Fast k-NN classifier for documents based on a
graph structure

F. Artigas-Fuentes', R. Gil-Garcia', J. Badia-Contelles?, A. Pons-Porrata'

! Center of Pattern Recognition and Data Mining
Universidad de Oriente, Santiago de Cuba, Cuba
email:{artigas,gil,aurora}@csd.uo.edu.cu

2 Departament de Llenguatges i Sistemes Informatics
Universitat Jaume I, Castell6, Spain
email :badia@uji.es

Abstract. In this paper, a fast k nearest neighbors (k-NN) classifier for
documents is presented. Documents are usually represented in a high-
dimensional feature space, where terms appeared on it are treated as
features and the weight of each term reflects its importance in the doc-
ument. There are many approaches to find the vicinity of an object,
but their performance drastically decreases as the number of dimensions
grows. This problem prevents its application for documents. The pro-
posed method is based on a graph index structure with a fast search
algorithm. It’s high selectivity permits to obtain a similar classification
quality than exhaustive classifier, with a few number of computed dis-
tances. Our experimental results show that it is feasible the use of the
proposed method in problems of very high dimensionality, such as Text
Mining.

Key words: nearest neighbor classifier, fast nearest neighbor search,
text documents

1 Introduction

Text classification is the task to assigning documents to one or more predefined
classes. This task relies on the availability of an initial set of classified text
documents under these classes (known as training data). This task falls at the
crossroads of information retrieval, pattern recognition and data mining, that
involves data sets which are very large. Moreover, the dimensionality of the text
documents is usually large. Therefore, it is crucial to design algorithms which
scale well with the dimension.

The k nearest neighbor (k-NN) classifier is a very simple and popular ap-
proach used in classification [1], but it has the problem of the exhaustive com-
putation of distances to training objects. Several methods have been proposed in
order to avoid this problem. One approach consist in the improvement of access
methods with a varied set of index structures and fast search algorithms. But,
in the most of cases, their performance drastically decrease as the number of

2 F. Artigas-Fuentes, R. Gil-Garcia, J. Badia-Contelles, A. Pons-Porrata

dimensions grows. This problem is known as ”the curse of dimensionality” [2],
and prevents its application for text documents.

On higher dimensions several exacts methods, like VA-File [2], VA+-File
[3], IQ-tree [4] and more recently VQ-index [5], have been proposed. The main
purpose of those methods is to overcome the I/O disk bottleneck, which is crucial
in large databases. Those methods were tested over relative high dimensional
spaces, with 32, 64, 200 and 500 dimensions. However the main purpose of our
proposal is to work over spaces with several thousands of dimensions, like the
case of text documents. In this case we can obtain over 30000 dimensions with
a relative small set of text documents.

On the other hand, several fast search algorithms have been proposed, like
the optimal nearest neighbor algorithm for data structures that are stored in
main memory, by Arya et. al in [6], and others.

But, in the higher dimensions the most of those methods have a performance
as bad as a linear scan, or even worse. Such a linear scan does not scale well
when the set of objects to search is large or the relationship function (distance,
similarity or dissimilarity function) is very hard to compute.

Different relaxations on the precision of the result have been proposed in
order to obtain a computationally feasible solution in those cases. This is called
inexact proximity searching, as opposed to the classical exact proximity search-
ing. Inexact proximity searching is possible in many applications because the
preprocessing of data already involve an approximation to reality, and therefore
a second approximation at search time is acceptable. Examples of those methods
can be found in [7, 8].

In [9] an approximated classifier was presented for mixed data. This method
uses a tree index structure and a fast search algorithm. It obtain the information
necessary to classify at the same time the searching is doing. Even when the
accuracy of classification obtained for mixed data is high, when this method is
applied to documents it decreases.

In this paper, we introduce a fast k-NN classifier for text documents based
on a graph index structure with an approximate k nearest neighbors fast search
algorithm. It’s high selectivity and precision permits to obtain a similar clas-
sification quality than exhaustive classifier, with a few number of computed
relationships. Our experimental results show that it is feasible the use of the
proposed method in problems of very high dimensionality, such as Text Mining.

The rest of the paper is organized as follows: Our proposed classifier is pre-
sented in Section 2. The obtained experimental results over Reuters Corpus Ver-
sion 1 (RCV1-v2) are presented in Section 3. Finally, in Section 4, we present
some conclusions and future work.

2 Proposed classifier

In this section, an approximate fast k-NN classifier for documents is introduced.
The classifier consists of two phases. In the first one, the graph structure, using
training set T, is constructed. In the second phase, novel documents are classified.

Fast k-NN classifier for documents 3

2.1 Preprocessing phase

The main idea of this phase is to build an index structure based on a connected
graph. This graph must complain with the following conditions:

— Each vertex correspond with a different and unique training document (rep-
resented by it features vector).

Each edge represent a relationship value between two vertices calculated by
a similarity, dissimilarity or distance function ¥.

Each vertex v has, as minimum, ¢ adjacent vertices, were ¢ is an integer value
preset by the user. That vertices correspond with the ¢ nearest neighbors of
.

Vertices are connected forming triangles of minimum area.

A small number of vertices are fixed and used as possible entry points to
structure during the search phase.

In [10] we introduce the algorithm to build the index structure, whereas in
[11] some improvements in order to reduce the time cost to build it are presented.

It is important to describe how the triangles of graph are built. We presented
two ways to do this task.

The simple way is to connect first the most W-related pair of documents in
the training set 7°S. This pair of documents are used to obtain the first two
vertices and the first edge of the graph. Then, the rest of documents in TS are
candidates to be connected to this pair in order to obtain the third vertex of the
first triangle. To do that we calculate the media object of this pair of vertices.
It is obtained by the sum of each dimension of original objects and inserted
into the set of media objects M OS. Then, the most ¥-related pair formed by a
candidate and one member of M OS is computed, and the candidate of this pair
is selected as the next vertex. Following a similar iterative process new media
objects for the new edges are calculated and inserted into M OS, and the rest of
documents becomes in candidates to be connected into the graph.

The second way reduces the number of candidates to be considered in each
iteration for obtain the new vertex to be connected into the graph. This im-
provement reduces too the general time cost to generate the index structure. In
this case, the documents in TS are previously sorted by its relationship values
with the global centroid GC. It is calculated in the same way of media objects,
but using all documents in T'S.

Then, the sorted set is divided into a number of equal sized subsets. As
result, a sequence of naturally ordered subsets, by its general and descendent
relationship value with GC is obtained. Next, the first subset is selected as the
current one (CS). In this way, in each iteration, we only consider as candidates
to become in new vertices those ones that belong to C'S. When all candidates
have been connected, the next subset by order becomes C'S, and begin the next
iteration. This process is follow until all documents are connected into the graph.

To guaranty the ¢ condition, if any vertex results with a less number n of
adjacent vertices, simply we connect that vertex with its other ¢ — n nearest

4 F. Artigas-Fuentes, R. Gil-Garcia, J. Badia-Contelles, A. Pons-Porrata

neighbors. The ¢ nearest neighbors of all documents are calculated and kept in
a previous stage.

Finally, vertices belonging to the borders of the region defined by the graph
are selected as entry points to the structure (See [10,11] for details). We call
those vertices as Entry Points Set (EPS). This is the main difference of our
access method to others: our index structure has several but a few number of
entry points, despite off other structures based on trees with a single root.

2.2 Classification phase

In this phase, given the index structure G builded previously, the classes as-
sociated with the documents in the training set, and a novel document d to
be classified, our classifier finds the k nearest neighbors, according with ¥, and
assign to d the majority class of its.

The classification involves three main stages:

1. The k nearest neighbors of the novel document are searched.
2. The votes of classes are counted, using the vote rule.
3. Finally, the classification is done using the decision rule.

In the first main stage, the fast search algorithm proposed in [10] and im-
proved in [11] is used. It has three steps, in the first one a proper entry point
EP; to G for the current search d is selected. This choice can be different for
each d and it must be the most ¥-related to d of the members of EPS. EP; is
calculate in an exhaustive way, and it becomes the current solution (N.N).

In the second step of search the actual nearest neighbor vertex to d is found.
This task is doing by traversing the index structure following the edges of graph,
selecting as a new current solution the most W-related adjacent vertex of NN
to d if it is better than the current one. The process ends when there is no new
NN. The problem is that not always is possible to obtain the actual nearest
neighbor. In a few number of cases an approximated one is obtained.

In order to improve the quality of k-NN, a variation of the search algorithm
and a prune rule were introduced in [11]. The variation consists in selecting the
best results of three independent searches of the k-NN, using three different entry
points to the index structure. This solution increases the number of comparisons
computed during searches. To avoid this problem we used the pruning rule that
increases the selectivity of the search algorithm, avoiding extra computations.

In the last step of search, if k > 1, the other k—1 neighbors of d are obtained.
This task is doing using another algorithm described in [10]. It uses the same
strategy of follow the edges of the graph, but using as initial point the actual
(or approximated) NN calculated in the previous step. Besides, the algorithm
keep in each iteration a vector with the current list of k£ nearest neighbors.

After finding k-NN, the votes of each class are counted and the majority class
is assigned to d.

Fast k-NN classifier for documents 5
3 Experimental results

In this section, the results of applying the proposed fast approximate k-NN
classifier are presented.

To perform our experiments, we use the well-known benchmark collection
Reuters Corpus Version 1 (RCV1-v2) [12]. This collection has a set of documents
represented as vectors. The feature vector for each document was produced from
the concatenation of text in the <headline> and <text> XML elements. Text was
reduced to lower case characters, after which tokenization, punctuation removal
and stemming, stop word removal, term weighting, feature selection, and length
normalization was applied. The LYRL2004 partition, with 23149 training, and
781265 testing vectors, was used.

Classes files of both training and test sets were modified to avoid overlapping
among classes. The resulting sets belong only to four non overlapped classes:
ECAT, CCAT, MCAT and GCAT. It was necessary because the other fast ap-
proximated classifier implemented (FC) to compare with our proposal (FGC)
do not support class overlapping. A k-NN exhaustive classifier (EC) was imple-
mented too, and was used as base line.

First, a 10% of training documents (692) documents were randomly chosen
to build index structures for both FC and FGC classifiers, while maintaining the
distribution of the class probabilities in the original training and test sets. The
representation space obtained has 8731 dimensions.

The FC is a k-NN classifier [9] that uses an index structure based on a tree.
Each node of the tree contains a certain number of elements selected using a
grouping algorithm. In the original paper, the authors present and use a new
clustering algorithm called k-means, but in our experiments we used both k-
means and the well-known c-means [13].

Besides, FC requires additional parameters to build the tree. The minimal
number of objects in a node was fixed to 20, the maximum number of clusters by
level was fixed to 5, and the maximum number of iterations of the clustering algo-
rithm was fixed to 10. The authors used three stops conditions to determine the
leaf nodes. But, we use only the last two conditions based on non-homogeneous
(noHomo) and homogeneous (Homo) nodes. In the case of our proposal, the
value of ¢ was fixed to 50.

The low number of documents selected as training set was because the very
high time cost of k-means when it is applied to grouping objects with an elevate
number of dimensions.

The ¥ used was a distance function based on the well-known cosine similarity
(1), because it is the most wide used to compare documents in text mining.
This measurement reaches its minimum value at 0 and maximum at 1. All the
classifiers uses the same vote rule.

Sp(dl,dg) = 1— COS(dhdg) (1)

were d; and ds are the documents to be compared.

6 F. Artigas-Fuentes, R. Gil-Garcia, J. Badia-Contelles, A. Pons-Porrata

All the algorithms were implemented using Python 2.5 over an Intel(R)
Core(TM)2 Quad CPU, 2.50 GHz and 3GB of RAM with Linux Mandriva 2009
OS.

For the classification phase, 500 documents from the test set were randomly
selected. The classification was carried out using the three classifiers: FC, FGC
and EC. For FC, its authors offer two algorithms to search the approximates
k-NN. But, we only show the results obtained using the KMSNLocal algorithm,
because the results for the other one were very similar.

To compare the quality of classifiers, macro F1-measure was used. It is the
average on F1 scores of all the topics. The F1 score (2) can be interpreted as a
weighted average of the precision and recall, where an F1 score reaches its best
value at 1 and worst score at 0.

precision.recall

F1=2. (2)

precision + recall

EC E=A
1 Fec T
FC c-mean Homo HEEEE
FC c-mean noHomo 222
FC k-means Homo
0.8 FC k-means noHomo

0.6

F1 Macro

7

0.4

0.2

R R SR RS

Vzzzz22:224

S

A

N

R

nearest neighbours computed

Fig. 1. A comparison of the quality of the implemented classifiers varying the number
of nearest neighbors calculated.

The figure 1 shows the macro-average F1 values obtained with the classifiers
varying the number of k-NN computed from 1 to 5. As you can see, our classifier
was better than FC in all the cases. Our proposal results even better than the
EC, although it uses an exact method to obtain the vicinity of document queries.
This is an strange behavior.

In order to investigate what is the cause of this behavior, we implemented a
4th classifier SFGC, based on FGC. Despite of the original, in the voting phase,
for SFGC only those nearest neighbors with a relationship value greater than a
certain threshold § are taking into account. We do the same change to EC and
obtain a new base line classifier (GEC).

Fast k-NN classifier for documents 7

BEC 0.75 B peco.so HEEE pBEC0.85 BEC 0.90
BFGC 0.75 1 BFGC 0.80 BFGC 0.85 BFGC 0.90 1

0.8

0.6 ?

0

|

| |
/
é
/
%
/
/
/
%
|

/

F1 Macro

04

|
0

A

0.2

e

= ==
E]

E=——
o 5

B
% i

==
5 I

SSSSSa
NN
2 7 7 7
S
ASIIIIII IS
L LT T iz
7z 2 2]
e
ESISOS SN SS S SSSSSSSS
72772 2 72
ESSSaasaaaaeee

//\

AN/
0 1 2

N

w
~
o

nearest neighbours computed

Fig. 2. A comparison between SEC and SFGC varying 8 parameter.

The figure 2 shows the quality of results when [has the values 0.75, 0.80, 0.85
and 0.90. For 3 values less than 0.90 the quality of GFGC are slightly worst than
BEC. On the contrary, for § values from 0.90 it is slightly better. This results
mean that the previous strange behavior was provoked by the elements of the
k-NN more distanced to queries. When all k-NN are taking into account, in the
most of approximate results, the last elements found by our search algorithm
belong to the actual classes of queries despite of the elements found by EC.

Other aspect that we consider, in order to evaluate our proposal, was the time
required to classify documents. The best improvement obtained as consequence
to use our access method based on a graph was the dramatical reduction of
the number of distances computed to obtain the k-NN against the 100% needed
by the EC. Table 1 shows the time cost and the best quality in classification
obtained by EC, FC and our proposal FGC.

Table 1. A summary of best results for each classifier

Parameter ‘ EC ‘ FC ‘ FGC ‘
Time cost(s) 60.06 1.20 14.53
Fl-macro 0.71 0.45 0.73

As you can see, FC is very fast, but its results are not good for documents
classification. On the other hand, our proposal obtains good results in a reason-
able time.

8 F. Artigas-Fuentes, R. Gil-Garcia, J. Badia-Contelles, A. Pons-Porrata

4 Conclusions

In this work, an approximated fast k-NN classifier for text documents, a problem
with a very high dimensionality, was proposed. In order to compare our method,
different variants of a fast k-NN classifier were implemented using the same
distance function for compare documents, and the same vote and decision rules
to classification. An exhaustive classifier was used as base line. Based in our
results, our proposal obtains high quality results, better than the state-of-the-
art classifiers presented.

In comparison with the exhaustive classifier, our method obtain a drastically
reduction on the time cost due to the use of an index structure based on a
connected graph and a fast search algorithm, with very similar, even better,
classification quality results.

References

1. Myles, J. P. and Hand, D. J.: The Multi-Class Metric Problem in Nearest Neighbor
Discrimination Rule. Pattern Recognition 23, 1291-1297 (1990)

2. Schek, H., et. al: A quantitative analysis and performance study for similarity-search
methods in high-dimensional spaces. VLDB’98, New York, USA, 194-205 (1998)

3. Ferhatosmanoglu, H., et. al: High dimensional nearest neighbor searching. Informa-
tion Systems, 31, 512-540 (2006)

4. Berchtold, S. et. al: Independent quantization: An index compression technique for
high-dimensional data spaces. In Proc. 16th Int. Conf. on Data Engineering, San
Diego, CA, 577-588 (2000)

5. Tuncel, E., et. al:VQ-Index: An Index Structure for Similarity Searching in Multi-
media Databases. In 10th ACM International Conference on Multimedia 2002, Juan
Les Pins, France, 543-552 (2002)

6. Arya, S. et. al: An optimal algorithm for approximate nearest neighbor searching.
In 5th Ann. ACM-SIAM Symposium on Discrete Algorithms, 573-582 (1994)

7. E. Chévez, K. Figueroa and G. Navarro: Effective proximity retrieval by ordering
permutation. TPAMIO7. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 30(9), 1647-1658, (2008).

8. K. Figueroa and K. Fredriksson: Speeding up permutation based indexing with
indexing. SISAP09. IEEE Computer Society, 107114, (2009).

9. S. Herndndez-Rodriguez, J. F. Martinez-Trinidad, and J. A. Carrasco-Ochoa: Fast
Most Similar Neighbor Classifier for Mixed Data Based on a Tree Structure. L.
Rueda, D. Mery and J. Kittlel (Eds.), CTARP 2007, LNCS 4756, 407-416, (2007).

10. F. Artigas-Fuentes, R. Gil-Garcia,J.M. Badia- Contelles and A. Pons-Porrata:
Vicinity calculation with graph in text mining. UCT,48, F. Genolet(Eds.), 1-10,

2008).

11.(F. A)rtigas—Fuentes, R. Gil-Garcia and J.M. Badia- Contelles: A High-dimensional
Access Method for Approximated Similarity Search in Text Mining. Accepted in
the ICPR 2010 Congress. 23 to 26 of August, Istanbul, Turkey, (2010)

12. D.L. Lewis, Y. Yang, T.G. Rose and F. Li. RCV1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research, 5:361-397,

2004).

13.(J.Yu): General C-Means Clustering Model. IEEE Transactions on Pattern Analysis

and Machine Intelligence,27(8), 1197-1211, (2005).

