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Let A and B be strongly separating linear subspaces of C0(X) and C0(Y ), respectively, and assume that ∂A !=
∅ (∂A stands for the set of generalized peak points for A) and ∂B != ∅. Let T : A×B −→ C0(Z) be a bilinear
isometry. Then there exist a nonempty subset Z0 of Z, a surjective continuous mapping h : Z0 −→ ∂A × ∂B
and a norm-one continuous function a : Z0 −→ K such that T (f, g)(z) = a(z)f(πx(h(z))g(πy(h(z)) for
all z ∈ Z0 and every pair (f, g) ∈ A × B. These results can be applied, for example, to non-unital function
algebras.
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1 Introduction

Let X be a locally compact Hausdorff space. As usual, C0(X) (resp. C(X) if X is compact) stands for the Ba-
nach space of all continuous scalar-valued functions on X which vanish at infinity, endowed with the supremum
norm, ‖ · ‖∞. In [6], the authors proved the following bilinear version of the well-known Holsztyński’s Theorem
on non-surjective linear isometries of C(X)-spaces ([5]):

Let T : C(X) × C(Y ) −→ C(Z) be a bilinear isometry. Then there exist a closed subset Z0 of Z , a
surjective continuous mapping h : Z0 −→ X × Y and a norm-one continuous function a ∈ C(Z) such that
T (f, g)(z) = a(z)f(πx(h(z))g(πy(h(z)) for all z ∈ Z0 and every pair (f, g) ∈ C(X) × C(Y ).

The proof of this result rests heavily on the powerful Stone-Weierstrass Theorem. In this paper we extend this
bilinear version of Holsztyński’s Theorem to a more general context, where Stone-Weierstrass Theorem is not
applicable (see Theorem 3.6). Our version is valid, among others, for completely regular (in particular, extremely
regular) subspaces of C0(X) and for non-unital function algebras.

2 Preliminaries

Let X be a locally compact space and A be a linear subspace of C0(X). It is said that A is separating (resp.
strongly separating ([1])) if for distinct x, y ∈ X , there exists f ∈ A such that f(x) &= f(y) (resp. |f(x)| &=
|f(y)|).

Let x0 ∈ X . It is said that x0 is a generalized peak point (also called strong boundary point or weak peak
point) for A if for every open neighborhood, V , of x0 there exists f ∈ A such that ‖f‖ = |f(x0)| = 1 and f
vanishes outside V . We shall write ∂A to denote the set of generalized peak points for A and Ch(A) to denote
the Choquet boundary for A, which is to say, the subspace of X consisting of the extreme points of the closed
unit ball of the dual of A.
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3 Bilinear isometries

In the sequel, we shall assume that A and B are nonvoid linear subspaces of C0(X) and C0(Y ), respectively,
whose sets of generalized peak points are not empty (see Remark 3.7 below). Furthermore, T : A×B −→ C0(Z)
will be a bilinear mapping which satisfies

‖T (f, g)‖ = ‖f‖‖g‖

for every (f, g) ∈ A × B, which is to say that T is a bilinear isometry.
For any x ∈ X , let

Cx := {f ∈ A : 1 = ‖f‖ = |f(x)|}.

Lemma 3.1 Assume (x, y) ∈ ∂A × ∂B. The set

Ix,y := {z ∈ Z : 1 = ‖T (f, g)‖ = |(T (f, g)(z)| for (f, g) ∈ Cx × Cy}

is nonempty.

P r o o f. For any f ∈ A and g ∈ B, let L(f, g) := {z ∈ Z : ‖T (f, g)‖ = |T (f, g)(z)|} and let Mf,g :={
z ∈ Z : |T (f, g)(z)| ≥ ‖T (f,g)‖

2

}
which is compact since T (f, g) ∈ C0(Z). To prove that Ix,y is nonempty,

and since Ix,y is a closed subset of Mf,g, we shall check that if f1, . . . , fn belong to Cx and g1, . . . , gn belong to
Cy , then

⋂
i,j L(fi, gj) &= ∅. Let f ∈ A and g ∈ B defined as follows:

f :=
n∑

i=1

|fi(x)|
fi(x)

fi

and

g :=
n∑

j=1

|gj(y)|
gi(y)

gi.

It is clear that |f(x)| = n = ‖f‖ and |g(y)| = n = ‖g‖. Hence, ‖T (f, g)‖ = ‖f‖‖g‖ = n2 since T is a bilinear
isometry and there exists z ∈ Z such that

|T (f, g)(z)| = n2 =

∣∣∣∣∣∣

∑

i,j

|fi(x)|
fi(x)

|gj(y)|
gj(y)

T (fi, gj)(z)

∣∣∣∣∣∣
.

As ‖T (fi, gj)‖ ≤ 1 for every i, j, we infer that |T (fi, gj)(z)| = 1, which is to say that z ∈
⋂

i,j L(fi, gj), as was
to be proved.

Lemma 3.2 Assume (x0, y) ∈ ∂A × ∂B. Fix g ∈ Cy and define a linear isometry S : A −→ C0(Z) as
S(f) := T (f, g). If f(x0) = 0, then (Sf)(z) = 0 for all z ∈ Ix0,y .

P r o o f. Assume there exists z0 ∈ Ix0,y such that (Sf)(z0) &= 0 for some f ∈ A. Let us assume that
‖f‖ = 1 and (Sf)(z0) = α with 0 < α ≤ 1. Let U = {x ∈ X : |f(x)| ≥ α

2 }. There is f ′ ∈ A such that
1 = ‖f ′‖ = |f ′(x0)|, |f ′(x)| < 1 for all x ∈ U and, multiplying by a constant if necessary, (Sf ′)(z0) = 1.
Since U is compact, there exists s := supx∈U{|f ′(x)|} < 1. Then we can find a positive integer M such that
1 + Ms < α + M . If we take x ∈ U , then

|(f + Mf ′)(x)| ≤ 1 + Ms.

If x /∈ U , then

|(f + Mf ′)(x)| ≤ α

2
+ M.

Hence ‖f +Mf ′‖ < α+M , but α+M = (Sf)(z0)+M(Sf ′)(z0) ≤ ‖S(f +Mf ′)‖, which is a contradiction.
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Lemma 3.3 Assume (f, g) ∈ A × B and (x0, y0) ∈ ∂A × ∂B. If f(x0) = g(y0) = 0, then T (f, g)(z) = 0
for all z ∈ Ix0,y0 .

P r o o f. Assume, without loss of generality, that ‖f‖ = ‖g‖ = 1 and suppose, contrary to what we claim,
that T (f, g)(z0) = α &= 0 for some z0 ∈ Ix0,y0 .

Let U := {x ∈ X : |f(x)| ≥ α
2 } and V := {y ∈ Y : |g(y)| ≥ α

2 }.
As x0 is a generalized peak point for A, we have f1 ∈ A such that 1 = ‖f1‖ = |f1(x0)| and |f1(x)| < 1 for all

x ∈ U . Similarly, since y0 is a generalized peak point for B, there exists g1 ∈ B such that 1 = ‖g1‖ = |g1(y0)|
and |g1(y)| < 1 for all y ∈ V . It is apparent that we can assume, multiplying by a constant if necessary, that
T (f1, g1)(z0) = 1. Hence, for any positive integers M and N , we have

‖T (f + Mf1, g + Ng1)‖
≥ |T (f + Mf1, g + Ng1)(z0)|
= |T (f, g)(z0) + NT (f, g1)(z0) + MT (f1, g)(z0) + MNT (f1, g1)(z0)|
= α + MN.

On the other hand, if x ∈ U ,

|(f + Mf1)(x)| ≤ |f(x)| + M |f1(x)| ≤ 1 + Ms,

where s < 1 stands for the maximum of f1 on U . If x /∈ U ,

|(f + Mf1)(x)| ≤ |f(x)| + M |f1(x)| ≤ α

2
+ M.

Consequently, ‖f + Mf1‖ ≤ 1 + Ms. Similarly, ‖g + Ng1‖ ≤ 1 + Ns′. Hence

α + MN ≤ ‖T (f + Mf1, g + Ng1)‖
= ‖f + Mf1‖‖g + Ng1‖
≤ (1 + Ms)(1 + Ns′)

= 1 + Ns + Ms′ + MNss′,

but it is apparent that we can choose M and N in order to have

1 + Ns + Ms′ + MNss′ < α + MN,

which is a contradiction.

Lemma 3.4 If (x, y) and (x′, y′) belong to ∂A × ∂B and are distinct, then Ix,y ∩ Ix′,y′ = ∅.

P r o o f. Assume, contrary to what we claim, that there exists z ∈ Ix,y ∩ Ix′,y′ . Let us suppose, without loss
of generality, that x &= x′.

• If y &= y′, then we can choose f ∈ Cx and g ∈ Cy with f(x′) = g(y′) = 0. Consequently, |T (f, g)(z)| = 1,
but, by Lemma 3.3, |T (f, g)(z)| = 0, which is a contradiction.

• If y = y′, then we can choose f ∈ Cx and g ∈ Cy with f(x′) = 0. Consequently, |T (f, g)(z)| = 1, but, by
Lemma 3.2, |T (f, g)(z)| = 0, which is a contradiction.

Remark 3.5 The following result can be found in [1]:

Let A be a strongly separating linear subspace of C0(X) and assume that ∂A &= ∅. If S : A −→ C0(Y )
is a linear isometry, then there exists a subset of Y , Y0 :=

⋃
x∈∂A Ix, such that (Sf)(y) = a(y)f(h(y))

where h : Y0 −→ ∂A is a continuous surjective function and a(y) = (Tg)(y) for any g ∈ A such that
1 = ‖g‖ = g(h(y)).
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We are now ready to prove our main result:

Theorem 3.6 Let A and B be strongly separating linear subspaces of C0(X) and C0(Y ) respectively and
assume that ∂A &= ∅ and ∂B &= ∅. Let T : A × B −→ C0(Z) be a bilinear isometry. Then there exist a
nonempty Z0 of Z , a surjective continuous mapping h : Z0 −→ ∂A × ∂B and a norm-one continuous function
a : Z0 −→ K such that T (f, g)(z) = a(z)f(πx(h(z))g(πy(h(z)) for all z ∈ Z0 and every pair (f, g) ∈ A × B.

P r o o f. Let us first define a subset Z0 of Z as follows:

Z0 :=
⋃

(x,y)∈∂A×∂B

Ix,y.

Fix (x, y) ∈ ∂A× ∂B and z ∈ Ix,y . Let us suppose that f1 ∈ Cx and g1 ∈ Cy . Fix g′ ∈ Cy . Then we can define
the following isometries:

S(f) := T (f, g′),

R(h) := T (f1, h), where (f, h) ∈ A × B.

Then, by Remark 3.5,

T (f, g′)(z) = (Sf)(z)
= S(f1)(z)f(x)
= T (f1, g

′)(z)f(x)

= R(g′)(z)f(x)

= R(g1)(z)g′(y)f(x)

= T (f1, g1)(z)f(x)g′(y)

= a(z)f(x)g′(y).

As (f − f(x)f1)(x) = 0 and (g − g(y)g1)(y) = 0, for any (f, g) ∈ A × B we infer, by Lemma 3.3, that

0 = T (f − f(x)f1, g − g(y)g1)(z)
= T (f, g)(z)− f(x)T (f1, g)(z) − g(y)T (f, g1)(z) + f(x)g(y)T (f1, g1)(z)
= T (f, g)(z)− f(x)a(z)f1(x)g(y) − g(y)a(z)f(x)g1(y) + f(x)g(y)a(z).

Hence

T (f, g)(z) = a(z)f(x)g(y).

Let us next define a mapping h : Z0 −→ ∂A × ∂B as h(z) := (x, y) where z ∈ Ix,y . We claim that h is
continuous. To this end, fix z0 ∈ Z0 and let h(z0) = (x0, y0). Let U be a neighborhood of x0 and choose f ∈ A
such that 1 = ‖f‖ = |f(x0)| and |f | < 1 off U . Let s(x0) = supx∈X\U |f(x)| = supx∈X∪{∞}\U |f(x)|. It is
apparent that s(x0) < 1. Similarly, let V be a neighborhood of y0 and choose g ∈ B such that 1 = ‖g‖ = |g(y0)|
and |g| < 1 off V . Let s(y0) = supy∈Y \U |g(y)| = supy∈Y ∪{∞}\U |g(y)|. As above, s(y0) < 1.

Since h(z0) = (x0, y0), then |T (f, g)(z0)| = ‖T (f, g)‖ = 1. Let s := max{s(x0), s(y0)} and define the
following open neighborhood of z0:

W := {z ∈ Z0 : |T (f, g)(z0)| > s}.

Fix z ∈ W and suppose that h(z) := (x, y). Then, by the above weighted composition representation of T ,

s < |T (f, g)(z)| = |f(x)||g(y)|,

and, consequently, |f(x)| > s ≥ s(x0) and |g(y)| > s ≥ s(y0). This yields x ∈ U and y ∈ V , which is to say
that h(W ) ⊆ U × V and the proof is done.
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Remark 3.7 The set of generalized peak points, ∂A, for a separating linear subspace, A, of C0(X) could be
empty (see, e.g., [4] or [3]). However, this is not the case for a wide range of subspaces of C0(X) including,
for example, extremely regular, or more generally, complete regular subspaces of C0(X) and, above all, function
algebras.

Corollary 3.8 Let A and B be completely regular subspaces of C0(X) and C0(Y ) respectively. Let T :
A × B −→ C0(Z) be a bilinear isometry. Then there exist a nonempty Z0 of Z , a surjective continuous
mapping h : Z0 −→ X × Y and a norm-one continuous function a : Z0 −→ K such that T (f, g)(z) =
a(z)f(πx(h(z))g(πy(h(z)) for all z ∈ Z0 and every pair (f, g) ∈ A × B.

P r o o f. It is a straightforward consequence of Theorem 3.6 since the set of generalized peak points of a
completely regular subspace of C0(X) coincides with X ([2]).

Corollary 3.9 Let A and B be closed separating subalgebras of C0(X) and C0(Y ) respectively, which is to
say, non-unital function algebras. Let T : A×B −→ C0(Z) be a bilinear isometry. Then there exist a nonempty
Z0 of Z , a surjective continuous mapping h : Z0 −→ Ch(A) × Ch(B) and a norm-one continuous function
a : Z0 −→ K such that T (f, g)(z) = a(z)f(πx(h(z))g(πy(h(z)) for all z ∈ Z0 and every pair (f, g) ∈ A × B.

P r o o f. By Theorem 6.1 in [1], we know that A is a strongly separating subspace of C0(X). Furthermore,
by Theorem 2.1 in [7], ∂A coincides with the Choquet boundary for A, which is to say that ∂A is a nonempty
boundary for A. Hence the proof of this corollary is again a straightforward consequence of Theorem 3.6.
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