 (b) Distribution of the sensor readings

Fig. 5. Scenarios to exemplify the results of our approach.

(a) Scenario I: rotbot at

the end of a corridor

(b) Scenario II: robot in front of the

back doors

8.1. Parametrization of our Approach

For parametrizing our approach, the FdSet is defined as:

(FdSet, µFdSet) where,
FdSet is a finite set FdSet = {at, very close, close, quite near, near, medium,

quite far, far, very far, too far, extremely far, out of range} and
µFdSet : FdSet → [0, 1] ∈ < defined by the triangular membership functions

shown in Figure 6.

The membership functions of our FdSet (µFdSet) have been defined by exper-
imentation for indoor robot navigation: each limit depends on the diameter of the
robot (d) (e.g. 60 cm for a Pioneer 2 dx mobile robot, 40 cm for an ERRATIC
mobile robot d, etc.). These divisions are motivated by the relation between the
amount of distance in metres to an obstacle and the size of the object moving

dhttp://www.videredesign.com
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towards it, for example: the same amount of distance in meters to an obstacle is
considered cognitively closer by someone driving a truck than by someone riding a
bike. However, other distance labels and limits could be established according to
the application.

Fig. 6. Fuzzy distance Sets (FdSets) defined for our approach.

According to the previous FdSet defined, the conceptual neighborhood relations
explained in Section 4.2 and the general dissimilarity matrix defined in Table 2, a
dissimilarity matrix between qualitative distance names (QsimQd) is obtained and
shown in Table 4.

Table 4. Dissimilarity matrix for qualitative distances.

at v.close close q.near near med. q.far far v.far t.far ex.far

at 0 1 2 3 4 5 6 7 8 9 10

v.close -1 0 1 2 3 4 5 6 7 8 9

close -2 -1 0 1 2 3 4 5 6 7 8

q.near -3 -2 -1 0 1 2 3 4 5 6 7

near -4 -3 -2 -1 0 1 2 3 4 5 6

med. -5 -4 -3 -2 -1 0 1 2 3 4 5

q.far -6 -5 -4 -3 -2 -1 0 1 2 3 4

far -7 -6 -5 -4 -3 -2 -1 0 1 2 3

v.far -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

t.far -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

ex.far -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Moreover, the fuzzy set for robot speed, FSpeed, is defined by experts according
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to our application as:

(FSpeed, µFSpeed) where,
FSpeed is a finite set FSpeed = {stopped, very slow, slow, quite slow, medium,

fast, very fast, real fast} and
µFSpeed : FSpeed → [0, 1] ∈ < defined by the triangular membership functions

shown in Figure 7.

Fig. 7. Fuzzy sets defining the robot speed in centimeters per second

Table 6 shows the rules defined by our approach for relating the distances of our
FdSet with the speeds of our FSpeed for obtaining a smooth robot speed according
to the distance measured at the front or 90◦ and applying the defuzzification method
presented in Eq.4.

Algorithm 6 Rules for defuzzification
if distance is extremely far then speed is real fast
if distance is too far then speed is very fast
if distance is very far then speed is very fast
if distance is far then speed is fast
if distance is quite far then speed is fast
if distance is medium then speed is medium
if distance is near then speed is quite slow
if distance is quite near then speed is quite slow
if distance is close then speed is slow
if distance is very close then speed is very slow
if distance is at then speed is stopped
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8.2. Tests and Results in Scenario I

A video of the execution of our approach in Scenario I can be downloaded from
our website e. The readings obtained by the sonar and laser sensors in this scenario
are those shown in the Player Viewer screenshot in Figure 8 (b) and the FDP s
obtained are the following ones, respectively:

FDP (sonar)=

[ [0, 29], [(at, 0.11), (very close, 0.89)] ],

[ [30, 49], [( near, 0.8), (medium, 0.2)] ],

[ [50, 69], [(very close, 0.04), (close, 0.96)] ],

[ [70, 149], [(close, 0.66), (quite near, 0.35)] ],

[ [150, 179], [(quite near, 1)] ].

FDP (laser)=

[ [0, 53], [(very close, 0.6), (close, 0.4)] ],

[ [54, 71], [(close,0.69), (quite near, 0.31)] ],

[ [72, 109], [(extremely far, 1)] ],

[ [110, 159], [(close, 0.6), (quite near, 0.4)] ],

[ [160, 179], [(quite near, 0.68), (near, 0.32)] ].

After determining a dissimilarity threshold by experimentation (|T | > 2.5) and
comparing the obtained sonar and laser fuzzy distance patterns (FDP (sonar) and
FDP (laser)), two large dissimilarities are found (-2.8 and 7.73, respectively). An
example of how to obtain the corresponding DF between the corresponding FdSets
from Eq. 2 is shown next:

DF (FdSet(sonar), FdSet(laser)) =
DF ([(near, 0.8),(medium, 0.2)],[(very close, 0.6),(close, 0.4)]) =

= dSimQd(near, very close)·(0.8·0.6) +dSimQd(near, close)·(0.8·0.4)+dSimQd(medium,

very close) · (0.2 · 0.6) + dSimQd(medium, close) · (0.2 · 0.4) = (−3) · 0.48 + (−2) · 0.32 +

(−4) · 0.12 + (−3) · 0.08 = −2.8

These dissimilarities are interpreted by our approach as a Sound Reflection in
the angular positions 30-49 and a Glass or mirror in the angular positions 72-109.
The final FDP obtained is the following one:

FDP (final)=

[ [0, 29], [(very close,0.6), (close,0.4)], Simple Obstacle],

[ [30, 49], [(very close,0.6), (close,0.4)], Sound Reflection], DF = −2.8

[ [50, 53], [(very close,0.6), (close,0.4)], Simple Obstacle],

[ [54, 71], [(close, 0.69), (quite near,0.31)], Simple Obstacle],

ehttp://www.c-robots.com/IJUFKS/scenario1.MOV
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[ [72, 109], [(close,0.66), (quite near,0.35)], Glass or mirror], DF = 7.73

[ [110, 159], [(close, 0.6), (quite near,0.4)], Simple Obstacle],

[ [160, 179], [(quite near,0.68), (near,0.32)], Simple Obstacle].

Fig. 8. Results obtained from the tests in Scenario I.

(a) Scenario I (b) Player Viewer application showing

laser and sonar readings in Scenario I

(c) Corners that build RSs in

Scenario I

The FdSet of the final FDP used to obtain the robot speed is that corresponding
to the front of the robot or 90◦: [(close, 0.66),(quite near,0.35)]. Therefore, according
to Eq. 4, the speed obtained is: 0.08 cm/s.

There are no large discontinuities of distance in the final FDP (the DF s ob-
tained are: 0, 0.91, 0.04, 0.05 and 0.93) so all the RSs built from the corners obtained
using Peris and Escrig’s approach18 approach are closed:

Corners[(47,Concave),(72,Convex)] → RS(0,1): Closed

Corners[(72,Convex),(75,Convex)]→ RS(1,2): Closed

Corners[(75,Convex),(78,Convex)]→ RS(2,3): Closed

Corners[(78,Convex),(79,Convex)]→ RS(3,4): Closed

Corners[(79,Convex),(83,Convex)]→ RS(4,5): Closed

Corners[(83,Convex),(84,Convex)]→ RS(5,6): Closed

Corners[(84,Convex),(87,Convex)]→ RS(6,7): Closed

Corners[(87,Convex),(95,Convex)]→ RS(7,8): Closed

Corners[(95,Convex),(111,Convex)]→ RS(8,9): Closed

Corners[(111,Convex),(148,Concave)]→ RS(9,10): Closed

It is important to note that the Sound Reflection detected in the final FDP
coincides with the angular position of the first corner: 47, as it is shown in Figure
8. It is also interesting to note that both the angular positions that are classified as
Glass or mirror coincide with convex corners, as shown in Figure 8 (c).

As the Glass or mirror detected is situated between the angular positions 72 and
109, the following RSs are discarded: RS(1,2), RS(2,3), RS(3,4), RS(4,5), RS(5,6),
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RS(6,7), RS(7,8) and RS(8,9). Therefore, the RSs considered by the robot are
RS(0,1) and RS(9,10), and RS(1,9) is built as result of the integration of the final
FDP with the CornersV ector. The angular position and type of these corners cor-
respond to reality, as can be seen by comparing them with the image in Figure 8(c):

Corners[(47,Concave),(72,Convex)] → RS(0,1): Closed

Corners[(72,Convex), (111,Convex)] → New RS(1,9): Closed

Corners[(111,Convex),(148,Concave)]→ RS(9,10): Closed

In Figure 8(c), it can be seen that a corner has been missed. This it is not a
consequence of discarding RSs by our approach, because the corners are detected
using Peris and Escrig’s approach 18.

8.3. Tests and Results in Scenario II

A video of the execution of our approach in Scenario II can be downloaded from
our website f . The readings obtained by the sonar and laser sensors in this scenario
are those shown in Player Viewer screenshot in Fig. 9(b) and the FDP s obtained
are the following ones, respectively:

FDP (sonar)=

[ [0, 29], [(too far, 0.18), (extremely far, 0.82)] ],

[ [30, 49], [(medium, 0.68), (quite far, 0.32)] ],

[ [50, 129], [(quite near, 0.73), (near, 0.28)] ],

[ [130, 149], [(near, 0.84), (medium, 0.16)] ],

[ [150, 179], [(close, 0.14), (quite near, 0.86)] ].

FDP (laser)=

[ [0, 34], [(medium, 0.69), (quite far, 0.31)] ],

[ [35, 58], [(near, 0.5), (medium, 0.5)] ],

[ [59, 78], [(extremely far, 1)] ],

[ [79, 92], [(quite near, 0.75), (near, 0.25)] ],

[ [93, 109], [(extremely far, 1)] ],

[ [110, 129], [(quite near,0.37), (near, 0.63)] ],

[ [130, 143], [(near, 0.79), (medium, 0.21)] ],

[ [144, 179], [(quite near, 0.51), (near, 0.49)] ].

By comparing the sonar and laser FDP s, two large dissimilarities are found
(−4.51, 6.69 and 6.69, respectively), which are interpreted by our approach as a
Sound Reflection in the angular positions 0-29 and a Glass or mirror in the angu-
lar positions 59-78 and 93-109. The final FDP obtained as follows:

fhttp://www.c-robots.com/IJUFKS/scenario2.MOV
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FDP (final)=

[ [0, 29], [(medium, 0.69), (quite far,0.31)], Sound Reflection], DF = −4.51

[ [30, 34], [(medium, 0.69), (quite far, 0.31)], Simple Obstacle],

[ [35, 58], [(near,0.5), (medium,0.5)], Simple Obstacle],

[ [59, 78], [(quite near,0.73), (near,0.28)], Glass or mirror], DF = 6.69

[ [79, 92], [(quite near,0.75), (near,0.25)], Simple Obstacle],

[ [93, 109], [(quite near,0.73), (near,0.28)], Glass or mirror], DF = 6.69

[ [110, 129], [(quite near,0.37), (near,0.63)], Simple Obstacle],

[ [130, 143], [(near, 0.79), (medium, 0.21)], Simple Obstacle],

[ [144, 179], [(quite near, 0.51), (near, 0.49)], Simple Obstacle].

Fig. 9. Corner detection and RSs building in Scenario II.

(a) Scenario II (b) Laser and sonar readings (c) Corners that build RSs in

Scenario II

The FdSet of the final FDP used to obtain the robot speed is that correspond-
ing to the front of the robot or 90◦: [(quite near, 0.75), (near, 0.25)]. Therefore,
according to Eq. 4, the speed obtained is: 0.12 cm/s.

There are no large discontinuities of distance in the final FDP (the DF s ob-
tained are: −0.81, −1.24, −0.03, 0.03, 0.36, 0.58 and −0.72) therefore, all the RSs
built from the corners obtained using the Peris and Escrig’s approach 18 are closed:

Corners[(3,Convex),(32,Concave)] → RS(0,1): Closed

Corners[(32,Concave),(59,Convex)] → RS(1,2): Closed

Corners[(59,Convex),(79,Convex)] → RS(2,3): Closed

Corners[(79,Convex),(92,Convex)] → RS(3,4): Closed

Corners[(92,Convex),(93,Convex)] → RS(4,5): Closed

Corners[(93,Convex),(94,Convex)] → RS(5,6): Closed

Corners[(94,Convex),(110,Convex)] → RS(6,7): Closed

Corners[(110,Convex),(132,Concave)] → RS(7,8): Closed

It is important to note that the Sound Reflection detected in the final FDP
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coincides with the left round wall, as shown in Figure 9 (c). It is also interesting to
note that the angular positions of the Glass or mirror both coincide with convex
corners, as shown in Figure 9 (c).

As the Glass or mirror detected is situated between the angular locations 72-109
and 93-109, the following RSs are discarded: RS(2,3), RS(3,4) and RS(7,8). There-
fore, the RSs considered by the robot are RS(0,1), RS(1,2), R(3,4) and RS(9,10)
and the angular location and type of these corners correspond to reality as can be
seen when comparing them with the image in Figure 9 (c):

Corners[(3,Convex),(32,Concave)] → RS(0,1): Closed

Corners[(32,Concave),(59,Convex)] → RS(1,2): Closed

Corners[(59,Convex),(79,Convex)] → RS(2,3): Closed

Corners[(79,Convex),(92,Convex)] → RS(3,4): Closed

Corners[(92,Convex),(110,Convex)] → New RS(4,7): Closed

Corners[(110,Convex),(132,Concave)] → RS(7,8): Closed

8.4. Summary of the Results

As a summary, our approach has enabled the robot to succeed in:

(i) detecting mirrors and glass in the robot world,
(ii) obtaining the real distance to corners, since the sound reflections are detected,
(iii) detecting non-working sensors, such as laser sensor disconnection, and avoiding

crashing into obstacles when lacking the information provided by them,
(iv) approaching obstacles (including glass) at a smooth speed and avoiding crashing

into them,
(v) properly classifying reference systems (RSs) as open or closed, including those

that incorporate glass surfaces,
(vi) recognizing the features of the environment that it is facing, according to the

RSs detected, as they are characterized in Algorithm 4.

9. Conclusion

An approach to distance sensor data integration that provides a robust interpre-
tation of the robot environment has been presented in this paper. Our approach
consists in obtaining patterns of fuzzy distance zones from sonar and laser sen-
sor readings; comparing these patterns in order to detect non-working sensors; and
integrating the patterns obtained to detect obstacles of any sort. A dissimilarity
factor (DF ) between fuzzy sets has been defined and applied to this approach. And
a method for defuzzifying the obtained fuzzy distances into a fuzzy robot speed has
been also used.

In order to test our approach, an ActivMedia Pioneer 2 dx mobile robot incorpo-
rating a SICK LMS-200 laser range scanner and the Player/Stage control interface
have been used. However, our approach is extensible to other types of distance sen-
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sors (such as infrared sensors) and other kinds of mobile robots containing distance
sensors.

The more important results obtained show that this approach enables the robot
to: detect non-working sensors and special obstacles such as mirrors and glass win-
dows in the robot world; approach obstacles (including glass surfaces) at a smooth
speed and avoid crashing into them; and properly classify reference systems (RSs)
as open or closed, including those with glass surfaces.

As future work, we intend to: (i) design an ontology to give meaning to all the
qualitaive concepts extracted from the robot environment; (ii) extend our sensor
data integration approach in order to include a camera; (iii) design an approach
to integrate visual information obtained by the robot camera with the distance
information provided by our approach so that a notion of depth could be included
in the description of visual landmarks of the robot world.
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15. Zender, H., Mozos, Ó. M., Jensfelt, P., Kruijff, G.-J. M., and Burgard, W. (2008).
“Conceptual spatial representations for indoor mobile robots”. Robotics and Au-
tonomous Systems, 56(6):493–502.

16. Oliveira, L., Costa, A., Schnitman, L., and de Souza, J. A. M. F. (2005). “An archi-
tecture of sensor fusion for spatial location of objects in mobile robotics”. In Bento, C.,
Cardoso, A., and Dias, G., editors, Progress in Artificial Intelligence, 12th Portuguese
Conference on Artificial Intelligence, EPIA 2005, Covilhã, Portugal, December 5-8,
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