
Hindawi Publishing Corporation
Advances in Human-Computer Interaction
Volume 2010, Article ID 602570, 26 pages
doi:10.1155/2010/602570

Research Article
On Compiler Error Messages:
What They Say and What They Mean

V. Javier Traver

Computer Languages and Systems Department, Campus Riu Sec, Jaume-I University, 12071 Castellón, Spain

Correspondence should be addressed to V. Javier Traver, vtraver@uji.es

Received 20 July 2009; Revised 16 March 2010; Accepted 1 June 2010

Academic Editor: Matt Jones

Copyright © 2010 V. Javier Traver. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Programmers often encounter cryptic compiler error messages that are difficult to understand and thus difficult to resolve.
Unfortunately, most related disciplines, including compiler technology, have not paid much attention to this important aspect that
affects programmers significantly, apparently because it is felt that programmers should adapt to compilers. In this article, however,
this problem is studied from the perspective of the discipline of human-computer interaction to gain insight into why compiler
errors messages make the work of programmers more difficult, and how this situation can be alleviated. Additionally, because
poorly designed error messages affect novice programmers more adversely, the problems faced by computer science students
while learning to program are analyzed, and the obstacles originated by compilers are identified. Examples of actual compiler
error messages are provided and carefully commented. Finally, some possible measures that can be taken are outlined, and some
principles for compiler error message design are included.

1. Introduction

One reason why high-quality software development is dif-
ficult lies in the nature of software itself [1]. To tackle the
challenges of the demanding intellectual activity of software
design and construction, a whole discipline, software engi-
neering [2, 3], exists. Software engineering is devoted to
principles, techniques, methods, strategies, and technologies
for modeling, conceiving, managing, developing, and main-
taining software systems. Object orientation [4, 5], the team
software process (TSP) and the personal software process
(PSP) [6], extreme programming [7], and so forth are only a
few of the proposals in this line.

Focusing on the coding task, high-level programming
languages have been promoted as a means of closing the
huge gap in the abstraction level that exists between machine
language idiosyncrasies and human thinking and language.
In addition, integrated environments have been conceived
to ease the editing, compilation, running, and debugging of
computer programs. Visual programming techniques have
also proven beneficial because they offer the programmer
an easy and intuitive way to building attractive user-friendly
graphical interfaces.

However, in spite of all this effort, not much has been
done with compiler messages to make the life of program-
mers much easier. Error messages shown by compilers are,
more often than not, difficult to interpret, resolve, and
prevent in the future. The lack of computer support in this
sense is somehow paradoxical. For instance, tools exist to
help an analyst draw class diagrams; in some cases, these
analysis tools even generate a basic code skeleton automat-
ically. But, curiously, the difficulties faced by programmers,
particularly those concerning compiler error messages, have
not yet been addressed by mainstream compiler writers and
remain a topic within the academic context. It seems to us
that programmers are seen as “jack-of-all-trades”, as if they
could—and should—struggle against the compiler. After all,
many people may think this is their job and what they
are paid for. Is this a desirable situation from a software
engineering point of view? Is this what programmers want?
How does this affect the software development process, the
product, and the programmers themselves? And what is
the impact on the process of learning to program or a
programming language? Is such a situation so problematic?
Can it be improved? Why has this problem been almost
completely neglected in the past? Questions like these and



2 Advances in Human-Computer Interaction

many others may easily come to mind, and much research
is still required to fully answer them. This paper focuses on
analyzing the problem, how it may affect the programmers
(mostly the novice ones), and how the situation could be
improved.

If we look at today’s state-of-the-art compilers, research
and advances in the field focus on implementing new features
of a programming language, or developing compilers for new
programming languages. There are also efforts to improve
optimization techniques, so that compiled code uses less
space or runs faster. Other projects aim to develop compilers
that run faster. All these are commendable and interesting
topics of study, but it is striking that there is little concern
on devising techniques to help the user of the system (the
programmer) to do their job properly. This issue is ignored,
not only in compiler textbooks (no matter how recent
[8, 9] or advanced [10] they may be), but also, and most
importantly, by current research directions. This trend in
compiler research can easily be appreciated by looking at the
table of contents of proceedings in conferences such as the
International Conference on Compiler Construction, CC. As
an example, readers can have a look at the program of the
recent editions of CC, one of the conferences within the Euro-
pean Joint Conferences on Theory and Practice of Software,
ETAPS (http://etaps08.mit.bme.hu/Program/progCC.html,
http://www.brics.dk/∼mis/CC2009) and see how many
papers related to error messages there are.

While there seems not to be any formal study on why
commercial compilers have neglected the area of error diag-
nostics, suggested ideas include the fact that higher priority
has been paid to other product features such as compilation
speed or the speed of the resulting executable program [11,
12], or that the developer team usually has tight schedules
or does not have enough experience or the required skills to
work on it [13]. In 1999, Alexandrescu, a C++ expert and
developer, wrote an open letter addressed to C++ compiler
vendors and the C++ community with a short proposal
“to make diagnostic messages generated by C++ compilers
easier to read and understand in the presence of templates”
[14]. Three compiler experts from three different companies
were offered the opportunity to respond to Alexandrescu’s
letter. They admit the problem and one of the responders,
Jonathan Caves, from Microsoft Corporation, acknowledged
that “[i]t is a sad but true fact that diagnostics are one of the
most overlooked aspects of compiler development” and gave
three main reasons for this. First, it is the historic concern
about memory requirements; compilers’ performance would
degrade if information required for better error messages
were kept. Second, compiler developers are obviously famil-
iar with the compiler they build, and they are the ones who
write the error messages themselves by using the language
specification to provide a succinct description for an error
situation. Unfortunately, their messages are unintelligible for
the average user. In this sense, this situation in compiler
development is not much different to the general case of
designers who end up knowing their product so well that
“[t]hey cannot think the same way as someone who does not
know what they know” [15, page 220]. And the third reason
has to do with how new compiler releases are planned and

developed, where the list of new features is prioritized, but
“better error messages” is always in the lowest priority group
and then rarely addressed.

Human-computer interaction (HCI) is a discipline that
aims to provide user interfaces that make working with a
computer a more productive, effective, and enjoyable task.
However, it seems that we forget that a compiler is also
a program, and that programmers are also human beings
that happen to use such programs. Why is this not taken
into account? It is obvious that the efficiency and efficacy of
programmers’ work has an impact not only on programmers’
satisfaction in the workplace and their self-esteem, but also
on the software development project itself—and on the
quality of the final product.

In this paper, we focus on compiler error messages.
First, related literature is reviewed and the problem placed
in the context of the interaction framework (Section 2).
Next, we analyze why it can be hard to deal with such
messages (Section 3). Examples of specific messages from
four different compilers are given in Appendices A and B,
where it is discussed why they are difficult, how to interpret
them, and how they can be fixed or prevented. A set of
general principles are suggested (Section 4) that might be
used by compiler builders when designing error messages,
and two broad groups of approaches that can be adopted
to alleviate or solve the problem to some extent are also
provided (Section 5). Finally, concluding remarks are given
(Section 6).

It is worth emphasizing two positions we adopt in this
paper.

(1) As was mentioned above, poorly designed error
messages can affect the work of programmers and
the software being built. However, we are particularly
motivated to help a special group of programmers:
novice programmers or students of computer sci-
ence/engineering. In this case, the problem is not so
much one of productivity and quality in software,
as it is of learning—and teaching—programming
languages. While all programmers experience similar
difficulties when writing working code, obstacles
faced by novices and experienced programmers are
quite different.

(2) In the analysis of the problem, of the compiler
errors, and of possible solutions, we keep a clear
user-centered point of view. The rationale behind
our arguments builds on findings in the disciplines
of psychology and human-computer interaction. We
maintain that compilers, and their messages in
particular, are the interface between the machine
and the programmers. We believe this perspective
can shed interesting light on many aspects of the
pitfalls in current compilers, and on design issues for
compilers, hopefully in the near future.

The contributions of this paper are as follows. It provides
an overview of the past related work which allows the
identification of several still open practical and research
questions about a number of interesting issues related to



Advances in Human-Computer Interaction 3

compiler messages and teaching/learning computer pro-
gramming. It also offers a careful analysis of the problem
at the light of the HCI concepts and principles, which
helps understand why error messages are poor and how
this affects the programmers’ coding task. This analysis is
based on and complemented with a case study derived from
the author’s teaching experience and examples from their
computer science students. From all this insight, principles of
compiler error design are discussed. The paper also proposes
and compares two general approaches that could be followed
in the future to address the problems considered throughout
the paper. The reflective nature of the paper aims also
at providing additional awareness and motivation of the
problem of compiler error messages and at encouraging
further actions towards smarter compilers.

A simplified version of this paper was published as a
conference paper in Spanish [16]. It was only 4 pages long
and did not include as much detail as the current paper does.
In particular, very little background and motivation material
was present, the part on the related state-of-the-art work was
very limited, the interaction framework was not considered,
fewer error messages were included, and the analysis of the
problem and the possible solutions was less exhaustive.

2. Related Work

This section reviews related work, much of it comes from
the fields of Psychology of Programming, and Computer
Science Education, possibly because these areas are most
aware of the cognitive complexity of computer programming
[17, 18], and of how novice programmers suffer particularly
from it. The reviewed literature is grouped into four main
categories depending on how they approach the problem
of poorly designed compiler error messages. While the
distinction made is not always sharp, it can help the reader
in comprehending how the problem has generally been
approached.

2.1. Ameliorating and Analyzing the Problem. Programming
environments can be built so that the editing, execution
and debugging of programs are guided by the syntax
[19]. For instance, predefined templates (i.e., skeletons of
language elements such as “if-then-else”) can be inserted by
commands, which prevents the introduction of errors. To
alleviate the problems faced by novice programmers, several
approaches have been explored, mostly from an educational
point of view. One common idea is that of developing
pedagogic environments that simplify some tasks, usually
with visual interactive interfaces on top of existing languages,
such as in BlueJ [20–22] or Alice [23, 24], based on Java.
The visual component of these tools aims at facilitating
object-oriented programming by making students interact
more directly with “objects”. By constraining the way users
build their programs, the introduction of syntactic errors
is prevented. The negative side of this is that users may
not develop a good “sense of syntax” [23]. Therefore, while
simplifying tools for novice use might sound a good idea,
they may also have their risks. Thus, a reasonable choice is

to expose them to real error messages of those tools they
will later use in their professional lives [25]. Another sensible
idea seems to be making the student progressively require
less assistance [26], for example by turning off some assistive
features, either on instructors’ or students’ initiative.

A typical problem students have when learning to
program is that compiler error messages do not always
match the student’s level at a given point. Subsets of a full
programming language can be used to address this situation.
One example is ProfessorJ [27], designed with three levels
that are gradually introduced so that students are likely
to come across only messages they can understand. This
is an advantage over other alternatives such as BlueJ, but
some students were not happy with the constrains imposed
by the subset of the language being used at a given time
[27]. Furthermore, while some error messages are filtered
out by disabling some features of the language, there is no
guarantee that the remaining error messages will be clear and
informative.

As important as trying to solve the problem is finding
why the problem actually exists. In this sense, some authors
explored why novices have difficulties in programming [18,
28] or make errors [29, 30]. The underlying themes in these
studies have to do with which language constructs are better,
or how to better teach programming, in order to cope with
the knowledge gap students have, and to make them acquire
good mental models [31]. These results, while interesting,
tend to be too general to be directly applied in practice.

An alternative idea is to use specialized tools to log
students’ actions in order to easily explore their behavior
while programming and compiling [32], which can provide
good insight into which students are facing most problems
when, and guide the instructors consequently. Recently, a
tool has been proposed that not only collects actual compi-
lation errors but also prepares reports both for instructors
and students with suggestions and recommendations [33].
While all these approaches somehow analyse the problem
of compiler error messages from different perspectives, in
none of them the problem of poorly designed compiler error
messages is explicitly addressed.

An interesting recent study [34] compares different
messages styles, error types, and programming experience
of the subject in terms of the time invested in correcting
an error or the number of correct answers given. One of
the conclusions is that longer messages do not necessarily
help subjects identify the error better or faster. However,
the validity of the study is questioned by its authors, and
they recognize the need to look more deeply into compiler
messages to really find out which aspects would help novice
programmers more.

2.2. Preventing the Problem. Another sensible direction to
addressing the compiler error messages consists of designing
better programming languages or systems, by studying how
programming languages could be made more natural so
that expressing solutions to problems become easier [35,
36]. Considering usability issues when designing a new
programming language is certainly a good idea, but it has



4 Advances in Human-Computer Interaction

been little explored, and some existing prototype has been
designed basically for children [37], and not much for
professional use. Furthermore, issues on error messages or
their usability are not considered.

Interestingly, some language elements of COBOL were
found to be error-prone with high frequency while not being
of key importance for the language (e.g., the use of commas
as word delimiters), a finding that suggests their redesign in
COBOL and their avoidance in future languages [38].

In the mid 1970s, Horning [39] was concerned about the
adequate compiler-programmer communication. Although
some of his considerations are outdated today, Horning’s
general characteristics that good error messages should
have can still be valid. For instance, the apparently simple
advice that messages should be restrained and polite is
unfortunately not always followed in current compilers.

2.3. Evidence of the Problem. The general problem of poor
messages in human-computer interaction has long been
acknowledged. Back in the 1980s, some authors showed their
concern about error message design [40] and the scarce
interest paid by the HCI community to error messages [41].
Shneiderman provided guidelines of how system messages
should and should not be. His recommendations were based
on empirical evidence on how better messages can lead to
improved user performance and satisfaction. For instance,
in one of his experiments, COBOL compiler syntactic error
messages were modified, and novice users were asked to
fix COBOL statements. Repairing scores were found to be
28% higher with those messages with increased specificity
[40]. Similarly, Brown complained about how poor error
messages were in general. His tests included the analysis
of the response that 15 different Pascal compilers gave to
a wrong input program. He found these responses to be
generally disappointing and poor and offered a few simple
and somehow vague suggestions for solutions [41]. In an
older study, the error diagnosis accuracy of a Cobol compiler
was compared with human judgements of the true cause of
the error and it was found that up to 80% of the errors were
inaccurately diagnosed [38].

Nowadays, compile-time messages in Java are widely
given that can be undecipherable for novice programmers
who get frustrated and may waste hours on a simple error
[42] or require the assistance of instructors to make any
progress in their assignments [26]. To alleviate this situation,
a precompiler was developed [42] to preprocess student’s
source code and produce more specific and (sometimes)
fun messages. While no user tests were done to formally
evaluate the benefits of the system, informal results were
positive. For instance, qualitative assessment revealed that
students not only found more informative and helpful the
modified messages, but also produced better code, and
instructor’s workload was reduced by not wasting their time
explaining the same messages over and over. Furthermore,
a system was developed to collect all students’ errors so
that the most common errors were identified. While the
general statistics that can be derived from this centralized
repository can lead to helpful lines of actuation, such as

rewriting the messages for the 10–20 top Java errors [43], the
most commonly ocurring errors do not necessarily represent
the most complicated to fix. Additionally, while rewriting
messages is generally a good idea, there is still a risk that the
new messages are not made clear enough for each individual
student or programmer.

Similarly, an automated tool providing better feedback
on errors of programs using a subset of Pascal language
was developed and tested [11]. A survey of more than 500
students who used this tool revealed that many students
become more aware of simple mistakes they made. In
another survey, instructors found that their grading time
decreased, and the quality of students’ programs increased.
However, these surveys also uncovered undesired effects such
as the possibility that students become dependent on the tool
rather than making them more autonomous. Again, this is
in fact a risk that pedagogic tools may have if solutions are
not generalized and brought to the professional domain or if
particular care is not taken in the design or use of the learning
tools. Reducing the support that students receive over time is
a possible measure but rarely considered [26].

As part of a more general learning support tool, a
database with common compiler errors with an explanation
of the likely way to resolve them was developed so that
students were presented with both the original messages for
the compiling errors in their programs and the enhanced
messages [26]. The general tool was observed to have a
positive impact on the learning experience of the students
participating in the study. In particular, the group of students
that used the support tool were more likely to resolve syntax
errors which are more complex and less common than the
group of students that did not use the tool; the students using
the tool also corrected the errors faster.

Therefore, evidence on the poor quality of compiler
error messages and that they affect the learning process
is ample (e.g., [26, 32, 34, 42–45]). While less literature
exists on how the problem affects advanced or expert
programmers, it is recognized the need to provide good
error messages and how little research there exists on this
[46, page 522]. During their practice, programmers develop
skills to better deal with error messages, but this does
not mean these messages are good for them either. Likely,
programmers just learn how to solve the errors or just end
up accepting the error messages. Actually, compiler vendors
do receive user complaints on error diagnostics [14]. Low
usability in the programming environments may severely
affect programmers’ productivity [37] and their overall user
experience [13]. On the other hand, moving from novice
to expert is only a slow gradual process, which can be
hindered by the difficulties of error messages (among other
reasons). Furthermore, experienced programmers in some
language may use another compilers at some point or also
be novice learners of other programming language and still
have problems with the new compilers or languages in spite
of their expertise [47]. Therefore, improved messages can
benefit these programmers too [48], and the topic of error
messages is definitely of interest both in educational and
professional contexts.



Advances in Human-Computer Interaction 5

2.4. Addressing the Problem. Some tools try to better inform
the programmer about simple syntax errors committed due
to not remembering or mistyping the name of some variable
or function [45]. Basically, they find the closest matches of
the wrong text to entries in the symbol table. Other authors
[48] aim at producing more useful error messages and better
locations for them. In their prototype, they decouple error-
message generation from type-checking, which simplifies
compiler construction. This kind of solution can be more
general than others such as STLFilt [49], which uses regular
expressions to just replace the infamous cryptic and overly
long compiler error messages (those related with templates
and STL usage in C++) with much shorter and more
comprehensible messages. Error messages in Java when using
generic programming leave also room for improvement [50].

An error recovery method which can be generated
automatically given the grammar of the language is given
in [13]. Despite being automatic, their experiments on 600
Pascal programs written by students suggest the method per-
forms satisfactorily in comparison with the best system the
authors knew. The errors were analyzed statistically, but no
evaluation with users was performed. Only syntactic errors,
not semantic ones, were addressed. Another disadvantage
is that, since the method is automatic, messages are all of
the type “XXX expected”, “XXX expected before YYY”, or
“XXX expected instead of YYY”, which are not as specific and
informative as handcrafted ones can be.

The most representative example of how compiler design
should consider compiler error messages is probably Merr
[51], a recent prototype where the compiler writer provides
code fragments as examples of errors together with their
corresponding diagnostic messages. Then, the parser is run
on these code fragments and the parser state is kept. Later
on, when parsing an input program, the parser state will
be used to identify which error message to associate with
the encountered error. One of the limitations of this system
is that not all possible states will necessarily have errors
associated with them.

Very recently, a social recommender system [44] has been
proposed with which programmers can look for how other
peers have fixed similar errors. Evaluation in constrained
situations with limited data (13 students working on the
same set of programming problems for a total of 39 person-
hours) shows that half of the queries submitted for help
returned useful suggestions. A larger database of examples is
required to assess the effectiveness of the tool. Additionally,
its cooperative setting offers advantages and disadvantages,
and opens up many other interesting research issues. How-
ever, solutions like this are implicitly accepting the error
messages the way they are and try to help programmers
overcome this difficulty, but do not address the problem of
whether and how better messages can be produced.

To summarize, it is widely recognized that compiler
error messages are generally poor and that the quality
of the messages has learning and productivity effects on
students, instructors and programmers. Some efforts have
been made on trying to prevent the problem, simplify
the programming conditions, or analyze programming and
compiling behaviors. While interesting, many of these studies

offer inconclusive findings or raise new open questions.
Furthermore, they do not challenge the existing error mes-
sages, and only a few works do actually address the problem
of producing more informative messages or diagnostics.
This paper provides further awareness of the importance of
compiler error messages and propose to apply the body of
knowledge of the Human-Computer Interaction (HCI) as
a convenient and natural way of studying the underlying
problem and proposing some design guidelines for compiler
error messages. This HCI perspective on analysing the
compilation task has rarely (if at all) been considered, despite
the insights that can be derived from it. Within the HCI
discipline, the interaction framework (Section 2.5) allows us
to contextualize the problem and understand what elements
of the interaction existing approaches have addressed and
what others have been disregarded or overlooked.

2.5. Interaction Framework. The general interaction frame-
work (Figure 1(a)) by Abowd and Beale (as can be found in
the textbook [52]) can be instantiated for the programming
task (Figure 1(b)) and reveals how past efforts proposing, for
example, new programming paradigms (procedural versus
object-oriented) or languages (visual or textual languages)
view these as articulation problems. However, much less
consideration has been given to the observation stage,
where the programmer must interpret the messages offered
by the compiler within the programming environment.
Consequently, the next articulation iteration (source code
modification to fix the errors) becomes extremely difficult if
the nature of the error is not made clear through the error
message.

Therefore, much concern exists on reducing the gulf
of execution (i.e., how well the system supports the user’s
goals) [53] by carefully studying and trying to improve
the articulation and performance steps, while the aim of
minimizing the gulf of evaluation (i.e., how easy the system
response can be perceived by the user in terms of his/her
intentions) has been generally neglected, by ignoring or
paying a minor emphasis to the presentation and observation
steps. However, it is known that the interaction is seriously
affected if some of the four steps is not properly addressed.
We think this reflects the current situation in programming
language/compiler design, and this is clearly calling for an
adequate treatment of these disregarded areas.

3. Problem Analysis

Anyone who has done any computer programming, however
little, has faced the tedious task of, firstly, understanding
what the compiler says through the error/warning messages;
secondly, guessing what these messages really mean; thirdly,
figuring out what to do to fix such an error/warning; fourthly,
learning how to act to avoid them thereafter; and fifthly,
recognizing recurring messages and remembering how they
were fixed in the past.

This routine, cumbersome as it is for every programmer,
is especially tedious and inconvenient for novice program-
mers, such as the students in their first years in our



6 Advances in Human-Computer Interaction

Gulf of execution

Input

Output

Gulf of evaluation

Performance

System

PresentationObservation

User

Artic
ulation

(a)

Gulf of execution

Input

Output

Gulf of evaluation

Parsing

Compiler

PresentationObservation

Programmer

Coding

(b)

Figure 1: The interaction framework: (a) general proposal [52]; (b) our instantiation to a compiler environment. The gulfs of execution and
evaluation [53] have been added.

universities. There are a number of factors contributing
to this difficulty. In the following, we categorize them as
originating from limitations in either

(i) training,

(ii) experience and habits,

(iii) environment,

(iv) human cognitive system,

(v) compiler.

3.1. Limitations in Training. Students are still learning the
basic concepts of a programming language or programming
in general, so they are still getting acquainted with the syntax,
which they have not yet mastered. Compiler messages are
usually in English, while many of the students (whose mother
tongue is not English) have a very rudimentary knowledge
of English. This, though it might seem unimportant, is a
basic issue, as it does not only prevent the students from
understanding some messages, but may also lead to some
misunderstanding, which, in turn, may give rise to even worse
complications. In addition, in our case, messages translated
into Spanish, when such translations exist, tend to be of very
poor quality and, consequently, they may harm more than
help.

Another point concerns the lack of knowledge of other
subjects. In particular, some knowledge on compiler con-
struction theory is advisable. However, not all programmers
can/should be assumed to have such a background. This is
especially true in the case of undergraduate students, who
will take advanced subjects, such as those having to do with
compilers, at higher levels, that is, long after they learn to
program. It is obvious that after learning how a compiler
works, one better understands their limitations and, there-
fore, their messages. From the point of view of HCI, not
having a proper mental model of how compilers work, may

hinder a successful interaction with them, specially when the
error messages reveal implementation details [50].

It is easy to imagine additional complications. For
example, a student might understand those error messages
that are within his/her current knowledge. However, it is
very likely that some compiler error message is beyond
their current knowledge (either programming- or compiler-
related), even when the programmer’s action is limited to
the syntax he/she is still learning. Partly, this is so because
error messages tend to be uncorrelated with the actual
mistake in source code. This can be seen as an example of
limitations in training (the programmer is still exploring),
compiler technology (gap between actual error and message
yielded), and educational tools (one can envision a compiling
environment where the knowledge of the programmer is
taken into account). One example of such concern is the
gradual levels in Java introduced in ProfessorJ [27].

3.2. Limitations in Experience and Habits. Skills in program-
ming are acquired with experience and practice. In addition,
with time and lots of practice, some messages become
familiar and you can recognize them and already know how
to deal with them (provided you can remember how you
fixed them in the past!). None of this happens to a novice
who may encounter most error messages for the first time.

Many programmers, both novices and experienced, have
the ingrained habit of not using pen and pencil when they
are programming. They do not even write personal notes
in a text file. However, our view is that keeping a file of
messages encountered, their symptoms, their causes, and so
on would be of great help. Some students do not even try
to understand error messages [54] or read them [11]. Many
messages are certainly difficult to comprehend, but they
sometimes provide valuable clues for fixing the errors. In
contrast, many programmers rapidly jump to the offending
line in the source code and try to guess what is wrong. Other
bad habits consist of not following good naming conventions



Advances in Human-Computer Interaction 7

for data types, variables, or functions; the lack of a proper,
consistent programming “style”; not paying attention to code
indentation, not using good habits such as writing the closing
brace ‘}’ each time an opening brace ‘{’ is typed in, so
that it is not forgotten later, and so forth. Certainly, students
tend to perceive programming style as something of little
importance [11].

3.3. Limitations in the Environment/Infrastructure. In some
cases, the hardware and software are not the best for the task
at hand. The reasons for this may be out of the hands of
the programmer, economic factors might prevent students
from having faster computers, physical laboratory conditions
cannot not easily be changed, installed software do not
meet the desired standards, and so forth. However, on other
occasions it is the programmer who does not use proper
tools, available otherwise, such as language-sensitive editors
with syntax highlighting options, or those editors featuring
click-and-go (i.e., the user clicks on the compiler error
message and the editor brings the cursor to the offending
line of the code). As an anecdotal, real example, some of
our students were reluctant to use these kinds of editors
and seemed to prefer to work directly using the command
shell, where compiler messages mix with user input and with
output from other command-line interactions, making it
difficult to visually perceive where the compiler output starts,
where the first compiler error is, and so on. It would be of
interest to find out whether this preference still holds and
why.

3.4. Limitations in the Human Cognitive System. There
are a number of issues in human cognition that have a
significant impact on how the interaction between people
and computers takes place. In Appendix A, we will look at the
problems involved in a programming task with a particular
attention to error messages, but more generally, we can
mention a few here. One key aspect is that of attention: we
cannot attend to every stimulus in the world at all times. On
the contrary, our attention can be focused on a very specific
stimulus, or divided into several streams of information [55].

While programming, there are several things that can
affect our attention. Firstly, we can consider programming
itself as a primary task, that is, the main reason why
the programmer is interacting with the computer, whereas
dealing with compiler error messages can be considered as
a secondary task, which tends to distract the programmers
from their primary task. The problem with these interrup-
tions is that they break the mental concentration or line
of thought, making it difficult to resume the programming
task effectively after each interruption. Because it is the
programmer who decides when to compile, the frequency of
these interruptions can be made small so as to diminish their
negative effect on attention. Unfortunately, this approach
is rarely advisable: it is usually easier to fix errors with
frequent compilations because of the correlation of new error
messages with recent code editing. Secondly, programming
sessions are usually long, which makes it difficult to maintain
attention all the time.

The multistore model of human memory consisting of
sensory, short-term and long-term memory stores is widely
accepted. Limitations in memory, and in particular in short-
term memory (the working memory), are important to
consider; when looking at the list of error messages, we
should keep in memory a certain image of what the code
looks like. Conversely, when looking at the code, we should
remember what the error message was trying to tell us.
However, our capacity to hold information is limited in both
amount and time, as the classic Miller’s magical number
7 ± 2 suggests [56]. This is a good reason for keeping
both the source code and the compiler messages visible at
the same time. Finally, mental models of computers, the
programming language, and the compiler should be good
enough for a smooth programmer-compiler interaction. The
interface itself should be responsible for supporting good
mental models, letting the user rectify incorrect models and
building new appropriate ones [57].

3.5. Limitations in Compilers. Compilers are built around
the sound concept of formal grammars [58], and some
understanding of how parsers operate reveals, in part,
why error messages are limited. Technically speaking, some
of these limitations might be difficult to overcome with
existing compiler technology. Probably, these are precisely
the barriers that compiler research should aim at breaking
down. Meanwhile, however, we can only keep this in mind
and live with it.

Fortunately, there are many other limitations that are
not so much technical as psychological. For example, how
messages are phrased is basically a matter of being aware
of their importance for an effective programmer-compiler
interaction. In Section 4 we suggest some error messages
features that we think would be desirable for compilers to
have.

It is this kind of limitation that originates from compilers,
which we are now mostly interested in.

3.6. Are Good Error Messages Important? Besides the diffi-
culty in understanding the message, poorly designed error
messages have the side effect that they lead the programmers
to take (sometimes many) “random” actions in the form of
source code editing to try to eliminate the error situation,
possibly without making an actual effort to understand the
problem. This kind of behavior has also been observed by
other instructors in the context of addressing compiling
errors [54] and debugging programs [59]. Sometimes, when
programmers run out of ideas, it may happen that they
insist on compiling wrong code even without modification.
Though it may appear absurd, this behavior may have
an explanation from psychology: programmers, as human
beings, are used to dealing with other human beings and
because human-human interaction is (fortunately) not as
rigid as human-machine interaction, the programmers tend
to repeat their request as if, unconsciously, they were
thinking that the computer might change its “mind” and
give in. This could be related to the Reeves and Nass’ media
equation [60]; that is, people tend to deal with media,



8 Advances in Human-Computer Interaction

computers included, as if they were real people and real
places. It was evidenced throughout Section 2 how strongly
the quality of error messages affect the programmer. In
contrast, well-designed error messages help the programmer
take (few) directed actions to correct the wrong code while
also helping them to understand why the code was wrong.
This can even act as a learning aid in particular to novice
programmers by supporting or correcting their user models
of either the programming language or the compiler itself.

3.7. Can Error Messages Be Helpful? Despite all their negative
points, compiler error messages (both their contents and the
logging of their appearances) can also be seen as a valuable
resource.

For students to clarify concepts, remove misconcep-
tions/misunderstandings, or improve their mental
models.

For educators to discover the problems/obstacles faced
by their students and to observe general/individual
progression/regression.

For working professionals to perfect their understand-
ing, to increase their productivity, to identify areas
where their training is lacking and to take appropriate
measures.

For compiler writers and programming language
designers to identify which are the most common
errors that programmers make, and why, and how
they could be prevented.

Curiously, some poorly designed error messages may
allow instructors to discover learning problems that their
students have that would otherwise have gone unnoticed
with a good error message that helped the student to fix
their problem. An example of this is given in Appendix A.
This concern of knowing the students better and discovering
which problems they may have when programming is
underlying many analysis and logging efforts (e.g., [32,
33, 54]). Notwithstanding this possible “advantage”, the
drawbacks of bad error messages go possibly beyond their
benefits. A necessary caveat here would be the risk of students
becoming dependent on the simplification or pedagogic tool
they use [11, 61], since the students may face problems later
on. This raises important research issues regarding the design
of teaching/learning tools or the most suitable way of using
them. These issues have not received proper attention in the
past.

4. Principles for Compiler Error
Message Design

Why do people commit errors? Three reasons are given by
Shneiderman [62]: lack of knowledge, incorrect understand-
ing, or inadvertent slips. It can be readily observed that
all of these can be true for programmers interacting with
a machine. Well-designed compiler error messages should
provide help, not obstacles. In contrast, poorly-designed

messages affect both novices and experts, as is well illustrated
in the following quote:

“These concerns are especially important with
respect to novices, whose lack of knowledge and
confidence amplify the stress-related feedback
[. . .] Although these effects are most prominent
with novice computer users, experienced users
also suffer. Experts in one system or part of a
system are still novices in many situations.” [62]

Just as there are principles for programming language
design [63], or software can be characterized by its inherent
nature [1], it seems natural to think of a set of principles
to guide compiler error messages design. We propose a set
of desirable characteristics of messages in compilers. The
proposed principles are inspired by the body of knowledge
in HCI and were derived from examples of actual compiler
errors and the author’s experience as a programmer and
as an educator. In particular, the guidelines of heuristic
evaluation [64] provide good insight to define how compiler
errors should be. One of these general principles behind
the heuristic evaluation has just to do with providing good
error messages, so that the user can easily diagnose and
recover from errors. The rest of the heuristics provide
rich information that can be applied to consider how the
compiler-programmer interaction should be and, since most
of this interaction is in the form of the compiler error
messages, these other heuristics can in turn also guide the
design of the error messages themselves. The following is
the set of proposed principles and next to each are some
heuristics they are related to the following

(i) Clarity and brevity (aesthetic and minimalist design,
recognition rather than recall).

(ii) Specificity (recognition rather than recall; help user
recognize, diagnose and recover from errors).

(iii) Context-insensitivity (consistency and standards).

(iv) Locality (flexibility and efficiency of use).

(v) Proper phrasing (match between system and the real
world).

(vi) Consistency (consistency and standards).

(vii) Suitable visual design (aesthetic and minimalist
design; error prevention).

(viii) Extensible help (help and documentation).

Notice that the relationship between our principles and
the usability heuristics are richer than shown above for
the sake of simplicity. For instance, “clarity and brevity”
not only obeys “minimalist design” and “recognition better
than recall”, but also “efficiency of use”: the faster the
programmer reads and understand a message, the faster
he/she will be able to discover the correct diagnostic and
fix the problem. Other heuristics such as “user control
and freedom” and “error prevention” have less immediate
applicability. For instance, errors can be prevented by the
nature of the programmer language or by some features



Advances in Human-Computer Interaction 9

of the development environment, but not by the error
messages themselves. However, it can also be argued that
good error messages can help in preventing the programmer
from introducing new errors since unclear, uninformative
messages may lead the programmer to perform random
corrections in the source code that do not really solve the
problem but introduce new errors.

These principles are briefly discussed in the following
paragraphs. In order to illustrate this discussion, examples
from a case study are used. This study is based on a
selection made by the author from compiler errors found
by his students during their lab assignments in a course on
advanced programming. Although all those messages came
from the same C++ compiler, the messages from three other
compilers for the same faulty source code snippets are also
examined. See Appendices A and B for the full details.

4.1. Clarity and Brevity. Too often compiler messages are
very cryptic or long and hard to decipher even for expe-
rienced programmers. This is one of the worst problems,
to our mind, but happily also one of the technically easiest
to solve. As pointed out by Shneiderman, “phrasing of
error messages or diagnostic warning is critical” and “can
significantly affect user performance and satisfaction” [62,
page 305]. And if this is generally true for computer user
interfaces, it is not less true for compiler error messages.
Brevity is very important since it is a relatively common
student behavior not to fully read error messages, which may
lead the students to misinterpret or not to follow the error
messages, even if they are informative and helpful [11]. In
addition, more information does not necessarily mean better
guidance in fixing the error [34].

4.2. Specificity. An error which is not specific may be related
to a number of different diagnostics. This is the case of our
example in Section A.5:

parse error before,

These too-general errors (“parse error”, “illegal charac-
ter”, etc.) make it difficult to know what has gone wrong, and
as a result, to take the proper corrective action. It is plainly
frustrating to come across these simple (and simplistic)
messages.

As further motivation on the importance of effective
and specific messages, the reader is reminded the findings
by Shneiderman (whose work was mentioned before in
Section 2) of how messages with increased specificity were
easier to repair. Furthermore, almost forty years ago, Wein-
berg [63] had already pointed out that compiler diagnostics
should be more explicit. And it seems that not much progress
has been made in this area in all these years.

4.3. Context Insensitivity. When errors are context-sensitive,
the same problem (the diagnostic) can give rise to different
error messages, depending on the context. For instance, these
parts of three messages from our examples in Section A.3),

(1) parse error before ‘{’
(2) parse error before ‘,’

(3) declaration of “float
SavingAccount::getInterestRate()”
outside of class is not definition

while different, all try to explain the same problem in the
source code (a missing ‘}’ to close the body a function).

Context-insensitivity can be understood as a form of
robustness in the sense that the same logical error originates
the same message, regardless of the particular situation the
error is. Many messages are currently very sensitive to the
context; in other words, for a given error, a slight change in
the code nearby provokes a radical change in the diagnostic.
An example of this is given in Error message 5 in Section A.3.

4.4. Locality. Locality is said not to hold in software [1]: “the
symptoms of a bug can be manifested arbitrarily far away
from the cause” (no spatial locality) and “arbitrarily long
after the execution of the fault code” (no temporal locality).
While this may be true and unavoidable for software, it
should not be the case for compiler error messages. Note that
our meaning for locality here has nothing to do with run-
time errors. In addition, the compiler can only explain some
errors by referring to any part of the code, as in the case
of a function definition and a call to that function, which
can obviously be arbitrarily far apart from each other. This
is perfectly correct. The lack of locality we refer to here is
that of the compiler wrongly suggesting the error is in one
place when it is not actually there. It is highly desirable for
programmers to count on spatial locality, that is, that the
true origin of the error be where the message indicates (or
as close as possible). Several examples in Appendix A (Error
messages 3, 4 and 5) fail to have locality. They suggest the
problem to be in one line at the beginning of a function
definiton whereas the actual conceptual problem is before,
since the body of the previous function definition fails to be
properly closed.

One issue with the locality criterion is the precision
in error location, which can be high or low. Many com-
piler error messages have very poor locality, like those in
Section A.3. Some compiler error messages have locality at
code-line level, but often this may not suffice, as in the
example in Section A.1, where some ambiguity exists. Others
(like Error message 5) have much smaller locality precision—
or none at all. One typical example where the locality
principles fails and usually creates confusion, to novices at
least, is when the error is located in one source file, but
the message points to a distinct file (usually including the
former). Since the actual error and the message location are
even in different files, locality is, conceptually, even lower.
The problem also happens in type errors, and methods for
better explaining them have been studied [65]. In general,
the lower the locality of the compiler messages, the more
confusing they can be for the programmer.

4.5. Proper Phrasing. There are a number of issues related to
how the messages are phrased. In this respect, the general
guidelines for messages in computer interfaces (e.g., [40])
can be helpful here too. Here are some of them:



10 Advances in Human-Computer Interaction

(i) Positive Tone. It is crucial not to blame or condemn
programmers. Current compilers do not seem to be too poor
in this respect, but it is still worthwhile to strive to eliminate
negative-sounding words such as illegal, invalid, bad, and so
forth. As Shneiderman expresses it, “there is no excuse for
hostile messages”. Because programmers are so used to the
language used in compiler messages, it might be difficult to
draw where the boundary between positive and negative tone
really is, unless the tone is extremely negative. Error message
1 in Section A.1, for instance,

ANSI C++ forbids declaration
‘ostream’ with no type ‘ostream’

is neither function nor method;
cannot be declared friend

parse error before ‘&’

speaks about something that is forbidden, which is not
genuinely a positive message, and tends to blame the
programmer for the error. To guarantee quality error mes-
sages, the participation of usability experts would therefore
be called for, unlike the mainstream of making compiler
developers write the diagnostics themselves [14]. Findings
from the media equation can also be considered: a more
delightful and productive interaction can be expected if
criticism or blaming from the computer is replaced with
praise [60, page 62].

(ii) Constructive Guidance. Compiler error messages should
help programmers understand what is wrong and why.
Moreover, messages should provide programmers with guid-
ance in what they could do to fix the error. Technically
speaking, it might be hard or impossible to determine
with precision what the programmer’s intention was [13],
but alternatives, possibly based on user profile, could be
suggested. As an example, all g++ error messages analyzed in
Appendix A fail to provide useful suggestions or even make
hard to notice where the problem actually is. For instance,
the first line of Error message 2:

can’t initialize friend function ‘<<’

friend declaration not in class
definition

provides confusing information to those trying to write a
definition for operator <<, since “initialization” is hard to
understand in this context. In contrast, the second line can
be more helpful, but only for programmers prepared enough
to understand what it refers to, which is not usually the case
of novice programmers who can hardly tell the difference
between declaration and definition.

(iii) Programmer Language. Compiler messages should use
simple language. Of course, because their users are technical
people (programmers), these messages can make use of
programming jargon, but this should be kept to the bare
minimum. By no means should internal details of the
compiler be given, something which is clearly violated in the

example in Section A.4 (page 21):

/tmp/ccf2R75s.o: In function
‘Figure::Figure(int)’:

/tmp/ccf2R75s.o(.text+0x9):
undefined reference to ‘Figure
virtual table’

since it is referring to temporal files with meaningless names,
and to a “virtual table” which has to do with how dynamic
binding is implemented, an information quite unhelpful for
the novice programmer.

It is often the case that compiler diagnostic messages
are written from the language or compiler point of view
rather than from the programmer’s [11]. It is also frequent
that some details of the implementation of some process is
revealed in the error message, a situation which does not help
programmers interpret the message, since they do not usually
know such implementation [50].

(iv) Nonanthropomorphic Messages. Anthropomorphic mes-
sages are those of the kind “I can’t find the prototype for
this function” (a made-up compiler message). Shneiderman
gives some arguments against the use of anthropomorphic
messages. For instance, he argues that these messages
can suggest to the user that computers can think, thus
providing an incorrect model of how computers work
or what their abilities are. In the context of compilers,
however, this is probably less of a concern, given that the
users (programmers) are computer literate and know how
computers operate. However, even computer experts may be
unconsciously deceived by simple computer features [60].
In particular, the language used in error messages is one
opportunity for providing personality hints to users [60, page
97]. Even though we do not take this into account in the
proposed alternative messages (Appendix A), we believe that
this issue, the relationship of phrasing and emotions [66],
and so forth, are topics that deserve further investigation.

4.6. Consistency. Consistency throughout all messages is also
a desirable feature. For instance, if nonanthropomorphic
messages are chosen, they should always follow this rule; if
alternate actions are suggested, this should always be done in
the same way; messages should always be of approximately
the same length, and so forth.

4.7. Visual Design. The physical format of messages and
the use of colors or different fonts, and so on, are further
important considerations. These are higher-level issues,
which probably go beyond compiler research and are a
matter of programming environments. They are outside of
the scope of this work, but their importance should not
be underestimated, because “the format of the information
presented is very important for the process of learning this
information” [67].

4.8. Extensible Help. Above, we said that messages should be
constructive and provide guidance. But we also suggested



Advances in Human-Computer Interaction 11

Table 1: Characteristics that error messages should have (Horning’s
[39] and proposed here).

Our principle Horning’s

Clarity and brevity concise yet distinctive

Specificity specific

Context-insensitivity —

Locality localize the problem

Positive tone restrain and polite

Constructive guidance
suggest corrections,
restrain and polite

Programmer language
user-directed,
source-oriented, readable

Nonanthropomorphism —

Consistency —

Visual design
visible pointer, standard
format

Extensible help —

?? complete

that messages should be short. To make these two aspects
compatible, help provided by messages could be organized
into levels: a first short message would probably be enough
most of the time; if not, some brief explanation or examples
can give extra assistance to the programmer. A further level
could consist of a list of potential corrective actions. This
would also be an example of design that accommodates users
with different skills and needs (e.g., novices versus experts),
an interesting topic within the HCI discipline. The tentative
finding that longer messages do not necessarily help more
[34] is relevant here too.

At this point, one can think of the possibility of
automatically correcting errors. Nowadays, this would be
possible only under very simple error diagnostics. But even
if this were a mature technique, it is not clear whether
this would benefit the programmer, because it could lead
to the situation where the programmer did not learn the
programming language syntax and conventions and became
dependent on these compiler actions, which would be out of
the programmer’s control.

Some characteristics that well-designed error messages
should have are discussed in [39]. These characteristics have
some resemblance to the principles we suggest above, which
were developed before we knew of Horning’s manuscript.
This similarity adds evidence of the suitability and desir-
ability of our ideas on compiler error messages. To be
more specific, Table 1 compares the principles proposed
here with those Horning suggested. It can be seen how
several of Horning’s ideas and ours are related, although the
explanation of the characteristics in [39] varies in depth and
clarity. For instance, he mentions error diagnostics should be
“complete”, but it is unclear what he meant with it.

Horning does not provide specific examples from real
compilers to illustrate the considered characteristics. Unlike
ours, which are based on the output from actual compilers,
his examples are general; for instance, to illustrate that
symptoms should be described in a “positive fashion”, he

indicates that “I expect this or this, but found that” would
be preferable to “missing right parenthesis”. This example
also indicates that he found anthropomorphic messages to
be acceptable or appropriate (or he was not aware that this
issue might be relevant).

Several of his suggestions regarding phrasing are all
considered within our principle of “programmer language”.
He uses “user-directed” messages to refer to reports of
problems being made in terms of user’s actions, rather than
the way a compiler functions. Similarly, “source-oriented”
messages are those not referring to “mysterious internal
representations”. Finally, he uses “readable” to denote the use
of user’s natural language. All these three characteristics are
included in our more general principle.

Regarding the localization of the error, Horning states
that the line and symbol where the problem is found
should be indicated. Although this is somehow related to
our “locality” principle, our emphasis on the meaning and
implications of the locality is higher.

For constructive guidance, Horning advice that sugges-
tions for correcting error can be in the form “Have you
checked. . .?”, and that the suggested correction may use
the repairs done by the compiler in the source code when
parsing it. Horning considered visual issues in terms of
the technology of that time; he mentions the use of visual
information such as a pointer into the offending line as
being superior to simply describing the location using text.
Lastly, no reference to context-insensitivity, consistency and
extensible help is found in [39].

In general, although Horning’s motivation was in man-
machine communication, our inspiration is more clearly
in human-computer interaction, a discipline which is more
developed, recognized and mature now than it was in the mid
70s.

Table 2 summarizes which of the principles considered
above are violated by the error messages in our case study
(Appendix A). Although this categorization is subjective to
some extent, this table highlights several issues. A given
error message usually infringes more than one principle.
More principles violated means more difficulty for the
programmer in dealing with the errors. Improper phrasing
is the most common problem that compiler error messages
suffer from. The particular reason that the phrasing is
not adequate may be a negative tone, lack of constructive
guidance, or failing to use programmer’s language. The lack
of suggestions for correction is frequent. At the end of
Appendix A, the messages provided by four other different
compilers for the same seven error conditions are given. The
general poor quality of all these compilers illustrates how
generalized the problem is.

5. Possible Solutions

Among the possible solutions to the problem this paper
is concerned about, two broad categories, programmer-
driven and compiler-driven approaches, are discussed in
this section. There are other possible actions, such as
having students and programmers develop better editing and



12 Advances in Human-Computer Interaction

Table 2: Which principles are violated by which error messages (see Appendix A). indicates violation of the principle, whereas means
the violation is less clear or to a lesser extent.

Error Message No.
Principle 1 2 3 4 5 6 7

Clarity & Brevity
Specificity
Context-insensitivity
Locality
Proper phrasing:

Positive tone
Constructive guidance
Programmer language

programming skills and habits, or using better editors or
integrated development environments. Nevertheless, how-
ever helpful these actions can be, they generally simply try to
prevent or better live with the problem, rather than solve it,
while the suggestions made here are aimed at actually having
better error diagnostics and messages.

5.1. Programmer-Driven Approaches. Keeping a record of
error messages as the programmer encounters them is a fairly
simple idea, but it can be quite effective. Furthermore, it
is in consonance with the ideas of the Personal Software
Process (PSP) [6], that every programmer is different to
all others, that it is important to do a quality job, that it
is helpful to keep a number of records about your work,
and so forth. Therefore, under this same philosophy, it is
suggested keeping a log with messages found, their meaning,
likely successful actions (updated on a historical basis) to fix
the error, the number of times the message appeared or the
corrective action that worked, and so forth.

It happens that some errors tend to be recurring, and
some others might be infrequent, but are particularly diffi-
cult to fix. For some compilation errors, it may simply not be
remembered how they were solved in the past [33]. Because
of this, it is highly desirable to avoid learning lessons over and
over. The suggested approach, although simple, would lead
to more systematic, scientific, satisfying work, and higher
productivity. In addition, some kind of error logging can
be useful not only to programmers themselves, but also to
instructors, managers, language designers, compiler writers
[39] and other programmers [44].

To implement error logging, one can employ the conven-
tional pen-and-paper technique, but we recommend storing
the data electronically. However, even in electronic form,
manual data collection is tedious and error-prone. Thus,
it is not difficult to imagine software that eases the task
of recording messages, searching through them, visualizing
solutions, browsing them, and navigating to and back from
source code, and so forth. Similar tools exist to assist in other
software-related tasks; for instance, some packages to help
students use PSP are mentioned in [68]. In closer relation
with compiler messages, a recent proof-of-concept tool is
HelpMeOut [44], which features some of the ideas discussed

here but in a social context where programmers help each
other, rather than as an individual tool.

5.2. Compiler-Driven Approaches. An alternative idea has
to do with relieving the programmer of the chores of
collecting new messages, browsing recorded ones, applying
old solutions to the newly encountered errors, and updating
the database. One possibility would be to have a high-
level software layer working on current compilers. This
module would be in charge of suggesting possible causes
of the given messages, or even detecting the precise origin
and location of the problem. The implementation of this
approach could range from quite simple programs, with ad
hoc solutions, to complete expert systems, to systems that
are user-adaptable. Rather than as independent modules, or
as pre- or postcompilers, these systems should, with time,
be part of the compilers themselves. Of course, for these
things to be possible, awareness of their importance is needed
in the compiler construction community, which entails
research efforts being made in this line. One limited, but
encouraging system is Merr [51], which associates diagnostic
messages with syntax errors present in examples of faulty
code fragments provided by the compiler writer.

As computer systems improve and become more and
more intelligent, it does not seem preposterous to imagine
the application of affective computing [66] to compiler
construction. For example, when the programmer is insisting
on trying to compile defective code without success, current
compilers just invariably show the same message again and
again. On the contrary, a compiler featuring emotional
aspects, could help the desperate programmer by stating
the message in different ways at different moments, and by
signaling alternative ways of where the problem can be and
what can be done to solve it, and, in general, by trying to
reassure and relieve the stressed programmer.

5.3. A Comparison. Both programmer-driven and compiler-
driven approaches have advantages and disadvantages, which
are discussed in this section.

Compiler-driven approaches might be considered the
ideal solution, but they have drawbacks too. These tools
imply a significant effort for the compiler writer. For



Advances in Human-Computer Interaction 13

instance, in system like [51], the compiler developer must
write both syntactically wrong code snippets and their
associated diagnostic messages. Furthermore, the developer
must collect a large number of code fragments containing
some syntactic or semantic error. Since the number of
potential errors is high, it is possible to miss important
ones that will later be found (made) by the programmer.
Another difficult job for the compiler writer is to invent good
diagnostic messages. The problem here is that these messages
should be readable and meaningful for every programmer
using the compiler (or the associated tool); however, while
general guidelines exist, what is considered a good message
may be person-dependent. An additional disadvantage is
that the system is built at construction time, without the
possibility of growing or changing at usage time, unless
some easy updates are possible via Internet, for example.
Ideally, these updates might be based on user feedback
or even exploit user-allowed logging of the programmer’s
activity. The positive side is that the programmer need not be
concerned with the tedious task of diagnostic maintenance.
Another good point is that the effort is made only once by
one person (or a few of them, the developer team), while the
resulting tool can be enjoyed many times by many people; it
can therefore be very cost-effective.

In contrast, programmer-driven approaches place the
burden on the programmer, who is charged with the task
of creating and maintaining diagnostics. However, this is
only done as needed (when the programmer encounters new
error messages). Possibly, the biggest advantage is that each
programmer can use their own words to phrase the diag-
nostics. Even though these diagnostics might lack technical
correctness, they will probably be highly meaningful and
explanatory for the programmer, and technical correctness
would be of little concern as long as the diagnostics are
informative and helpful. This is an important issue since
people working on a similar code are more likely to make
and fix similar errors [44], and different programmers do
not agree on the utility of error messages [34]. Furthermore,
unless the intentions of the programmer are known, some
errors can hardly be diagnosed [13]. Therefore, all these
findings call for the advisability of personalized diagnostics.
As an additional feature of programmer-driven solution,
new diagnostics can always be added for the same error
message, and they can be edited through time, growing and
evolving with the programmer’s experience and knowledge.
One problem would be that, at least for the most common
errors, thousands of programmers would be “reinventing the
wheel” time after time.

Regarding the principles for compiler error messages
discussed above, both approaches can theoretically produce
messages fulfilling these principles. However, specificity,
context-insensitivity and locality can be harder to achieve
by the more automatic methods within the compiler-
driven paradigm, whereas the programmers can use their
insight and experience to counteract the limitations of the
automatic messages. Proper phrasing is not difficult to be
achieved by compiler-driven solutions, and the phrasing of
messages written by a programmer for his/her own use are
expected to raise no problem regarding the usage of positive

tone or programmer-centered language, and the degree of
constructive guidance of these messages will depend on the
ability of the programmer to do so.

From this discussion, it is quite clear that the ideal tool
would have the best of both approaches. With such a tool,
the writer would provide, besides error messages as well-
designed as possible, a set of basic diagnostics at construction
time. Additionally, at usage time, users (programmers)
would be able not only to add new ones but also to edit
existing ones to suit their needs and knowledge, so that the
set of diagnostics evolve in parallel to their own experience.

6. Conclusions

Research in compiler design and construction seems to
have neglected the very important area of compiler error
messages. An overview of the literature reveals that some
approaches exist that address the problem to some extent
or from some point of view. However, the problem is far
from being properly solved, and many open and interesting
issues have been identified that deserve further investigation.
The problems faced by programmers, and particularly novice
programmers (e.g., computer science students), have been
analyzed. Examples of actual error messages have been
described, which are illustrative of how poorly designed
some of these messages can be and how this affects the pro-
grammer either in their productivity or learning processes.

Another contribution of the paper is viewing the com-
piler error messages as the interface between the computer
(the compiler in particular) and the human user (the
programmer). This view leads naturally to the consideration
of the human-computer interaction discipline as a source
of knowledge and inspiration for both understanding the
existing problems and proposing better approaches and some
principles for compiler error design.

Finally, short- and long-term solutions have been sug-
gested to tackle the problem considered in this paper, namely,
that there is often a big gulf between what compiler error
messages say and what they actually mean. It is our hope
that state-of-the-art compilers will advance towards smart,
very programmer-friendly compilers. However, because this
journey may be long, more realistic approaches have been
considered to help us survive in the meantime.

From our own work and from the literature review, it
has become evident that there are still many open questions
regarding what is best for students and for programmers, not
only in terms of the compiler messages, but also concerning
education strategies, learning aids, support tools, and so
forth. In this respect, the tradition in HCI to validate
design decisions through empirical studies involving people
remains a necessary work to be done to see a systematic
progress in many important related areas within the fields
of software development and education.

This paper certainly has a theoretical flavor, and future
work should obviously address important practical issues
concerning the design of better compiler error messages,
the development of useful software features mentioned in
the paper, as well as testing and evaluating them with
programmers, in particular with novice programmers in an



14 Advances in Human-Computer Interaction

educational setting, but also with expert programmers in
professional contexts.

Appendices

A. Case Study
In this section, we give examples of actual compiler error
messages, which enable us to illustrate many points con-
cerning the problems that programmers of all levels may
experience. These messages are from the C++ GNU compiler
(g++) [69] and were mostly collected from the interaction
with our Computer Science students in laboratory sessions of
the course “Advanced Programming”, at Jaume I University
(Castellón, Spain), when it was taught in the first semester
of the 2002-2003 academic year. The motivation behind the
work described in this paper is two-fold. On the one hand,
we are motivated by our own personal problems encountered
when programming in C++ to solve real-world problems;
and on the other hand, by the appreciation that these same
problems and frustrations, but amplified, can be suffered by
novice programmers (such as our students). It is important
to stress that the examples provided in this section are
only a small sample of the many messages that make a
programmer’s life a little harder.

The messages discussed here correspond to the version
of the g++ compiler used in that academic year. We have
been using subsequent versions of the same compiler in the
following years. Since the error messages for these other
versions have not changed significantly, current students in
this course are facing basically the same problem.

For each message, we use the following structure for our
analysis:

(1) The error message, as given by the compiler. These
are numbered so we can easily refer to them (e.g., in
Table 2, page 14).

(2) A small piece of the source code, around the (suppos-
edly) offending code. Lines of this code are preceded
with the symbol “?” denoting “suspicious” code. The
particular line of code that the compiler points to as
the location of the error is underlined.

(3) The diagnostic, that is, a simple explanation of where
the problem in the source code is and why the
compiler complains. Notice that more often than
not, this diagnostic cannot be derived easily and
directly from the error message, but only after a lot
of thought or thanks to previous experience. For
those readers with some background in C++, it could
be an interesting exercise to think about a possible
diagnosis after seeing the error message and the code
snippet, but before reading further.

(4) An alternative error message, which could be more
appropriate, because it leads more directly to the
true diagnosis of the problem. Please, notice that
different people may disagree on how helpful and
informative different messages are. Then, the spirit
of these alternative messages is to suggest that better
ones are possible, without claiming the ones provided
are absolutely good.

(5) A comment about why the message error is difficult,
or confusing or problematic, which principles of
human-computer interaction seem to be violated or
ignored, and what could be done about it.

The code snippets shown here are deliberately simple,
because we want to focus on the error messages and the
context giving rise to them. For a clearer presentation,
the example error messages are introduced under headings
summarizing what the main problem with those messages is.
These headings are:

(i) Unclear, not-to-the-point messages

(ii) Misleading messages

(iii) Same logical error, different error messages

(iv) Internal-detail messages

(v) Same error messages, many possible logical errors.

A.1. Unclear, Not-to-the-Point Messages

Error Message 1:

ANSI C++ forbids declaration
‘ostream’ with no type ‘ostream’

is neither function nor method;
cannot be declared friend

parse error before ‘&’

Offending Code:

?class SavingAccount {
?friend ostream & operator<< (ostream

&os, const SavingAccount &sA);

? };

Diagnostic: The problem is just that the programmer forgot
to include the header file iostream.h, thus the compiler
does not know what ostream is.

Alternative Message:

I do not know what ‘ostream’ is.

Perhaps you forgot to include a header
file (maybe ‘ostream.h’)

Comments: The reader may think that the original error
message is not that difficult. And it is not, but only once you
have found it and solved it several times. Another issue is the
last part of the message: parse error before ‘&’. But,
which ‘&’ does this refer to? There are three ‘&’ symbols
in the same line of code and the programmer might wrongly
focus on one of them without realizing there are others.

Regarding the suggested alternative, it is not difficult nor
unreasonable for the compiler to suggest what the missing
header is, given the operator (<<) that is being declared, and



Advances in Human-Computer Interaction 15

the fact that the well-known ostream keyword is present in
the source code.

Notice that the alternative message is anthropomorphic
in that the compiler seems to be alive and is able to speak
and think (“I do not know. . .”). We briefly discuss this issue
in Section 4. Now, our concern is not about the suitability or
not of anthropomorphic messages or the way the messages
address to users (“Perhaps you forgot. . .”). More important
than this is to convey a clear message that the programmer
can quickly understand and that is useful for fixing the error.

The proposed alternative message clearly states what
specifically the compiler does not understand or has problem
with (the word ostream) and does not provide confusing or
ambiguous explanations. Additionally, a suggestion of how
to fix the error is given in terms of a possible diagnostic
(a header file not being included). No compiler-oriented
terms are used; the only programmer-oriented, “header file”,
is simple, and it is reasonable to expect the programmer
to understand. The name of the likely header file which
is missing (‘ostream.h’) provides further help even if a
novice programmer did not know what a “header file” is. It
can be argued that the message is blaming the programmer
by saying “you forgot”, but the full message is polite and says
“Perhaps you forgot”. In any case, the alternative messages
suggested in this section are intended to be illustrative, rather
than definitive solutions.

A.2. Misleading Messages

Error Message 2:

can not initialize friend function ‘<<’

friend declaration not in class
definition

Offending Code:

? friend ostream & operator<<
(ostream &os,const SavingAccount & sA){
? os << ‘‘this is a saving account’’;

? return os;

? }

Diagnostic: The keyword friend is used inside the declara-
tion of a class giving the friendship to a particular function,
not when defining that function. It is easy to make this
mistake because one usually takes the header of a function
from its declaration, possibly by copy and paste. The error
message is easier to understand once one understands not
only the rule stating “friendship is given, not taken”, but also
who gives the friendship to whom.

Alternative Message:

The keyword friend should not be
here (just remove it)

Remember: friendship is granted, not
taken

Comments: The first part of the original message is certainly
misleading: what is the compiler trying to “initialize”? The
second part, though, has at least something to do with the
true diagnostic. But would programmers notice or read this
second part or would they just strive to understand the first
sentence first?

The proposed alternative message states very directly
that the keyword friend should not be where it appears,
and it clearly indicates the required action to fix the error
(remove this keyword). The second line provides a short,
gentle reminder of why friend is not correct here. If a
programmer needed more explanations, the message would
be extended by additional help levels. For instance, the next
level could briefly explain the implication that declaring a
function friend within the definition of a class has and why
it does not make sense to do it outside the class.

A.3. Same Logical Error, Different Error Messages.

Error Message 3:

In method ‘float
SavingAccount::getInterestRate()’:

parse error before ‘{’

Offending Code:

? float SavingAccount::getInterestRate()

? {
? return rate;

?

? SavingAccount::SavingAccount() { }

Diagnostic: In this and the following two examples, the cause
of the error is the same: a missing ‘}’ for closing the body
of a preceding function (here, getInterestRate()). How-
ever, the error messages differ depending on the particular
place where this character is missing.

Alternative Message:

A function declaration inside a
function body is not possible.

Did you forget ‘}’ to close the body
of the previous function definition?

Comments: Because these sample code fragments are simple,
the source of the problem can be quite easily identified.
However, this is not necessarily always the case, and when
code in the body of a function is longer, and it has several
pairs of braces, ‘’-‘’, and indenting is not done properly,
it is not rare to miss some ‘}’ that matches a previous ‘{’,
without realizing it is missing.

In such circumstances, the current error message may not
be very helpful. Here the problem lies in the lack of precision
locating the source of error. Programmers tend to look for



16 Advances in Human-Computer Interaction

potential mistakes locally, probably in the same line or the
line just before the offending line. Fortunately, in this error
message there is a good clue to help us find out where the
problem is: it seems that the error is found while parsing
float SavingAccount::getInterestRate(), which is
suspicious considering where the offending line is.

However, people tend not to read carefully (particularly
on screens), and programmers will often pay special atten-
tion to the location of the error rather than to details of the
message text [11]. One additional reason that programmers
do not pay more attention to the error message is probably
because most messages are not meaningful or helpful.
Therefore, programmers develop the automatic habit of
ignoring them and trying to make sense of the error just by
looking at (or near) the offending line.

The first part of the proposed error message indicates
what could be happening if the compiler tries to make
sense of the source code. Since this may not be fully
helpful for the programmer, this speculation is followed by
a plausible interpretation of what may have happened. The
message uses “function declaration”, “function body” and
“function definition”. Some user tests would be required to
find out whether these terms are understood or require some
redesign, and whether further help levels could be available
to clarify them.

Error Message 4:

In method ‘float
SavingAccount::getInterestRate()’:

parse error before ‘,’

Offending Code:

?float SavingAccount::getInterestRate()
{

?return rate;

?

?SavingAccount::SavingAccount(string
owner , float initialBalance)

? : owner(owner ),
balance(initialBalance)

?{ }

Diagnostic: The same as in Error 3.

Alternative Message:

A function declaration inside a function
body is not possible.

Did you forget ‘}’ to close the body of
the previous function definition?

Comments: The puzzling point here is that one could try to
see what is wrong just before the comma (,). Typically this
message is issued when a type name has been misspelled,
or a necessary header has not been included. For instance,

in this line of code, one may wonder whether the compiler
recognizes string, whereas the actual problem is logically
far from this (again, a missing ‘}’ in the body of the previous
function).

Error Message 5:

In method ‘SavingAccount::SavingAccount
()’:

declaration of ‘float
SavingAccount::getInterestRate()’

outside of class is not definition

Offending Code:

? SavingAccount::SavingAccount() {
?

? float SavingAccount::getInterestRate()
{

? return rate;

? }

Diagnostic: The same as in Error 3.

Alternative Message:

A function declaration inside a function
body is not possible. Did you forget
‘}’ to close the body of the previous
function definition?

Comments: The error message here is quite different to (and
longer than) the other two. The sentence combines the con-
cepts of declaration and definition that not every programmer
(especially novices ones) may clearly distinguish, or at least
not without an extra, conscious, mental effort. Good human-
computer interfaces are designed to minimize the required
mental effort. In particular, programmers have enough work
with their demanding primary task (programming itself),
without also having to deal with an annoying secondary
task (understanding compiler error messages and fixing the
underlying problems). (The topic of primary and secondary
tasks is covered in [55, page 105])

A missing ‘}’ in a definition of a member function inside
its class (“inline” definition) yields another error message:

parse error at end of input

with the offending line being a line beyond the last line in
the file. The spatial locality principle does not hold here: the
source of the problem in the code may be arbitrarily far from
the offending line (the end of file!). Of course, spatial locality
can be forced (facilitated) by a well-known trick: divide &
conquer. We mean that one can, selectively, get rid of pieces
of code so that the wrong code is eventually found. But here
it is probably faster to use the temporal locality: where has
the programmer been editing recently (i.e., since the last time
the source file was compiled)? But most novice programmers
do not know either of these tricks (spatial and temporal
locality).



Advances in Human-Computer Interaction 17

A.4. Internal-Detail Messages

Error Message 6:

/tmp/ccf2R75s.o: In function
‘Figure::Figure(int)’:

/tmp/ccf2R75s.o(.text+0x9): undefined
reference to ‘Figure virtual table’

Offending Code:

?class Figure {
? private:

? int color;

? public:

? Figure(int c = 0);

? virtual float Perimeter();

?};

Diagnostic: The problem is that the virtual member function
Perimeter() is not made pure virtual, like this:

virtual float Perimeter() = 0;

and no definition for it was provided.

Alternative Message:

If class ‘Figure’ is to be abstract,
some member function should be declared
pure virtual (with ‘= 0’)

Comments: The message considered here is actually a linking,
not compiling, error message. These errors are generally
more difficult to resolve than compiling errors, partly
because they do not refer to specific lines in the source code.
In fact, in the code fragment shown above, we marked as the
offending line the constructor, guided (or better, misguided)
by the error message, which refers to this constructor. We
later may learn that the problem is not in the constructor,
but in a member function that was declared virtual, but not
pure virtual.

We think that another reason why linking error messages
are harder to decipher is because they arise as a result of
putting together pieces of code that, separately, are correct.
This is because, unlike in other disciplines, in software, errors
are synergistic [1].

Obviously, one may use virtual functions before (or
without) learning how they are internally implemented. This
is, in fact, the common situation of undergraduates learning
programming in their first years. Here, abstract classes and
run-time polymorphism are difficult concepts by themselves
for a novice programmer to understand, without also having
to struggle with how they are implemented. Hiding the
complexities of underlying internals is a very useful means of
minimizing the mental load associated with using a system
[57]. Speaking the users’ language is also a well-known
usability heuristic [70].

This is a clear example where having a functional
mental model should be enough for the task at hand. Of
course, having a structural mental model would help in
understanding the error message and its source in the code.
But why assume the programmer has this structural mental
model? For convenience, the distinction of functional and
structural models is summarized here. Functional mental
models of a system are basic knowledge users have that allows
them to operate that system by relying on simple facts and
possibly on analogies with known systems. Structural mental
models are more elaborate since they involve knowledge of
how the system actually works, so these models are harder
to build but they are more powerful than functional ones,
because they allow the users to make predictions (e.g., what
might be wrong when the systems does not work) [55, pages
134–137].

It is possible that this message reminds the reader, as
it reminds the author, of some infamous error message in
some window-based systems stating something along the
lines of “Fatal error occurred. Stack addresses 0x076AC-
0x0FFD8”. This kind of message and ours have two things in
common: reference to strange-looking, useless internal data
(temporary files like /tmp/ccf2R75s.o), and implementa-
tion details (something about a virtual table is mentioned,
but what does it have to do with our code?) Both of these
things are almost unhelpful in understanding and solving the
problem, and add unnecessary complexity and confusion for
the programmer.

This error message can easily be turned into one in
Section A.3, that is, different messages being produced for
the same logical error. Surprisingly, in the case we are
now considering, this error message does not appear if the
constructor is defined within the class definition, rather than
outside.

The proposed alternative predicts one possible program-
mer’s intention (having class Figure abstract) and suggest
its implication (declaring at least on function pure virtual).
The message reminds the programmer the syntax to use
(= 0) to declare a function pure virtual. Subsequent levels
of the message would suggest alternative diagnostics and
corrective actions; for instance, the programmer could have
just forgotten to write the body function for Perimeter().

A.5. Same Error Message, Many Possible Logical Errors

Error Message 7:

parse error before,

Offending Code:

?SavingsAccount::SavingsAccount(string
owner, string IdNum,

? Date openDate, float rate)

? : BankAccount(string owner, string
IdNum, Date openDate);

?{
? // . . .

?}



18 Advances in Human-Computer Interaction

Diagnostic:

The programmer repeated the declaration of the
data types for the arguments of the base-class
(BankAccount) constructor in the initialization list
of the derived-class (SavingsAccount) constructor.
The right initialization list is:

: BankAccount(owner, IdNum, openDate);

Alternative Message:

Do not declare types in the
initialization list (i.e., what follows
‘:’)

Use calls instead, such as
‘BankAccount(owner, IdNum, openDate)’
rather than ‘BankAccount(string owner,
string IdNum, Date openDate)’

Comments: Parse error before. . . is probably the most
general error message we can think of. It certainly says little
about the nature of the error. Therefore, the programmer
can work hard and long trying to find out where the error
actually is. This kind of messages can be very confusing and
frustrating [11].

At first glance, one may argue that this is a silly, unlikely
mistake to commit and even once committed, it is not that
difficult to discover where the problem is. This may certainly
be true for experienced programmers, but not for a novice
programmer such as the one who actually wrote this code.
Indeed, the writing of this incorrect code reveals a lot about
its author. Probably, he did not fully understand how to
declare a derived-class constructor. For this same reason, he
would find nonsensical that the compiler complains about
this line of code. For him, it is perfectly error-free C++
syntax.

But there is still more that we can learn from this
example. A more expert programmer whom the (novice)
author asked for help might also find it difficult to find
out what is wrong in this line. In fact, in one of our lab
classes, one of our students asked me to help him on this
error message. Even though I knew that such a line of code
was incorrect (because the compiler said so), I made several
unsuccessful attempts, and I did not realize what the problem
was until I tried to write the derived-class constructor myself.
Only when comparing what he wrote with what I wrote did
what was wrong in the student’s code become evident. This
resembles an observed debugging strategy where parts of the
code are simply rewritten to solve the problem instead of
trying to find and fix the bugs in the original code [71].

This phenomenon can be related to the psychological
known fact that our perception is not fully objective, but it is
sometimes biased by our expectation: both my student and I
were looking at the code with the confidence that it was right.
The following words of Weinberg give further support to the
fact of “the perfectly normal human tendency to believe that
ones “own” program is correct in the face of hard physical
evidence to the contrary” [63, page 56].

Of course, because the compiler was complaining, it was
for certain that there was some error somewhere in the code.
But where it could be? Our attention was divided among
several lines (we already know about the unfortunate fact
of the lack of locality in the actual error and the signaled
error). With so many potential logical errors behind this
textual message, we could not focus on the appropriate point.
“When a programmer has a difficult time finding a bug, it is
because he is looking in the wrong place” [63, page 251].

Needless to say that a more focused message error would
definitely have helped. In this case the student could probably
have fixed the problem without my intervention. From a
more positive point of view, a poorly designed error message
such as this allowed us to realize one of the learning problems
our student was having, as was suggested in Section 3.7.

Another lesson here is that it might be a good idea to ask
for the help of another person, and to rewrite a piece of code
guided by what you want to program, not by how you are
trying to do it (i.e., without looking to the original code).

With regard to the feasibility of a compiler to generate
the alternative message proposed here, we think a general
solution might be more complicated, but an ad hoc solution
is not very difficult in terms of checking whether the list of
arguments is as it should be expected or not. In this sense,
the proposed message direct the programmer at the problem
(the use of declarations within the initialization list) and
at the solution (the use of calls). The programmer is also
reminded the initialization list is what follows the “: ”. The
third line of the proposed alternative makes the message
longer, but it gains in clarity since it makes more explicit the
difference between what the programmer wrote and what is
expected in the initialization list.

B. Messages with Other Compilers

To illustrate that the problem is not limited to the particular
compiler and platform (g++ in Linux) considered here,
three other C++ compilers were tested for the same error
conditions analyzed above. The compilers were another free-
software compiler, MinGW within Dev-C++ 4.9.9.2 [72],
and two commercial ones, Microsoft Visual C++ 6.0 [73]
and Borland C++ Builder 5.0 [74] which were accessible
to the authors. The error messages as provided by the four
compilers are collected in Tables 3 and 4, and referred to as
g++, MinGW, MVC++ and BC++, respectively. For convenience,
minor parts of the messages related to the names of the
source files and line numbers have been removed. When the
messages took up many lines, some of its lines have been
omitted (this is indicated in the tables). Finally, in other
examples, the line as shown by the compiler was too long to
fit one row in the table, and it has been split into two lines.

In the following subsections the messages given by
each of the four analyzed compilers for each of the seven
error situations are commented. Before going into detail, a
glance at these tables reveal the violation of basic usability
principles, as discussed in this paper. Notice for instance
how the messages use words such as “illegal” or “improper”,
which are implicitly blaming the programmer, whereas it is
advised that system messages should prevent such offensive



Advances in Human-Computer Interaction 19

Table 3: Error messages of four different C++ compilers for Errors 1–4.

Compiler Message for Error 1

g++ ANSI C++ forbids declaration ‘ostream’ with no type

‘ostream’ is neither function nor method; cannot be declared friend

parse error before ‘&’

MinGW ISO C++ forbids declaration of ‘ostream’ with no type

‘ostream’ is neither function nor member function; cannot be declared friend

expected ‘;’ before ‘&’ token

MVC++ error C2143: syntax error: missing ‘;’ before ‘&’

error C2433: ‘ostream’: ‘friend’ not permitted on data declarations

error C2501: ‘ostream’: missing storage-class or type specifiers

(plus 4 more lines)

BC++ E2061 Friends must be functions or classes

E2139 Declaration missing;

E2321 Declaration does not specify a tag or an identifier

Compiler Message for Error 2

g++ can’t initialize friend function ‘<<’

friend declaration not in class definition

MinGW can’t initialize friend function ‘operator<<’

friend declaration not in class definition

MVC++ error C2255: ‘<<’: a friend function can only be declared in a class

BC++ E2092 Storage class ‘friend’ is not allowed here

Compiler Message for Error 3

g++ In method ‘float SavingAccount::getInterestRate()’:

parse error before ‘{’
MinGW In member function ‘float SavingAccount::getInterestRate()’:

expected ‘;’ before ‘{’ token

MVC++ error C2143: syntax error: missing ‘;’ before ‘{’
BC++ W8066 Unreachable code

E2379 Statement missing;

(plus 2 more lines)

Compiler Message for Error 4

g++ In method ‘float SavingAccount::getInterestRate()’:

parse error before ‘,’

MinGW In member function ‘float SavingAccount::getInterestRate()’:

expected primary-expression before ‘(’ token

(plus 2 more lines)

MVC++ error C2275: ‘string’: illegal use of this type as an expression

c:\program files\[. . .]\include\xstring(612): see declaration of ‘string’

error C2146: syntax error: missing ‘)’ before identifier ‘owner ’

error C2059: syntax error: ‘)’

BC++ W8066 Unreachable code

E2108 Improper use of typedef ‘string’

(plus 4 more lines)



20 Advances in Human-Computer Interaction

Table 4: Error messages of four different C++ compilers for Errors 5–7.

Compiler Message for Error 5

g++ In method ‘SavingAccount::SavingAccount()’:

declaration of ‘float SavingAccount::getInterestRate()’

outside of class is not definition

MinGW In constructor ‘SavingAccount::SavingAccount()’:

expected primary-expression before ‘‘float’’

expected ‘;’ before ‘‘float’’

MVC++ error C2601: ‘getInterestRate’: local function definitions are illegal

fatal error C1004: unexpected end of file found

BC++ E2089 Identifier ‘getInterestRate’ cannot have a type qualifier

(plus 3 more lines)

Compiler Message for Error 6

g++ /tmp/ccf2R75s.o: In function ‘Figure::Figure(int)’:

/tmp/ccf2R75s.o(.text+0x9): undefined reference to ‘Figure virtual table’

MinGW C:\ . . . \Temp\ccqwbaaa.o(.text$ ZN6FigureC2Ei[Figure::Figure(int)]+0x8)

In function ‘ZSt17 verify groupingPKcjRKSs’:

[Linker error] undefined reference to ‘vtable for Figure’

MVC++ error6.obj: error LNK2001: unresolved external symbol ‘‘public:

virtual float thiscall Figure::Perimeter(void)’’ (?Perimeter@Figure@@UAEMXZ)

Debug/error6.exe: fatal error LNK1120: 1 unresolved externals

BC++ [Linker Error] Unresolved external ‘Figure::Perimeter()’ referenced

from C:\DOCUMENTS AND SETTINGS\[. . .]\ERROR6.OBJ

Compiler Message for Error 7

g++ parse error before,

MinGW In constructor ‘SavingsAccount::SavingsAccount(std::string, std::string, Date, float)’:

expected primary-expression before ‘‘owner’’

expected primary-expression before ‘‘idNum’’

expected primary-expression before ‘‘openDate’’

MVC++ error C2144: syntax error: missing ‘)’ before type ‘string’

error C2612: trailing ‘#’ illegal in base/member initializer list

error C2512: ‘BankAccount’: no appropriate default constructor available

error C2082: redefinition of formal parameter ‘owner’

error C2146: syntax error: missing ‘;’ before identifier ‘idNum’

(plus 4 more lines)

BC++ E2108 Improper use of typedef ‘string’

E2312 ‘string’ is not an unambiguous base class of ‘SavingsAccount’

E2312 ‘Date’ is not an unambiguous base class of ‘SavingsAccount’

E2251 Cannot find default constructor to initialize base class ‘BankAccount’



Advances in Human-Computer Interaction 21

Table 5: Which principles are violated by which compilers for error message 1.

Compiler

Principle g++ MinGW MVC++ BC++

Clarity & Brevity
Specificity
Locality
Proper phrasing:

Positive tone
Constructive guidance
Programmer language

Table 6: Which principles are violated by which compilers for Error message 2.

Compiler

Principle g++ MinGW MVC++ BC++

Clarity & Brevity
Specificity
Locality
Proper phrasing

Positive tone
Constructive guidance
Programmer language

language. The use of cryptic terms is particularly evident
in messages for Error 6. It can be seen that different
compilers provide (quite) different messages for the same
error situation and, while some messages might be argued
to be better than others at helping to diagnose and fix the
problem, no compiler can be regarded as providing generally
good messages.

Therefore, the problem of poor error messages is very
general, with minor differences between different compilers
of a same programming languages. Furthermore, as it has
been seen at the beginning of this paper, the problem is
present in other programming languages, even in popular
ones such as Java.

Error 1. Many messages form MinGW are similar to those by
g++. For instance, in this error message, MinGW uses “mem-
ber function” instead of “method”. Given their similarity,
the principles violated by MinGW and g++ are basically the
same. Notice, however, that unlike g++, MinGW does not
use the term “parse” which is more a compiler term than a
programmer term. Therefore, this aspect of the phrasing is
slightly better in MinGW.

Both MVC++ and BC++ use error codes (e.g., C2143,
E2061) which are not obviously or immediately useful for
the programmer. This additional information is against
minimalist design, and reduces the visibility and clarity of
the remaining information.

MVC++ tries to interpret the unknown symbol “ostream”
as if it was a data member the programmer was trying to
declare. Under this interpretation, it can be understood its
message stating that friend is not permitted on data dec-

larations, and that some type specifier is missing. Since the
compiler does not know what the programmer’s intention
is, it is misinterpreting the correct diagnostic. As a result,
this wrong compiler’s interpretation is likely to confuse the
programmer, who expects the compiler to help rather than
distract.

The message given by BC++ is similarly unwise. Addition-
ally, “not permitted” fails to be a positive way to address the
compiler user. Both MVC++ and BC++ use terms which novice
programmers and many advanced ones can easily not know,
such as “storage-class” and “tag”.

Which principle is violated by each compiler is given
in Table 5. By definition, context-insensitivity can only be
analyzed by changing the context of a given error and
observing whether the resulting message is the same. Since
this is done in Error messages 3–5, this principle will only be
considered for those errors. Locality is marked to be violated
in all cases in the sense that the problem is not actually in the
line where ostream is used. Since the problem is a missing
header file, ideally the compiler should refer to this problem
as a general one and use this line only as a place where the
need of such header file is found, not where the problem
is. Otherwise, the programmer is wrongly induced to make
any corrections on this line. We judged specificity not to
be violated by these error messages in the sense that they
make specific (not general or vague) claims, even in a wrong
direction.

Error 2. Again the message form the MinGW compiler is very
similar to g++, with the only difference of referring to the
function operator<<, instead of referring to function <<.



22 Advances in Human-Computer Interaction

Table 7: Which principles are violated by which compilers for Error message 3.

Compiler

Principle g++ MinGW MVC++ BC++

Clarity & Brevity
Specificity
Context-insensitivity
Locality
Proper phrasing:

Positive tone
Constructive guidance
Programmer language

Table 8: Which principles are violated by which compilers for Error message 4.

Compiler

Principle g++ MinGW MVC++ BC++

Clarity & Brevity
Specificity
Context-insensitivity
Locality
Proper phrasing:

Positive tone
Constructive guidance
Programmer language

Messages from MVC++ and BC++ seem less confusing since
they do not refer to any strange “initialization” (as g++
and MinGW do), and focus on saying where the keyword
friend may go (“can only be in”, in MVC++) or where it
cannot be (“is not allowed here”, in BC++). The tone is more
positive in MVC++ than in BC++, but both messages could
provide, possibly as extended help on user demand, some
brief rationale of why friend makes no sense in that line.
The advanced programmer can easily fix the problem (i.e.,
just remove friend) given these messages, but the novice
would face some problem in understanding what is wrong,
and the terms “declared” (in MVC++) and “storage class” (in
BC++) would possibly harm more than help. A more direct
guidance, just suggesting the deletion of this keyword, would
probably be beneficial. Table 6 summarizes which message
violates which principle.

Error 3. Since the same error condition (a body function
with a missing } to indicate the body end) has been tested
on two other different situations (Errors 4 and 5), and
the resulting messages are different in each case, all the
tested compilers fail to have context-insensitivity. Locality
is weak since the compilers suggest the problem to be
at the beginning of the next function. MinGW and MVC++
indicate ; is missing before { probably because the compilers
would expect a function call at that position, rather than
the declaration of a new function. This is also the case
of BC++ but this compiler issues an additional warning,
“unreachable code”. In all cases, the compiler is making one

possible interpretation of the faulty code which is different
to the actual user intention. In other words, the programmer
forgot to close one function definition whereas the compiler
makes the assumption that the programmer’s idea was to
complete the body of the function. This different interpre-
tation is a clear example of a compiler-oriented message,
and it may confuse the novel programmer. With practice,
experienced programmers learn to “translate” these compiler
interpretations into the correct diagnostics. The warning of
unreachable code provided by BC++ could probably be more
helpful for the programmer to find where the error is, if
the programmer is able to notice that the unreachability is
caused by the return statement, something which could
readily be made more explicit by the compiler. The violation
of principles by each compiler is given in Table 7.

Error 4. For the same fault in the source code as before (an
unclosed body function), the messages are very different and
considerably less helpful, except for the warning issued by
BC++ regarding the unreachable code which may provide
some hint on the actual problem. It can be noticed how a
negative tone in the phrasing of error messages is used in
both MVC++ (“illegal use”) and BC++ (“improper use”). A
difficult term for an average programmer to understand is
“primary-expression” (used by MinGW). Table 8 summarizes
the principles being violated.

Error 5. The diagnostics from the compilers are again in the
wrong direction, and no appropriate guidance is provided



Advances in Human-Computer Interaction 23

Table 9: Which principles are violated by which compilers for Error message 5.

Compiler

Principle g++ MinGW MVC++ BC++

Clarity & Brevity
Specificity
Context-insensitivity
Locality
Proper phrasing:

Positive tone
Constructive guidance
Programmer language

Table 10: Which principles are violated by which compilers for Error message 6.

Compiler

Principle g++ MinGW MVC++ BC++

Clarity & Brevity
Specificity
Locality
Proper phrasing:

Positive tone
Constructive guidance
Programmer language

Table 11: Which principles are violated by which compilers for Error message 7.

Compiler

Principle g++ MinGW MVC++ BC++

Clarity & Brevity
Specificity
Locality
Proper phrasing:

Positive tone
Constructive guidance
Programmer language

for the programmer to fix the problem. Possibly, the message
from MVC++ can be the most helpful, but not immediately:
if the programmer understand what “local function” means,
he/she would realize why the compiler mentions this and
eventually understand what is wrong. Only careful user
may notice that in g++ and MinGW, the messages begin by
indicating where the compiler finds the problem (in method
SavingAccount::SavingAccount()), which may indi-
rectly provide the programmer with a hint. The “unexpected
end of file” message from MVC++, even though pointing to the
last line of the file, might suggest an attentive experienced
programmer that the problem is related with unbalanced
braces. In all these cases, the actual problem is not made
salient by the compiler, and finding the true diagnostic relies
on the cognitive attention, insight and experience of the user.
Regarding the phrasing, language with negative tone is used
in MVC++ (“illegal”, “fatal error”), and not-obvious terms for

the novice programmer appear in BC++ (“type qualifier”).
See Table 9 for a summary of the principles violated.

Error 6. This linking error generates messages with strange-
looking names and codes (e.g., function ‘ZSt17 verify
groupingPKcjRKSs’ in MinGW, or (?Perimeter@Figure
@@UAEMXZ) in MVC++) which provide noise and no useful
information. This happens in all but the message from
BC++ which does not have this problem. Additionally, g++
and MinGW include implementation details (“virtual table”
in g++, “vtable” in MinGW) which speaks the compiler’s
language, not the programmer’s. The fact of mentioning the
virtual table may provide some cue to those programmers in
a position to make the association between this and dynamic
binding. But most novice programmers, if not all, will not
appreciate this subtle help, and a more direct guidance is
definitely required to be helpful to all programmers. The



24 Advances in Human-Computer Interaction

principle of locality is not marked as being violated since
it is an error from the linker and refers to object files,
not to source files. However, for this very reason, it might
be argued that locality is not fulfilled. MVC++ uses the
unnecessarily worrying term “fatal error”. The evaluation of
which principles are violated is given in Table 10.

Error 7. The message provided by g++ is certainly too
general to point to the true source of the problem. The mes-
sages from the other compilers are more specific, but with
varying degrees of usefulness. MinGW complains about the
expressions before each of the three parameters, but saying
“expected primary-expression” is unlikely to be understood:
what exactly does the compiler expect before “owner”?

Among the lines of the message issued by MVC++,
the third and fourth ones, referring to “no appropriate
default constructor available” and to “redefinition of formal
parameter”, respectively, might, by being optimistic, guide
the programmer. However, the programmer may easily
wonder why a “default constructor” is mentioned at all,
or why the parameter “owner” is redefined. Moreover,
programmers would unlikely understand or find useful the
adjective “formal” qualifying the “parameter”? The other
lines add probably more confusion than help: for example,
what is the trailing ‘#’ if there are not any #? Lastly,
MVC++ also uses “illegal”, which is an inadequate language
blaming the programmer.

The message from BC++ also refers to a default construc-
tor to initialize the base class BankAccount. Programmers
may find this puzzling since their intention is to use a specific
constructor, not the default one. It is also difficult to under-
stand what the compiler means with “unambiguous base
class” and how it relates with the actual problem in the source
code. Finally, the term “improper use” is not a correct way to
address the the programmer. See Table 11 for an assessment
of the messages of the four compilers for this error.

Acknowledgments

The authors are grateful to the anonymous reviewers for their
comments and the “Servei de Llengües i Terminologia” at
Universitat Jaume I for their professional English revision
service.

References

[1] B. Beizer, “Software is different,” Annals of Software Engineer-
ing, vol. 10, no. 1−4, pp. 293–310, 2000.

[2] R. Pressman, Software Engineering: A Practitioner’s Approach,
McGraw-Hill, New York, NY, USA, 2000.

[3] I. Sommerville, Software Engineering, Addison-Wesley, Read-
ing, Mass, USA, 2001.

[4] J. Rumbaugh, OMT Insights: Perspectives on Modelling from
the Journal of Object-Oriented Programming, SIGS Books, New
York, NY, USA, 1996.

[5] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual, Addison-Wesley, Reading, Mass,
USA, 1999.

[6] W. S. Humphrey, Introduction to the Personal Software Process,
Addison-Wesley, New York, NY, USA, 1997.

[7] K. Beck, Extreme Programming Explained: Embrace Change,
Addison-Wesley, Reading, Mass, USA, 2000.

[8] D. Grune, H. E. Bal, C. J. H. Jacobs, and K. G. Langendoen,
Modern Compiler Design, John Wiley & Sons, New York, NY,
USA, 2000.

[9] K. D. Cooper and L. Torczon, Engineering a Compiler, Morgan
Kaufmann, San Francisco, Calif, USA, 2004.

[10] S. S. Muchnick, Advanced Compiler Design and Implementa-
tion, Morgan Kaufmann, San Francisco, Calif, USA, 1997.

[11] T. Schorsch, “CAP: an automated self-assessment tool to
check pascal programs for syntax, logic and style errors,”
in Proceedings of the 26th SIGCSE Technical Symposium on
Computer Science Education, pp. 168–172, ACM, 1995.

[12] P. G. Moulton and M. E. Muller, “DITRAN—a compiler
emphasizing diagnostics,” Communications of the ACM, vol.
10, no. 1, pp. 45–52, 1967.

[13] E. Kantorowitz and H. Laor, “Automatic generation of useful
syntax error messages,” Software: Practice and Experience, vol.
16, no. 7, pp. 627–640, 1986.

[14] A. Alexandrescu, “Better template error messages,” C/C++
Users Journal. March 1999. http://erdani.com/publications/
better template error messages.html.

[15] T. K. Landauer, The Trouble with Computers: Usefulness,
Usability, and Productivity, Person Educac, Person Educación,
2001.

[16] V. J. Traver, “Sobre los mensajes de error de los compiladores,”
in Proceedings of the Actas del VII Congreso Internacional
de Interacción Persona-Ordenador (Interacción ’06), M. A.
Redondo Duque, C. Bravo Santos, and M. Ortega Cantero,
Eds., pp. 345–348, Puertollano, Spain, November 2006.

[17] R. Brooks, “Towards a theory of the cognitive processes
in computer programming,” International Journal of Human
Computer Studies, vol. 51, no. 2, pp. 197–211, 1999.

[18] A. Ebrahimi, “Novice programmer errors: language constructs
and plan composition,” International Journal of Human-
Computer Studies, vol. 41, no. 4, pp. 457–480, 1994.

[19] T. Teitelbaum and T. Reps, “The Cornell program synthesizer:
a syntax-directed programming environment,” Communica-
tions of the ACM, vol. 24, no. 9, pp. 563–573, 1981.

[20] M. Kölling and J. Rosenberg, “Blue—a language for teaching
object-oriented programming,” in Proceedings of the 27th
SIGCSE Technical Symposium on Computer Science Education,
pp. 190–194, ACM, Philadelphia, Pa, USA, March 1996.

[21] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The
BlueJ system and its pedagogy,” Journal of Computer Science
Education, vol. 13, no. 4, 2003.

[22] BlueJ—the interactive Java environment. http://www.bluej
.org/.

[23] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first
in introductory computer science,” in Proceedings of the 34th
SIGCSE Technical Symposium on Computer Science Education,
pp. 191–195, Reno,Nev, USA, 2003.

[24] “Alice: an educational software that teaches students computer
programming in a 3D environment,” http://www.alice.org.

[25] A. Savidis, “Rapidly implementing languages to compile as
C++ without crafting a compiler,” Software—Practice and
Experience, vol. 37, no. 15, pp. 1577–1620, 2007.

[26] N. J. Coull, SNOOPIE: development of a learning support
tool for novice programmers within a conceptual frame-
work, Ph.D. thesis, School of Computer Science, University
of St Andrews, St Andrews, Scotland, UK, 2008, http://
research-repository.st-andrews.ac.uk/handle/10023/522.

[27] K. E. Gray and M. Flatt, “ProfessorJ: a gradual introduction to
Java through language levels,” in Proceedings of the 18th Annual



Advances in Human-Computer Interaction 25

ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 170–177, ACM, New
York, NY, USA, 2003.

[28] R. L. Shackelford and A. N. Badre, “Why can’t smart students
solve simple programming problems?” International Journal of
Man-Machine Studies, vol. 38, no. 6, pp. 985–997, 1993.

[29] R. Jeffries and J. R. Anderson, “Novice lisp errors: unde-
tecte losses of information from working memory,” Human-
Computer Interaction, vol. 1, no. 2, pp. 107–131, 1985.

[30] J. Bonar and E. Soloway, “Preprogramming knowledge: a
major source of misconception in novice programmers,”
Human-Computer Interaction, vol. 1, no. 2, pp. 133–161, 1985.

[31] J. J. Cañas, M. T. Bajo, and P. Gonzalvo, “Mental models
and computer programming,” The International Journal of
Human-Computer Studies, vol. 40, no. 5, pp. 795–811, 1994.

[32] M. C. Jadud, “Methods and tools for exploring novice
compilation behaviour,” in Proceedings of the 2nd International
Computing Education Research Workshop (ICER ’06), vol.
2006, pp. 73–84, ACM, New York, NY, USA, 2006.

[33] C. Murphy, G. Kaiser, K. Loveland, and S. Hasan, “Retina:
helping students and instructors based on observed program-
ming activities,” in Proceedings of the 40th ACM Technical
Symposium on Computer Science Education (SIGCSE ’09), pp.
178–182, Chattanooga, Tenn, USA, 2009.

[34] M.-H. Nienaltowski, M. Pedroni, and B. Meyer, “Compiler
error messages: what can help novices?” SIGCSE Bulletin, vol.
40, no. 1, pp. 168–172, 2008.

[35] W. M. McKeeman, “Programming language design,” in Com-
piler Construction: An Advanced Course, F. L. Bauer and J.
Eickel, Eds., vol. 21 of Lecture Notes in Computer Science, pp.
515–519, Springer, Berlin, Germany, 1976.

[36] J. F. Pane, C. Ratanamahatana, and B. A. Myers, “Studying
the language and structure in non-programmers’ solutions to
programming problems,” The International Journal of Human-
Computer Studies, vol. 54, pp. 237–264, 2001.

[37] J. F. Pane, B. A. Myers, and L. B. Miller, “Using HCI techniques
to design a more usable programming system,” in Proceedings
of the IEEE Symposia on Human Centric Computing Languages
and Environments (HCC ’02), p. 198, IEEE Computer Society,
Washington, DC, USA, 2002.

[38] C. R. Litecky and G. B. Davis, “A study of errors, error-
proneness, and error diagnosis in Cobol,” Communications of
the ACM, vol. 19, no. 1, pp. 33–37, 1976.

[39] J. J. Horning, “What the compiler should tell the user,” in
Compiler Construction: an Advanced Course, F. L. Bauer and
J. Eickel, Eds., vol. 21 of Lecture Notes in Computer Science, pp.
525–548, Springer, Berlin, Germany, 1976.

[40] B. Shneiderman, “Designing computer system messages,”
Communications of the ACM, vol. 25, no. 9, pp. 610–611, 1982.

[41] P. J. Brown, “Error messages: the neglected area of the
man/machine interface,” Communications of the ACM, vol. 26,
no. 4, pp. 246–249, 1983.

[42] T. Flowers, C. A. Carver, and J. Jackson, “Empowering students
and building confidence in novice programmers through
gauntlet,” in Proceedings of the 34th ASEE/IEEE Frontiers in
Education Conference (FIE ’04), vol. 1, pp. T3H-10–T3H-13,
October 2004.

[43] J. Jackson, M. Cobb, and C. Carver, “Identifying top Java errors
for novice programmers,” in Proceedings of the 35th Annual
Conference Frontiers in Education (FIE ’05), pp. T4C-24–T4C-
27, October 2005.

[44] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer,
“What would other programmers do? Suggesting solutions to
error messages,” in Proceedings of ACM Conference on Human

Factors in Computing Systems (CHI ’10), Atlanta, Ga, USA,
April 2010.

[45] C. Burrell and M. Melchert, “Augmenting compiler error
reporting in the Karel++ Microworld,” in Proceedings of the
20th Annual Conference of the National Advisory Committee
on Computing Qualifications (NACCQ ’07), pp. 41–46, New
Zealand, 2007.

[46] D. Grune and C. J. H. Jacobs, Parsing Techniques: a Practical
Guide, Springer, Berlin, Germany, 2nd edition, 2008.

[47] J. Scholtz and S. Wiedenbeck, “Using unfamiliar programming
languages: the effects on expertise,” Interacting with Comput-
ers, vol. 5, no. 1, pp. 13–30, 1993.

[48] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers,
“Searching for type-error messages,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’07), pp. 425–434, San Diego, Calif,
USA, 2007.

[49] L. Zolman, STLFilt: an STL error message decryptor for C++.
2005. http://www.bdsoft.com/tools/stlfilt.html.

[50] N. E. Boustani and J. Hage, “Improving type error messages
for generic Java,” in Proceedings of the ACM SIGPLAN
Symposium on Partial Evaluation and Program Manipulation
(PEPM ’09), pp. 131–140, Savannah, Ga, USA, 2009.

[51] C. L. Jeffery, “Generating LR syntax error messages from
examples,” ACM Transactions on Programming Languages and
Systems, vol. 25, no. 5, pp. 631–640, 2003.

[52] A. Dix, J. Finlay, A. Gregory, and R. Beale, Human-Computer
Interaction, Prentice Hall, Upper Saddle River, NJ, USA, 2nd
edition, 1998.

[53] D. A. Norman, The Psychology of Everyday Things, Basic Books,
New York, NY, USA, 1988.

[54] M. H. Ng Cheong Vee, B. Meyer, and K. L. Mannock,
“Empirical study of novice errors and error paths,” Tech. Rep.,
ETH Zurick, Zurick, Switzerland, 2005.

[55] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and
T. Carey, Human-Computer Interaction, Addison Wesley, New
York, NY, USA, 1994.

[56] G. A. Miller, “The magical number seven, plus or minus
two: some limits on our capacity for processing information,”
Psychological Review, vol. 63, no. 2, pp. 81–97, 1956.

[57] L. Barfield, The User Interface: Concepts and Design, Addison-
Wesley, Reading, Mass, USA, 1994.

[58] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers Principles,
Techniques, and Tools, Addison-Wesley, Reading, Mass, USA,
1986.

[59] L. Murphy, G. Lewandowski, R. McCauley, B. Simon, L.
Thomas, and C. Zander, “Debugging: the good, the bad,
and the quirky—a qualitative analysis of novices’ strategies,”
in Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’08), pp. 163–167, ACM,
2008.

[60] B. Reeves and C. Nass, The Media Equation: How People Treat
Computers, Television, and New Media Like Real People and
Places, Cambridge University Press, New York, NY, USA, 1996.

[61] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying
and correcting Java programming errors for introductory
computer science students,” in Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education, pp. 153–
156, Reno, Nev, USA, February 2003.

[62] B. Shneiderman, Designing the User Interface: Strategies
for Effective Human-Computer Interaction, Addison-Wesley,
Reading, Mass, USA, 1992.



26 Advances in Human-Computer Interaction

[63] G. M. Weinberg, The Psychology of Computer Programming,
New York, NY, USA, Dorset House Publishing, 1998, Silver
Anniversary Edition.

[64] J. Nielsen, Ten usability heuristics. http://www.useit.com/
papers/heuristic/heuristic list.html.

[65] J. Yang, “Explaining type errors by finding the source of a type
conict,” in Proceedings of the Scottish Functional Programming
Workshop, P. W. Trinder, G. Michaelson, and H.-W. Loidl, Eds.,
vol. 1 of Trends in Functional Programming, pp. 59–67, 2000.

[66] R. W. Picard, Affective Computing, The MIT Press, Cambridge,
Mass, USA, 1997.

[67] R. Navarro-Prieto and J. J. Cañas, “Are visual programming
languages better? The role of imagery in program comprehen-
sion,” The International Journal of Human-Computer Studies,
vol. 54, no. 6, pp. 799–829, 1999.

[68] D. A. Carrington, B. McEniery, and D. B. Johnston, “PSP
in the large class,” in Proceedings of the 14th Conference on
Software Engineering Education and Training (CSEET ’01),
IEEE Computer Society, pp. 81–88, Charlotte, NC, USA,
February 2001.

[69] GCC, the GNU Compiler Collection. http://gcc.gnu.org/.
[70] J. Nielsen, “Heuristic evaluaiton,” in Usability Inspection

Methods, J. Nielsen and R. L. Mack, Eds., John Wiley & Sons,
New York, NY, USA, 1994.

[71] S. Fitzgerald, G. Lewandowski, R. McCauley et al., “Debug-
ging: finding, fixing and flailing, a multi-institutional study of
novice debuggers,” Computer Science Education, vol. 18, no. 2,
pp. 93–116, 2008.

[72] Bloodshed Software. MinGW C++ compiler. http://www.blo-
odshed.net/devcpp.html.

[73] Microsoft Developer Network. Microsoft Visual C++. http://
msdn.microsoft.com/en-us/visualc.

[74] Borland. C++ Builder. http://www.borland.com/.


