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NILPOTENCY OF NORMAL SUBGROUPS
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(Communicated by Jonathan I. Hall)

Abstract. Let G be a finite group. If N is a normal subgroup which has
exactly two G-conjugacy class sizes, then N is nilpotent. In particular, we
show that N is abelian or is the product of a p-group P by a central subgroup
of G. Furthermore, when P is not abelian, P/(Z(G) ∩ P ) has exponent p.

1. Introduction

Let G be a finite group and N a normal subgroup of G. Since N is a union
of G-conjugacy classes, it is natural to wonder what information on the structure
of N can be obtained from its G-class sizes. One result of N. Itô claims that any
finite group having exactly two conjugacy class sizes is nilpotent ([8]). If every
G-conjugacy class contained in N has only two possible sizes, 1 or m, then is N
contained in F(G), the Fitting subgroup of G? We remark that the fact that N
could have two N -conjugacy class sizes cannot be deduced from the property that
N has exactly two G-conjugacy class sizes. Some effort has been made in this
direction, and in [3] the nilpotency of N is shown under the additional hypothesis
that N contains some Sylow p-subgroup of G for some prime p. In this paper we
extend the result with complete generality.

Theorem A. If N is a normal subgroup of a group G and the size of any G-
conjugacy class contained in N is 1 or m, for some integer m, then N is nilpotent.
More precisely, N is abelian or N is the direct product of a nonabelian p-group P
by a central subgroup of G. In this case, P/(Z(G) ∩ P ) has exponent p.

The proof of the nilpotency is clearly divided into two parts. The first part is
simpler and deals with the case in which N is solvable (in fact, it is enough to
suppose that F(N) > Z(N)). The second part, when N is not solvable, relies on
the classification of the finite simple groups by means of a result on CP -groups,
that is, on groups having all elements of prime power order.
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2. Proofs

If x is any element of a group G, we denote by xG the conjugacy class of x
in G and |xG| is called the index or the class size of x in G. The rest of the
notation is standard. We begin by showing the following result whose techniques
are elementary.

Theorem 1. Let N be a normal subgroup of a group G such that the size of any
G-conjugacy class contained in N is 1 or m, for some integer m. Then either N
is abelian or N/(N ∩ Z(G)) is a CP -group.

Proof. We will denote by G = G/(Z(G) ∩N) and we will use bars to work in this
factor group. Suppose that there exists g ∈ N such that the order of g is not a
prime power and we will work to get a contradiction. Then, there exist at least
two distinct primes p and q such that gp and gq, that is, the p-part and q-part of g
respectively, are non-central elements. By hypothesis, CG(g) = CG(gp) = CG(gq).
We continue by the following steps.

Step 1. CN (g) ≤ Z(CG(g)).

Let w be a q′-element of CN (g) = CN (gq) and suppose that it is noncentral in
G. Then

CG(gqw) = CG(gq) ∩ CG(w) = CG(gq) = CG(w)

by the hypothesis of the theorem. Hence, w ∈ Z(CG(gq)) = Z(CG(g)). Similarly,
one can obtain that if t is a p′-element of CN (g) = CN (gp), then t ∈ Z(CG(g)). As
a consequence, we conclude that any element z ∈ CN (g) belongs to Z(CG(g)).

Step 2. If z ∈ N − Z(G) is such that CG(g) �= CG(z), then CN (g) ∩ CN (z) =
Z(G) ∩N . Furthermore, either N is abelian or Z(N) = Z(G) ∩N .

Let z ∈ N − Z(G) be such that CG(g) �= CG(z). Suppose that there exists
a ∈ CN (g) ∩ CN (z) − Z(G). By Step 1, we have a ∈ Z(CG(g)). Therefore,
CG(g) = CG(a) by our assumptions. Thus, z ∈ CN (a) = CN (g) ≤ Z(CG(g)), using
Step 1 again. Consequently, CG(g) ≤ CG(z) and so CG(g) = CG(z), which is a con-
tradiction. Hence, CN (g) ∩CN (z) = Z(G) ∩N . Suppose now that CG(z) = CG(g)
for every z ∈ N − Z(G). Then N = CN (z) for all z ∈ N ; that is, N is abelian.
Otherwise, there exists some z ∈ N − Z(G) such that CG(g) �= CG(z), and then
by the first assertion Z(N) ≤ CN (g) ∩ CN (z) = Z(G) ∩ N , and we deduce that
Z(N) = Z(G) ∩N .

In the rest of the proof, we may assume that N is not abelian (otherwise the
theorem is proved), and thus we assume that Z(N) = Z(G) ∩N .

Step 3. We have CG(g) = CG(g). In particular, CN (g) = CN (g).

We clearly have CG(g) ≤ CG(g) ≤ CG(gq) and hence |CG(g)| divides |CG(gq)|.
On the other hand, if y is an r-element of CG(gq), with r �= q, then [y, gq] ⊆ Z(G).

If o(y) = k, then 1 = [yk, gq] = [y, gkq ]. Hence, y ∈ CG(g
k
q ) = CG(gq) = CG(g) and

y ∈ CG(g). Consequently,

|CG(gq)|r ≤ |CG(g)|r.
As |CG(g)|r divides |CG(g)|r, we conclude that |CG(g)|r = |CG(g)|r for each prime

r �= q. Arguing similarly for the prime p, we obtain |CG(g)|r = |CG(g)|r for every
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prime r �= p. Hence, |CG(g)| = |CG(g)| and CG(g) = CG(g). The second assertion
is an immediate consequence.

We remark that the above three steps hold for every conjugate of g in G.

Step 4. Conclusion.

First, we claim that there exists some x ∈ N such that gN ∩CN (x) = ∅. Suppose
that for every x ∈ N −Z(G), there exists some n ∈ N such that gn ∈ CN (x). Then

N ⊆
⋃

n∈N

CN (g)n,

and this implies that N = CN (g) and so g ∈ Z(N) = Z(G) ∩ N , a contradiction.
Thus the claim is proved.

Now, the subgroup CN (x) operates on gN by conjugation. Moreover, no element

in CN (x) distinct from 1 centralises any element in gN . In fact, if there is some 1 �=
h ∈ CN (x) which fixes some gt for some t ∈ N , it follows that h ∈ CN (gt)∩CN (x),
and, by applying Step 2 to gt, we deduce that CG(g

t) = CG(x), a contradiction.

Hence, all orbits of CN (x) on gN have the same length, that is, |CN (x)|, and this

implies that |CN (x)| divides |gN | = |N : CN (g)| by applying Step 3. Therefore,

|CN (g)| divides |N : CN (x)| = |xN |, which implies that |CN (g)| divides |xG| =
|gG| = |gG| by Step 3 again.

On the other hand, we claim that CN (g) operates without fixed points on gG −
gG ∩ CN (g) by conjugation. If some w ∈ CN (g) distinct from 1 fixes some gt for

some t ∈ G, then w ∈ CG(g
t) = CG(gt) by applying Step 3 to gt. Therefore,

w ∈ CN (g)∩CN (gt), and CG(g) = CG(g
t) by Step 2. Thus, gt = gt ∈ CN (g)∩ gG.

As a consequence, |CN (g)| divides |gG−gG∩CN (g)| = |gG|−|gG∩CN (g)|. Finally,
we conclude that CN (g) also divides |gG ∩ CN (g)|, which is not possible because

0 < |gG ∩ CN (g)| < |CN (g)|.
This contradiction shows that any element of G has prime power order. �

Corollary 2. Let N be a normal subgroup of a group G such that the size of any
G-conjugacy class contained in N is 1 or m, for some integer m. Then N/Z(N) is
a CP -group.

Proof. This is trivial from Theorem 1. �

In order to prove the nilpotency of N in Theorem A, we will make use of the
following results.

Lemma 3. Let G be a π-separable group. The size of the conjugacy class of every
π-element of G is a π-number if and only if G = H × K, where H and K are a
Hall π-subgroup and a π-complement of G, respectively.

Proof. See Lemma 8 of [1] for instance. �

Lemma 4. Let P ×Q be the direct product of a p-group P and a p′-group Q and
suppose that P ×Q acts on a p-group G. If CG(P ) ⊆ CG(Q), then Q acts trivially
on G.

Proof. This is Thompson’s P ×Q-Lemma. See for instance 8.2.8 of [9]. �
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Lemma 5. Suppose that G is a solvable group and that any x ∈ Oq(G) has q-index
in G for every prime q. Then G is nilpotent.

Proof. We argue by induction on the order of G. The hypotheses are certainly
inherited by normal subgroups of G, so every proper normal subgroup of G is
nilpotent. If G is not nilpotent, this implies that F(G) is a maximal normal sub-
group of G. This means that G/F(G) is a cyclic group of order p for some prime
p, so |G : F(G)| = p. Now, if q �= p is any prime dividing |F(G)|, we have that
any q-element of G has q-index. By Lemma 3, we have G = Q×H, where H is a
q-complement of G, and by induction, we conclude that H, and accordingly G, are
nilpotent, which is a contradiction. �

We are going to make use of the structure of finite CP -groups. The structure
of finite solvable CP -groups was given by H. Higman fifty years ago ([4]), and the
structure of nonsolvable CP -groups and the classification of the simple CP -groups
have been recently obtained by H. Heineken in [5].

Theorem 6. If G is a finite, nonsolvable CP -group, then there are normal sub-
groups B, C of G such that 1 ⊆ B ⊆ C ⊆ G and B is a 2-group, C/B is nonabelian
and simple, and G/C is a p-group for some prime p and cyclic or generalized quater-
nion.

Proof. This is the main part of Proposition 2 of [5]. �
Theorem 7. If G is a finite nonabelian simple CP -group, then G is isomorphic to
one of the following groups: L2(q), for q = 5, 7, 8, 9, 17, L3(4), Sz(8) or Sz(32).

Proof. This is Proposition 3 of [5]. �
Theorem 8. Suppose that N is a normal subgroup of a group G and that the size
of any G-conjugacy class contained in N is 1 or m, for some integer m. Then N
is nilpotent.

Proof. We argue by induction on the order of N . Let r and q be any two primes
dividing |N |. Let x be any r-element of N such that x �∈ Z(G) and take Q to be a
Sylow q-subgroup of CG(x). Let us consider the action of Q×〈x〉 on Q0 = Oq(N).
We claim that CQ0

(Q) ⊆ CQ0
(x). In fact, if z ∈ CQ0

(Q) is noncentral in G, then
〈Q, z〉 ≤ CG(z) < G. However, by hypothesis, |CG(z)|q = |CG(x)|q = |Q|, so in
particular z ∈ Q∩Q0 ⊆ CQ0

(x). We can apply Lemma 4 and get x ∈ CN (Oq(N)).
This shows that for any prime q, we have that any element lying in Oq(N) has
q-index in N . Now, if Z(N)q < Oq(N) for some prime q, we take an element
w ∈ Oq(N) − Z(N) and we have N = CN (w)Qw for some q-subgroup Qw of N .
We show that CN (w) is nilpotent. For any q′-element y ∈ CN (w), by applying the
hypothesis, we have

CG(yw) = CG(w) ∩ CG(y) = CG(w) ⊆ CG(y).

In particular y ∈ Z(CN (w)), which means that CN (w) factorizes as the product of
a q-group by an abelian subgroup, and hence it is nilpotent as wanted. It follows
that N is solvable since it is a product of two nilpotent groups, and thus we can
apply Lemma 5 to conclude that N is nilpotent, so the theorem is proved.

Therefore, we can assume for the rest of the proof that F(N) = Z(N), so N
is nonsolvable, and we will show that this leads to a contradiction. We know by
Corollary 2 that N = N/Z(N) is a CP -group. By Theorem 6, there exist B and C
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subgroups of N such that B is a 2-group, C/B is a nonabelian simple group, and
N/C is a p-group for some prime p. As F(N/Z(N)) = 1, we certainly have B = 1.
On the other hand, note that C = Op(N), so in particular C is characteristic in N .
Furthermore, since Z(N) is characteristic in N , we conclude that C is normal in G.
Then, by the inductive hypothesis, we can assume that N is a nonabelian simple
CP -group. If N ′ < N , then N ′ would be nilpotent by induction, so N would be
solvable, a contradiction. Hence N ′ = N , and thus N is a quasi-simple group.

Now, we claim that |N | divides m. As any element of N has prime power
order, we can take a noncentral p-element x ∈ N for any prime p dividing |N | and
notice that we can factorize CN (x) = CN (x)p × Z(N)p′ , where CN (x)p is a Sylow
p-subgroup of CN (x). Then

|xN |p′ = |N : CN (x)|p′ = |N |p′ .

On the other hand, |xN |p′ divides mp′ , so by considering all primes we have that

|N | must divide m, as claimed.
Now, the fact that every element of N is central in G or lies in a G-conjugacy

class of size m implies that

|N | = |Z(G) ∩N |+mk,

for some integer k. By the above paragraph, we deduce that |N | divides |Z(G) ∩
N |, so in particular, it divides |Z(N)|. As N is a quasi-simple group, if S is the
associated simple group to N , then it can be assumed that Z(N) ⊆ M(S), where
M(S) is the Schur multiplier of S. One can easily check (for instance in [2]) that
M(S) has order 1, 2, 6 or 48 for the simple groups S appearing in the list of
Theorem 7. In all cases, the fact that |N | = |S| divides |M(S)| provides the final
contradiction. �

Corollary 9. Suppose that N is a normal subgroup of a group G such that the size
of any G-conjugacy class contained in N is 1 or m, for some integer m. Then N
is abelian or N = P ×A, with P a p-group and A central in G.

Proof. We know that N is nilpotent by Theorem 8. If N is not abelian, then by
applying Theorem 1, we have that N/(Z(G) ∩ N) is a p-group for some prime p,
and then the result follows. �

Examples for the two cases appearing in the above corollary can be easily con-
structed. Let N be an abelian group of odd order and let α be the involutory
automorphism of N . Then N is an abelian normal subgroup of G = N〈α〉 such
that the G-classes contained in N have size 1 or 2. On the other hand, let Q be
the quaternion group of order 8 and β ∈ Aut(Q) of order 3. If G = Q〈β〉, then
the G-classes contained in Q have size 1 or 6. This is an example of a nonabelian
normal p-subgroup of G with exactly two G-class sizes.

Several authors, first Isaacs ([7]) and later A. Mann ([10]) or L. Verardi ([11]),
have independently proved that if G is a p-group with exactly two class sizes, then
the exponent of G/Z(G) is p. We are going to extend this result for a normal
p-subgroup P with two G-class sizes, and in particular we provide an alternative
proof for the case P = G. The approach consists in defining an appropriate normal
abelian subgroup contained in P which satisfies certain properties. This construc-
tion is inspired by the proof of Proposition 2.2 in [8]. We will also need the following
recent result due to Isaacs.
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Lemma 10. Let K�G, where G is an arbitrary finite group and K is abelian. Let
x be a noncentral element of G, and let y = [t, x] for some element t ∈ K. Then
|CG(y)| > |CG(x)|, and so the G-class of y is smaller than that of x.

Proof. This is exactly Lemma 1 of [6]. �

Theorem 11. Suppose that P is a nonabelian normal p-subgroup of a group G
such that P has only two G-conjugacy class sizes. Then P/(Z(G) ∩ P ), and in
particular P/Z(P ), has exponent p.

Proof. We assume that the theorem is untrue and fix some element x ∈ P such that
xp �∈ Z(G). Write Z1 = Z(P ). Since P is nonabelian, we define Z2/Z1 = Z(P/Z1).
Notice that Z1 < Z2 and that Z2 � G. Let T2 = CP (Z2) < CP (Z1) = P and
observe also that T2 � G. The proof has been divided into several steps.

Step 1. If z ∈ P − T2, then zp ∈ Z(G). Consequently, x ∈ T2.

By hypothesis z �∈ CP (Z2), so there exists some y ∈ Z2 such that 1 �= [y, z] ∈ Z1.
Now, if we consider zp, by the hypotheses of the theorem we have two possibilities:
either zp ∈ Z(G) or CG(z

p) = CG(z). We show that the second case is not possible.
Let pa be the order of [y, z]. As [y, z] is central in P , we have

1 = [y, z]p
a

= [yp
a−1

, zp],

so yp
a−1 ∈ CG(z

p) = CG(z), which yields to 1 = [yp
a−1

, z] = [y, z]p
a−1

, and this is
the required contradiction. Then zp ∈ Z(G) and in particular, x must lie in T2.

Step 2. There exists an abelian subgroup T � G with Z1 ⊆ T ⊆ P such that if
z ∈ P − T , then zp ∈ Z(G). As a consequence, x ∈ T .

If T2 is abelian, we can take T = T2 and the step is proved. So we assume that T2

is not abelian, and we may define Z3 by means of Z3/Z(T2) = Z(T2/Z(T2)) �= 1 and
also define T3 = CT2

(Z3) < T2. Notice that Z1 ⊆ T3. Furthermore, as Z3/Z(T2) is
characteristic in T2/Z(T2), and Z(T2) is characteristic in T2, we deduce that Z3 is
characteristic in T2, so Z3 and accordingly T3 are normal subgroups in G.

Now, we show that if z ∈ T2 − T3, then zp ∈ Z(G). As z �∈ CP (Z3), there exists
some y ∈ Z3 such that 1 �= [y, z] ∈ Z(T2). Arguing as in Step 1, if CG(z

p) = CG(z)
we get a contradiction, so zp ∈ Z(G). Therefore, for any z ∈ P − T3, we have
z ∈ P − T2 or z ∈ T2 − T3, and both cases yield to zp ∈ Z(G).

Thus, if T3 is abelian, we take T = T3 and the step is proved. Otherwise, we
can argue as we have done with T2 and construct from Z3 the subgroups Z4 and
T4 = CP (Z4), which satisfy that zp ∈ Z(G) for any z ∈ P − T4. This method
provides a properly descendant series of subgroups Ti � G, with Z1 ⊆ Ti ⊆ P , and
satisfying the property that zp ∈ Z(G) for any z ∈ P − Ti. As Z1 is abelian, we
can get an abelian Ti for some i, and thus T = Ti is the desired subgroup.

Step 3. If z ∈ T and zp �∈ Z(G), then CP (z) = T . In particular CP (x) = T .

As T is abelian, we have T ⊆ CP (z). Suppose that y ∈ CP (z)−T . By Step 2, we
know that yp ∈ Z(G), so (zy)p = zpyp �∈ Z(G). Again by Step 2, we have zy ∈ T ,
so y ∈ T , a contradiction.

Step 4. If G denotes G/(Z(G) ∩ P ), then CP (x) = CP (x).
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Let y ∈ P such that y ∈ CP (x). If yp �∈ Z(G), then by Step 2, y ∈ T , and by
Step 3, we have CP (x) = T , so y ∈ CP (x). If yp ∈ Z(G), then (xy)p = xpyp �∈
Z(G). By Step 2, we have xy ∈ T , which implies again y ∈ T . This proves that

CP (x) ⊆ CP (x), and the other containment is obvious.

Step 5. Conclusion.

Let g ∈ P−T and consider y = [x, g]. Since T is abelian, we can apply Lemma 10
and get that the G-class size of y ∈ P is smaller than that of g. This forces y to
be central in G, and as a consequence g ∈ CP (x) = CP (x) by Step 4. Therefore,
g ∈ CP (x) = T , which is a contradiction. This shows that the element x cannot
exist, so P has exponent p, and the proof finishes. �
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