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Abstract

Mid-level processes on images often return outputs in functional form. In
this context the use of functional data analysis (FDA) in image analysis is
considered. In particular, attention is focussed on shape analysis, where the
use of FDA in the functional approach (contour functions) shows its supe-
riority over other approaches, such as the landmark based approach or the
set theory approach, on two different problems (principal component anal-
ysis and discriminant analysis) in a well-known database of bone outlines.
Furthermore, a problem that has hardly ever been considered in the liter-
ature is dealt with: multivariate functional discrimination. A discriminant
function based on independent component analysis for indicating where the
differences between groups are and what their level of discrimination is, is
proposed. The classification results obtained with the methodology are very
promising. Finally, an analysis of hippocampal differences in Alzheimer’s
disease is carried out.

Keywords: Form analysis, Multivariate funcional data analysis, Curve
classification, Shape discrimination, Principal component analysis, outlines

1. Introduction

Functional data analysis (FDA) provides statistical procedures for func-
tional observations (a whole function is a datum). The goals of functional
data analysis are basically the same as those of any other branch of statistics.
Ramsay and Silverman (2005) give an excellent overview. Ferraty and Vieu
(2006) provide a complementary and very interesting view on nonparametric
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methods for functional data. The field of FDA is quite new and there is still a
lot of work to be done, but in recent years several applications have been de-
veloped in different fields (Ramsay and Silverman, 2002). Furthermore, the
software that the authors used is available on the website for those books.
The wide variety of disciplines where FDA is applied is also shown through
the Special Issue on Statistics for Functional Data (González-Manteiga and
Vieu, 2007) published in this journal in 2007. Some examples of these fields
of application are: climatology, chemicals, geophysics and oceanology, eco-
nomics, remote sensing, demographics (Delicado, 2011), materials science
(Berrendero et al., 2011), biostatistics or genetics (López-Pintado and Romo,
2011; Li and Chiou, 2011). A mixture of practical and theoretical aspects is
found in Ferraty and Romain (2011).

Many mid-level processes on images return outputs in functional form,
such as granulometries and other morphological curves (Soille, 2003), or
spectral-energy descriptors (González et al., 2004, pp. 468). Although FDA
techniques are specifically designed to deal with functions and are natural
tools for their analysis, FDA has hardly been used in image analysis (to the
best of our knowledge, the only article that uses FDA for analyzing 2 dimen-
sional profiles is Nettel-Aguirre (2008)). The reason for this could be because
FDA is quite new (the first book on FDA was published in 1997 (Ramsay
and Silverman, 2005)), and it is not very well known in the image processing
community.

Shape analysis is a field where functions are frequently used to represent
shape (Kindratenko, 2003). According to Stoyan and Stoyan (1994), shapes
can be described by three kinds of tools: firstly, set descriptors and math-
ematical morphology tools; secondly, using landmarks (point description);
and thirdly, employing a function describing the contours (see Kindratenko
(2003) for a review of various contour functions and methods for their anal-
ysis).

One of the objectives of this study is to highlight the advantages of the
use of FDA in image analysis, and particularly in shape analysis. In Section 2
we analyze a well-known database of bones with these three approaches (the
set theory approach, the landmark based approach and the functional ap-
proach) and compare their results in two of the main problems in form statis-
tics (Stoyan and Stoyan, 1994): the study of the main sources of variation
among the shapes (principal component analysis), and classification among
different classes (discriminant analysis). The analysis of contour functions by
FDA gives more meaningful results. The contour functions used in Section 2
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are multivariate (two functions define the contours). Recently, independent
component analysis (ICA) has been successfully used for the classification
of univariate curves (Epifanio, 2008). This methodology is extended to the
multivariate case in Section 3.2, where a discriminant function based on ICA
is also introduced. Discriminant results obtained with this methodology are
very promising (in Section 3.2 a small comparative review is also given). Sec-
tion 4 shows a FDA application in the analysis of magnetic resonance (MR)
scans in order to study the hippocampal differences among the subjects of
three groups: controls, patients with mild cognitive impairment (MCI), and
patients with early AD (Alzheimer’s disease). Finally, conclusions and some
open problems are discussed in Section 5.

2. Shapes through three approaches

In order to compare the three perspectives, we decide to use a well-known
and extensively studied database, which is publicly available: the bone shapes
from a paleopathology study analyzed in Ramsay and Silverman (2002, Ch.
4). Furthermore, this database has been analyzed previously in the literature
using both landmarks and images, so it is perfect for our purposes. A total
of 68 outlines were studied, which correspond to 52 non-eburnated and 16
eburnated femora. They considered 12 landmarks (see Shepstone et al. (1999)
for details about data and identification and construction of these landmarks)
1.

Apart from the landmarks, the images from which they were extracted
are also available 2 (see Shepstone et al. (2000) for details about the data).
As explained in the file, these images are not binary, but they can be eas-
ily binarized because the background (zone without bone) is coded as zero.
Although there are 121 images in that file, we only consider the images corre-
sponding to the 68 cases available for the landmarks. Each image is rotated
so that the ’bottom’ of the condyles sits on the bottom of the image (as ex-
plained in Shepstone et al. (2000), each femur was rotated in the horizontal
plane until the articular surface was parallel with the plane of the camera
lens). Furthermore, all left femora were reflected to produce ’right’ images

1available together with the code on website: http://www.stats.ox.ac.uk/
∼silverma/fdacasebook/boneshapechap.html

2available on website: http://www.stats.ox.ac.uk/∼silverma/data/bones.tar.gz
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so that the left side of any image indicates the lateral side and the right side
the medial.

2.1. Landmark description

Each individual outline yields a vector of 24 coordinates (12 landmarks
in 2 dimensions). In order to analyze the sample of 68 outlines, we follow the
approach explained in Dryden and Mardia (1998, Chapter 5). The library
shapes (Dryden, 2007) of free software R (R Development Core Team, 2010)
provides the routines for this analysis.

Firstly, a generalized Procrustes analysis is carried out to register land-
mark configurations into optimal registration using translation, rotation and
scaling. Note that in Ramsay and Silverman (2002, Chapter 4) an ordinary
Procrustes analysis was carried out, where two configurations were matched
(each configuration is matched to the original mean configuration). However,
we use a generalized Procrustes analysis (procGPA with default arguments),
which was developed to match configurations when more than two objects
are available, as in our case. Therefore, our results do not coincide with
those presented in Ramsay and Silverman (2002, Chapter 4). Fig. 1 shows
the Procrustes mean shape scaled to unit size. We standardize for size by
dividing by the centroid size, which is our measure of size (see Dryden and
Mardia (1998, Chapter 2) for details). The centroid size is the square root
of the sum of squared distances from each landmark to the centroid.

Secondly, the routine procGPA also returns the principal component
analysis. To visualize the effect of each principal component (PC) easily,
we draw vectors from the mean shape to a shape at +6 standard deviations
along the PCs, except for the first PC where we use +2 standard deviation.
In Fig. 2 we can see these vectors.

The first four principal components explain 92.76% in total: 84.62%,
3.26%, 2.96% and 1.92% of variability, respectively. There appears to be a
high dependence between certain landmarks, as indicated by the fact that
the first PC explains such a large proportion of the variability. The first PC
includes the movement of many landmarks outwards, whereas there is less
movement in the intercondylar notch (landmarks 6, 7 and 8), and especially
in landmark 7. On the other hand, the second PC involves a shift inwards
for landmarks 6 and 7. The third and fourth PCs show more complex, non
symmetrical movement in landmarks.

We are also interested in discovering how arthritic bones differ from con-
trols. In Ramsay and Silverman (2002, Chapter 4), for the principal com-
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Figure 1: Procrustes mean shape of bones, with 12 landmarks used.
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Figure 2: The mean shape with vectors (see text for details) along the first PC (a), the
second PC (b), the third PC (c) and the fourth PC (d).
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ponent scores, a t-test was carried out to compare the eburnated and non-
eburnated bones. As explained in Jolliffe (2002, Chapter 9), PCA can be
used in discriminant analysis in order to reduce the dimensionality of the
analysis, assuming the covariance matrix is the same for all groups. How-
ever, we have to be aware that there is no guarantee that the separation
between groups will be in the direction of the high-variance PCs, the sep-
aration between groups may be in the directions of the last few PCs. On
the other hand, each PCs contribution in linear discriminant analysis can
be assessed independently thanks to their uncorrelatedness. We compute all
PCs, and we consider only those for which the difference (between eburnated
and non-eburnated bones) is significant with α = 0.05, that is to say, when
the p-value of the t-test is less than 0.05.

The difference is only significant on component 3 of 24 (p-value = 0.002).
Using leave-one-out cross validation with linear discriminant analysis (lda
function from library MASS (Venables and Ripley, 2002)) for the scores of
this component, 16 errors are obtained: 2 false positives (non-eburnated
bones that are classified as eburnated) and 14 false negatives (eburnated
bones that fail to be so classified). If we use component 3 together with
component 7, which is the following component with the smallest p-value
(0.052), the number of errors is the same (16 errors), with 4 false positive
and 12 false negative. Note that this is an underestimation of the true error
rate, since we are computing PCA and choosing the components with all
samples; even so, this error rate will be worse than those that we will obtain
with the other perspectives. This was predictable because more information
(not just 12 points) about the shapes will be used in other perspectives.

2.2. Set description

Before the analysis of the images, position and size information will be
filtered out. Remember that ’left’ images have already been reflected, and
all them have already been rotated (see Shepstone et al. (2000)). We re-
move location by translating each image to the origin in such a way that its
centroid coincides with the origin. Images are also standardized for size, in
the same way as we did with the landmark approach. Scale is removed by
dividing through the centroid size. If {Xj} (j = 1, ..., k) is the set of all the
points in each digitalized figure, each point is divided by the centroid size

(
√

∑k
j=1 ||Xj − X̄||2, where X̄ is the average or centroid, and || · || stands for

the Euclidean norm).
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As shapes are considered as sets, we compute the PCA as explained in
Horgan (2000). Here, a variable X , which can only take value 1 or 0 de-
pending on whether it belongs to the shape or not, is associated with each
position of the image. We therefore do PCA for binary data. Note that PCA
is equivalent to a Principal coordinate analysis (classical multidimensional
scaling) of the matrix of Euclidean distances between the observations (see
Horgan (2000) for details). For that reason, according to Gower (1966), PCA
can provide a plausible low-dimensional representation when all variables are
binary.

The percentages of variance accounted for the first four principal compo-
nents are 13.62%, 9.47%, 8.37% and 6.22% with a cumulative total of 37.67%.
44 components are necessary in order to capture 90.39% of the variability.
The loadings in the first four principal components are represented as grey
levels, as done in Horgan (2000), and appear in Fig. 3. Bright grey levels
indicate positive loadings, and dark negative ones. An interpretation of them
is not easy. As a tentative interpretation: the first component is greatly con-
centrated on the external part of the condyles, the second component on the
right condyle, while the third component is concentrated on left condyle. On
the other hand, the fourth component is associated with the joint between
condyles and the top part of the image.

For the discriminant analysis, we follow the same strategy as in the land-
mark approach. We compute all PCs with all data, and we consider only
those for which the difference (between eburnated and non-eburnated bones)
is significant. Now, five components are significant: 2, 3, 41, 43 and 59. If
we compute the misclassification rate by leave-one-out as before, the best
classification with one component is obtained by the second component (15
errors, 3 false positive and 12 false negative). If two components are used,
the best classification is achieved by components 2 and 3, giving 12 errors
(4 false positive and 8 false negative). Although in this approach (and the
following) more than two components could be considered jointly, we restrict
ourselves to classifying with only two components, for the following reasons:
with only two components we try to avoid an overfitted model, and in fact
we obtain a simple and parsimonious model which is able to classify with
very good results; two components (dimensions) are easier to interpret and
represent graphically; considering only pairs is computationally faster than
considering all the possible subsets and finally, as only one component is sig-
nificant in the landmark approach, the use of many more components in the
other approaches would not be a fair comparison.
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Figure 3: Loadings in the first PC (a), the second PC (b), the third PC (c) and the fourth
PC (d), for the set approach.

However, the error rates obtained before (15 and 12 for one and two com-
ponents, respectively) are too optimistic, as we are using all the data for
obtaining the PCs. As explained in Ripley (1996, Chapter 2) or Hastie et al.
(2009, Chapter 7), a double or nested cross-validation should be done. The
double cross-validated error rate estimation that we propose makes use of the
cross validation methodology in two stages in order to estimate the overall er-
ror rate of the whole procedure, also taking into account the feature-selection
method, which must be implemented in the training phase (see Ambroise and
McLachlan (2002) for a detailed discussion of this point). First, each observa-
tion (bone) is deleted in turn (external cross-validation). For the remaining
samples, we carry out the PCA and select those components for which the
difference is significant. As mentioned previously, we restrict ourselves to
classifying with only two components, therefore we selected the pair from
the selected components that gives the smallest error rate by leave-one-out
cross-validation (internal cross-validation) with linear discrimination for the
remaining samples. Using the scores of the two selected components, we
calculate the linear discriminant classifier with the internal samples. The
scores of the initially deleted observation for these two chosen components
can be easily obtained as we have their loadings; it is a simple inner product.
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We use the linear classifier previously built to predict the class label for the
initially deleted observation. This prediction is preserved to produce the (ex-
ternal) leave-one-out estimate of the prediction error, because this process
is repeated in turn for each of the observations. Of course, for each obser-
vation (external iteration), different subsets of PC can be selected. As PCA
is computed with different data, PCs from different external iterations are
not comparable, especially those with low variance. For example, component
20 in one iteration could be quite different from component 20 obtained in
another iteration.

By the double cross-validation strategy, a total of 15 errors are obtained
(3 false positive and 12 false negative).

2.3. Function description

With the standardized images (position and size filtered out) as explained
in Section 2.2, we consider the contour (outline) of the shapes. The contour
is a closed planar curve that consists of the elements of the figure boundary.
Although other contour functions can be used (see Kindratenko (2003) for
a systematic review of various contour functions), we consider the contour
parameterization by its arc length, which can be applied to any contour (note
that other contour functions have limitations). The tracing begins counter-
clockwise at the easternmost outline point in the same row as the centroid,
using bwtraceboundary from the image toolbox of MatLab. We normalize
these functions in such a way that the perimeter length is eliminated and
the functions are defined on [0,1]. Although they are recorded discretely,
a continuous curve or function lies behind these data. In order to convert
the discrete curve observations into a true functional form, we approximate
(smooth) each curve by a weighted sum (a linear combination) of fifty-one
Fourier bases (note that this basis system is periodic with period 1), and de-
termine the coefficients of the expansion by fitting data by least squares, as
explained in Ramsay and Silverman (2005, Chapter 4). Each curve is, there-
fore, completely determined by the coefficients in this basis, and each function
is computable for any desired argument value t ∈ [0, 1]. All this work has
been done by means of fda library (Ramsay and Silverman, 2005). The free
library fda for MatLab and R, available at http://www.functionaldata.org, is
especially designed to work with functional data (Ramsay et al. (2009) is a
book about this library). Finally, in order to have the same number of points
for all functions, we evaluate the functions in 100 equidistant points from 0
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to 1. We therefore have two pairs of functions (representing coordinates)
{X(t), Y (t)} for each bone, with t ∈ [0, 1].

Let us see how to apply PCA in this infinite dimensional domain. A short
answer would be that summations change into integrations, but details are
given in the following section.

2.3.1. PCA for functional data

In order to see how PCA works in the functional context, let us recall
PCA for Multivariate Data analysis (MDA). In MDA, principal components
are obtained by solving the eigenequation

Vξ = ρξ, (1)

where V is the sample variance-covariance matrix, V = (N−1)−1X′X, where
in turn X is the centered data matrix, N is the number of individuals ob-
served, and X’ indicates the transpose of X. Furthermore, ξ is an eigenvector
of V and ρ is an eigenvalue of V.

In the functional version of PCA, vectors are not considered any more,
but PCs are replaced by functions or curves. Let {x1(t), . . . , xN(t)} be the
set of observed functions. The mean function can be defined as the aver-
age of the functions point-wise across replications (x̄(t) = N−1

∑N
i=1 xi(t)).

Let us assume that we work with centered data (the mean function has
been subtracted), and define the covariance function v(s,t) analogously by
v(s, t) = (N − 1)−1

∑N
i=1 xi(s)xi(t). As explained in Ramsay and Silverman

(2005, Chapter 8), the functional counterpart of equation 1 is the following
functional eigenequation

∫

v(s, t)ξ(t)dt = ρξ(s), (2)

where ρ is still an eigenvalue, but where ξ(s) is an eigenfunction of the
variance-covariance function, rather than an eigenvector. Now, the princi-
pal component score corresponding to ξ(s) is computed by using the inner
product for functions

si =
∫

xi(s)ξ(s)ds. (3)

Note that for multivariate data, the index s is not continuous, but a discrete
index j replaces it: si =

∑

j xijξj.
There are several strategies for solving the eigenanalysis problem in equa-

tion 2. In order to retain the continuity of the original functional data and
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to reduce the amount of information, we have used the approach proposed in
Ramsay and Silverman (2005). Instead of using a lot of variables obtained
by discretizing the original functions, this type of analysis works with the
coefficients of the functions expressed as a linear combination of known basis
functions (Fourier in our case, although other bases could be used, such as
B-splines). Functional PCA can be carried out easily by using the library
fda. For a complete review of computational methods for functional PCA,
see Ramsay and Silverman (2005).

Regarding the problem of how many PCs can be computed, let us note
that in the functional context, “variables” now correspond to values of t,
and there is no limit to these. Therefore, a maximum of N – 1 components
can be computed. However, if the number of basis functions K defining the
curves is less than N, K would be the maximum.

2.3.2. Functional PCA with multiple functions

Our data consist of two functional data per bone. Functional PCA can
deal with two (or more) functional observations per individual, two curves
x(t) and y(t). Let {(x1(t), y1(t)), . . . , (xN(t), yN(t))} be the set of pairs
of observed functions. Two mean functions (x̄(t), ȳ(t)) and two covariance
functions (vXX(s, t), vY Y (s, t)) can be computed for each kind of function,
respectively. Furthermore, we can calculate the cross-covariance function of
the centered data by:

vXY (s, t) = (N − 1)−1
N
∑

i=1

xi(s)yi(t). (4)

A typical PC is defined by a two-vector ξ=(ξX , ξY ) of weight functions
(two curves). They are solutions of the eigenequation system V ξ = ρξ, which
in this case can be written as

∫

vXX(s, t)ξX(t)dt+
∫

vXY (s, t)ξY (t)dt = ρξX(s)
and
∫

vXY (s, t)ξX(t)dt +
∫

vY Y (s, t)ξY (t)dt = ρξY (s).
(5)

Now, the PC score for the i -th bivariate function (xi(t), yi(t)) is computed by
si =

∫

xiξX +
∫

yiξY , because the inner product between bivariate functions
is defined by the addition of the inner products of the two components. This
amounts to stringing two functions together to form a composite function.

To solve the eigenequation system, each function xi(t) and yi(t) is replaced
by a vector of values or basis coefficients, and a single synthetic function is
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built by joining them together. When PCs have been computed, we separate
the parts belonging to each coordinate. Again, this procedure is implemented
on the fda library and is explained fully in Ramsay and Silverman (2005).

The proportion of variance explained by each eigenfunction is computed
as in the multivariate case, by each eigenvalue ρ divided by the sum of all
eigenvalues. Moreover, for each PC, the variation accounted for each original
curve x(t) and y(t) is given by

∫

ξX(s)ξX(s)ds and
∫

ξY (s)ξY (s)ds respec-
tively, because their sum is one by definition.

The first four principal components for the bones explain 80.52% of the
whole variance, made up of 55.00%, 10.59%, 9.02% and 5.91% respectively.
90.21% of the variability is explained by the first seven components.

In order to display the effect of each PC, the mean function is displayed
together with the functions obtained by adding (plotted with +) and sub-
tracting (plotted with -) a suitable multiple of the principal component func-
tion in question, in our case two standard deviations of each component. In
this way, the effects of each PC are usually clarified (see Ramsay and Silver-
man (2005, Chapter 8)). They are shown in Fig. 4. The first component
correspond to the length of the left condyle, but also to the shape of the
intercondylar notch. 63.33% of the variation in this component is due to the
y-coordinates (function). The second component is associated with a broader
intercondylar notch (for negative scores) and the shape of the top of the im-
age. In this component, 95.13% of variability comes from the x-coordinates.
Component 3 is associated with the left condyle and the top right hand part
of the image. The proportion of the variability in this component is 74.59%
for the x-coordinates. Finally, component 4 is concentrated almost entirely
on the internal part of the right condyle. 58.12% of the variation in this
component is due to the y-coordinates.

For the discriminant analysis, we follow the same strategies as in the set
approach. First, PCA with all data is calculated, but only those components
for which the difference is significant are considered. Now, three components
are significant: 1, 6 and 10. If we compute the misclassification rate by leave-
one-out as before, the best classification with one component is obtained by
the sixth component (16 errors, 3 false positive and 13 false negative) and
the tenth component (16 errors, 0 false positive and 16 false negative). If
two components are used, the best classification is achieved by components
1 and 6, giving 11 errors (2 false positive and 9 false negative). However,
these estimations are optimistic, and we have carried out the double cross
validation strategy explained in Section 2.2, whose estimation has returned
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Figure 4: The effects of the first PC (a), the second PC (b), the third PC (c) and the
fourth PC (d), for the functional approach.

13 errors (2 false positive and 11 false negative).
In other papers, where functional principal component analysis is included

as part of the discrimination analysis, such as Hall et al. (2001) or Ramsay
and Silverman (2002, Chapter 8), they do not select the components, but
they consider the first J components, where J is chosen by cross-validation.
Although there is no guarantee that the first components will be the most
discriminant, we have also considered this strategy to show the comparison
with our selecting strategy.

We have used double-cross validation. First, each observation (bone) is
deleted in turn (external cross-validation). For the remaining samples, we
carry out the PCA and select the first J components that give the smallest
error rate by leave-one-out cross-validation (internal cross-validation) with
linear discrimination for the remaining samples. Using the scores of the first
J components, we calculate the linear discriminant classifier with the internal
samples. The scores of the initially deleted observation for the first J com-
ponents can be easily obtained as we have their loadings; it is a simple inner
product. We use the previously built linear classifier to predict the class label
for the initially deleted observation. This prediction is preserved to produce
the (external) leave-one-out estimate of the prediction error, because this
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process is repeated in turn for each of the observations. Of course, for each
observation (external iteration), J can vary. By the double cross-validation
strategy with the first J components, a total of 13 errors are obtained (3
false positive and 10 false negative). This is the same number of errors as
we have obtained with our selecting strategy, with only two components.
However, a look at the chosen Js reveals that J very often corresponds to 15
and 16, a very high number taking into account that the eburnated group is
constituted by 16 eburnated femora. Therefore, overlearning should not be
discarded when the first J components are considered in this case.

2.4. Comparison of the three approaches

Firstly, note the different distribution of the variability for the three ap-
proaches. With the first four PCs with landmarks, 92.76% of the variability
is considered. However, 84.62% of the variance is concentrated on only one
component, whereas the second component only accounts for 3.26% of the
variability; therefore, it is not very representative. Predictably, the landmark
approach cannot collect fine details in variation since we only work with 12
points. On the contrary, with the set approach the variability is extremely
partitioned: 44 components are needed in order to capture 90.39% of the
variability. Interpreting 44 components is not an easy issue. On the other
hand, in an intermediate position between the other two approaches, we find
the functional PCA, which gives a variability decomposition which is not so
extreme: we can obtain more details on variability decomposition than with
landmarks, without being so extremely decomposed as in the set approach.

As regards the discriminant problem, obviously (as less information is
considered), the classification results for landmarks are the worst. Similar
results are obtained for the set and functional approach (15 versus 13 errors,
respectively). However, there are other procedures for carrying out func-
tional data classification that will improve the results with respect to the set
approach results.

3. ICA in functional data classification

3.1. Curve discrimination

Different alternatives have been proposed for the curve discrimination
problem, although mainly for univariate functions. Two of the first meth-
ods were a regularized version of LDA called penalized discriminant analysis
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(PDA) proposed by Hastie et al. (1995), and a generalized linear regres-
sion approach proposed by Marx and Eilers (1999). More recently, some
non-parametric alternatives have been proposed, such as the kernel one by
Ferraty and Vieu (2003), the k-NN one by Burba et al. (2009) or the local
linear one by Barrientos-Marin et al. (2010). Biau et al. (2005) also studied
k-nearest neighbor classifiers for functional data. Other recent advances in
functional data classification appear in the following papers, and all involve
some type of preprocessing (sometimes implicit) of the functional data. Rossi
and Conan-Guez (2005) suggested the use of neural networks for nonlinear
regression and classification of functional data; the use of neural networks
was also considered by Ferré and Villa (2006), who studied a preprocessing
approach in which functional data are described via a projection on an opti-
mal basis (in the sense of the inverse regression approach), and subsequently
submitted to a neural network for further processing; James and Silverman
(2005) studied a non linear regression model for functional descriptors; Rossi
and Villa (2006) and Li and Yu (2008) used Support Vector Machines (SVM)
for functional data classification. Finally, Epifanio (2008) proposed the use
of several shape descriptors. One of those descriptors were coefficients of in-
dependent component analysis (ICA) components. In Epifanio (2008), those
descriptors were compared with classical and the most recent advances in
univariate functional data classification in three different problems (an artifi-
cial problem, a speech recognition problem and a biomechanical application).
The first two problems were considered in Ferraty and Vieu (2003), where
they also performed a wide-ranging comparative study. In Epifanio (2008),
the proposed descriptors were compared with the methodology proposed in
Hastie et al. (1995), in Ferraty and Vieu (2003) including the MPLSR method
in its semi-metric and PCA, in Rossi and Conan-Guez (2005), in Ferré and
Villa (2006), in Rossi and Villa (2006). As Li and Yu (2008) use the same
example (a subproblem of the speech recognition problem) as Rossi and Villa
(2006), we can also compare the results in Epifanio (2008) with those of Li
and Yu (2008). The descriptors proposed in Epifanio (2008) gave results
better than or similar to those obtained using the previous techniques (see
Epifanio (2008) for details).

3.2. Coefficients of Independent Component Analysis Components

Coefficients of independent component analysis (ICA) components can
be computed easily, and provide better than or similar results to those from
existing techniques (Epifanio, 2008). Furthermore, they can be extended
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easily to the multivariate functional case, as we will explain in this section.
Although Epifanio (2008) can be seen for details, a brief summary is given
here.

Assume that we observe n linear mixtures x1(t), ..., xn(t) of n independent
components sj(t),

xi(t) =
n
∑

j=1

aijsj(t), for all i. (6)

In practice, we have discretized curves (xi = {xi(tk); k = 1, ..., m}), therefore
we can consider them×n data matrixX= {xi(tk)} to be a linear combination
of independent components, i.e. X = SA, where columns of S contain the
independent components and A is a linear mixing matrix. ICA attempts to
“un-mix” the data by estimating an un-mixing matrix W where XW = S.
Under this generative model, the measured “signals” in X will tend to be
“more Gaussian” than the source components (in S) due to the Central Limit
Theorem. Thus, in order to extract the independent components or sources,
we search for an un-mixing matrix W that maximizes the nongaussianity of
the sources.

We compute ICA for functions in the training set. The coefficients in
this base (S) can be easily obtained by least squares fitting (Ramsay and
Silverman, 2005). If y = {y(tk)}mk=1 is a discretized function, its coefficients
are: (S′S)−1S′y. These coefficients constitute the feature vector used for the
classification step. We assume that all functions are observed at the same
points, otherwise we can always fit a basis and estimate the functions at the
required points.

Before the application of the ICA algorithm, it is useful to reduce the
dimension of the data previously by principal component analysis (PCA)
(for details, see Hyvärinen et al. (2000, Section 5)), thus reducing noise and
preventing overlearning (Hyvärinen et al., 2001, Section 13.2). Therefore
we compute the PCA first, retaining a certain number of components, and
then estimate the same number of independent components as the PCA
reduced dimension. The FastICA algorithm (which includes the PCA com-
putation in the software available for MatLab and R: http://www.cis.hut.fi/
projects/ica/fastica/), with the default parameters, is used for obtaining ICA
(Hyvärinen, 1999).

When having multivariate functional data, we can concatenate observa-
tions of the functions into a single long vector, as done for computing bivari-
ate functional PCA (Ramsay and Silverman, 2002). Then, the coefficients in
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ICA base can be used in a classical linear discriminant analysis.
In Epifanio (2008) and Epifanio and Ventura (2008), the components were

not selected, but the first J components were considered, where J was chosen
by cross-validation, such as in Hall et al. (2001) and Ramsay and Silverman
(2002) with functional PCA. Here, besides extending the methodology pro-
posed in Epifanio (2008) to the multivariate functional case, we also propose
to select the components in a similar way to that in Section 2 with PCA. Fur-
thermore, we propose to compute a linear discriminant function α(t) based
on ICA as done in Ramsay and Silverman (2002, Chapter 8) with PCA. This
function α(t) would be the functional counterpart of the linear discriminant
or canonical variate (Ripley, 1996, Chapter 3), therefore,

∫ 1
0 α(t)xi(t)dt would

return the score or discriminant value of xi(t) on the discriminant variable.
If we select two ICA functions (I,K) from the ICA base, and apply

classical linear discriminant analysis to the ICA coefficients for these two
functions, the two coefficients (c1, c2) of the linear discriminant are obtained.
From them, we can build a, a vector of the same length as the number of
the ICA basis functions considered, constituted by zeros except for positions
(I,K), with values c1 and c2, respectively.

The linear discriminant values can be expressed in terms of the ICA
coefficients and coefficients of linear discriminants l: l(S′S)−1S′X. For a
specific individual i: l(S′S)−1S′xi. At the same time, we can approximate
∫

α(t)xi(t)dt by
∑m

k=1 α(tk)xi(tk) if we consider the separation between points
as one. Therefore, we estimate α(t) at points tk as l(S′S)−1S′.

3.3. Bone classification by multivariate functional data discrimination using
ICA

We apply the previous methodology to the bones, following the same
strategies as for functional PCA in Section 2.3.2. Firstly, we compute ICA
with all data. As aforementioned, PCA is calculated before ICA, and only
18 components remain since components associated with eigenvalues of less
than 1e-7 are not considered, to avoid singularity of the covariance matrix (as
implemented in the FastICA algorithm). For these 18 independent compo-
nents, the coefficients of 8 components present significant differences between
the two groups: 1, 2, 7, 10, 12, 14, 16 and 18. We compute the misclassifica-
tion rate by leave-one-out, and the best classification with one component is
obtained by the first (12 errors, 4 false positive and 8 false negative), while
for two components by the first and seventh components (8 errors, 2 false
positive and 6 false negative). In Fig. 5, the functional linear discriminant
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Figure 5: Mean shape of bones, and α(t) based on ICA.

α(t) computed for components 1 and 7, together with the mean shape (in a
solid line) are shown (the segments show how the points on the mean shape
are perturbed in the direction defined by the discriminant function). The
length of the segments shows the zones in which the discriminant score in-
creases most rapidly. In Ramsay and Silverman (2002, Chapter 8), the mode
of variability corresponding to a functional linear discriminant α(t) based on
the first six principal components of the notch (not the complete bone shape)
is displayed. This result is very similar to the one obtained here, if we look
at the intercondylar notch.

However, those previous estimations are optimistic, and we have carried
out the double cross validation strategy explained in Section 2.2, whose esti-
mation has returned 11 errors (3 false positive and 8 false negative). As with
PCA, we also consider the double cross-validation strategy with the first J
components, which gives 12 errors (4 false positive and 8 false negative). This
is bigger than the number of errors that we have obtained with our selecting
strategy, with only two components. Furthermore, a look at the chosen J ’s
reveals that J very often corresponds to 16, a very high number taking into
account that the eburnated group is constituted by 16 eburnated femora.

It is also very interesting and important to plot the scores of each indi-
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Figure 6: Scores for PCA components 3 and 7 of landmark approach (a), 2 and 3 of set
approach (b), 1 and 6 of functional PCA (c) and 1 and 7 of ICA (d).

vidual on each component because these scatter plots can reveal interesting
features, such as clusters of individuals having similar behavior on the com-
ponent in question. For all the approaches, the scores for the two components
for which the best result was obtained in each approach is displayed in Fig.
6. The eburnated femora are represented by a cross, while the non-eburnated
are represented by a circle. The separation between the two groups is clearer
using the ICA approach, where eburnated femora appear mainly in the lower
triangular part of the figure.

We now consider the classification obtained by a regularized version of
LDA called penalized discriminant analysis (Hastie et al., 1995), using the
classical ridge penalty (PDA/ Ridge). In the comparative among different
methods for curve discrimination (Epifanio, 2008), this method provided an
excellent performance. For this method, the shrinkage penalty coefficient (λ)
needs to be established. We have considered a double-cross-validation for
the estimation of the error rate. Several values for λ (1e-04, 5e-05, 1e-05,
5e-06, 1e-06 and 5e-07) have been proposed and used in the fda function of
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the R library mda (Hastie and Tibshirani, 2006). These proposed values for
λ have been selected by computing the performance by leave-one-out for a
bigger set of values of λ, where the best result was obtained for λ = 1e-5 (the
proposed values for λ are around this value): 10 errors (3 false positive and
7 false negative). However, as before, this is an optimistic estimation since λ
is selected with the training data. For the double-cross-validation strategy,
each observation is removed in turn. For each proposed λ, we perform a
penalized discriminant analysis leaving-one-out of the remaining samples,
and establishing which λ gives the best performance. For this λ, we predict
the class of the observation initially removed, using the remaining samples.
This prediction is preserved to produce the (external) leave-one-out estimate
of the prediction error, because this process is repeated in turn for each of the
observations. Of course, for each observation (external iteration), different
λs can be selected. By the double cross-validation strategy, the number of
errors is 15 (7 false positive and 8 false negative).

Analogously, we have used the nonparametric curve discrimination method
(NPCD) with the semi-metric based on functional principal component anal-
ysis (FPCA) and multivariate partial least-squares regression (MPLSR) in-
troduced by Ferraty and Vieu (2003) (instead of λ, the tuning parameter is
now the number of components used in the semi-metric, from 1 to 7). The
best results using leave-one-out were obtained for 1 component for the first
semi-metric (16 errors, 0 false positive and 16 false negative), and 4 factors
for the second semi-metric (11 errors, 6 false positive and 5 false negative).
Using the double-cross-validation strategy, the number of errors is 18 (2 false
positive and 16 false negative) for the FPCA semi-metric and 14 (6 false
positive and 8 false negative) for the MPLSR semi-metric.

In short, in the functional approach, the best discriminant result is ob-
tained by our methodology, with two ICA components (11 errors), which
is better than functional PCA (13 errors) and PDA/Ridge (15 errors) or
NPCD/FPCA (18 errors) and NPCD/MPLSR (14 errors). The result with
ICA is better than that of the set approach (15 errors) or the landmark
approach (16 errors in the optimistic estimate).

4. Hippocampus study in Alzheimer’s disease

The early diagnosis of Alzheimer’s disease (AD) is a very important is-
sue in our society, since the administration of medicines to subjects who are
subtly impaired may render the treatments more effective. Mild cognitive
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impairment (MCI) is considered as a diagnostic entity within the continuum
of cognitive decline towards AD in old age (Grundman et al., 2004; Petersen,
2004). Longitudinal studies indicate a direct relation between the hippocam-
pal volume decrease in and cognitive decline (Jack et al., 1999; Mungas et al.,
2001). However, volumetric measurements are simplistic characteristics and
structural changes at specific locations cannot be reflected in them. If mor-
phological changes could be established, then this should enable researchers
to gain an increased understanding of the condition. This is the reason why
nowadays shape analysis is of an enormous importance in neuroimaging cir-
cles (Styner et al., 2004).

In order to understand the way in which hippocampi differ among three
different groups (controls, patients with MCI, and patients with early AD),
we have their magnetic resonance (MR) scans, which will be transformed
into multivariate functional data, as explained in following section. These
multivariate functional data will be used in a functional discriminant analysis.
We will apply the methodology presented in the previous section, with some
small modifications.

4.1. Brain MR scans processing

28 individuals were analyzed in this study: 12 controls (5 males and 7
females, with mean age 70.17 and standard deviation 3.43), 6 patients with
MCI (2 males and 4 females, with mean age 75.50 and standard deviation
3.33), and 10 patients with early AD (1 male and 9 females, with mean age
71.50 and standard deviation 4.35). All the subjects were recruited from
the Neurology Service at La Magdalena Hospital (Castelló, Spain) and the
Neuropsychology Service at the Universitat Jaume I. All experimental pro-
cedures complied with the guidelines of the ethical research committee at
the Universitat Jaume I. Written informed consent was obtained from every
individual or their appropriate proxy prior to participation. Selection for the
participant group was made after careful neurological and neuropsychological
assessment. The neuropsychological test battery involved Digit Span, Simi-
larities, Vocabulary, and Block Design of the WAIS-III; Luria’s Watches test,
and Poppelreuter´s Overlapping Figure test. MR scans were carried out with
a 1.5T General Electric system. A whole brain high resolution 3D-Gradient
Echo (FSPGR) T1-weighted anatomical reference scan was acquired (TE 4.2
ms, TR 11.3 ms, FOV 24 cm; matrix = 256×256×124, 1.4 mm-thick coronal
images).
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Hippocampi were traced manually on contiguous coronal slices (or sec-
tions) following the guidelines of Watson et al. (1992), and Hasboun et al.
(1996). The hippocampus segmentation was done by an expert tracer with
MRIcro software, blinded to the clinical data of the study subjects. The
segmentation of each hippocampus lasted approximately 40 minutes. An
example of the left and right hippocampal contour (drawn in white) in a
coronal view can be seen in Fig. 7 (a), while a sagital view of one of the
hippocampus can be seen in Fig. 7 (b). Each hippocampus is described by
around 30 coronal slices.

(a) (b)

Figure 7: Hippocampal outlines in a coronal (a) and sagital (b) slice.

As hippocampal volume is related to the patient’s condition, we describe
each slice by its area (note that if these areas are added up, we obtain an
amount proportional to the volume). The area for each slice can be estimated
as the number of pixels belonging to each segmented hippocampal slice. The
area of the left and right hippocampus in each slice is computed. Therefore,
for each subject we have two functional data. However, the argument is
not time, as is usual, but space: the coronal axis, the slices. Only the left
and right hippocampal area in each coronal slice (with 1.4mm of separation
between them) are available. These functions are measured discretely, but
in principle they really represent continuous functions, since (obviously) the
hippocampus is a continuous structure in the space. Therefore, they are
functional data. In Fig. 8, we can see the two functional data for the 28
individuals. As the coronal length of each hippocampus is variable, in order
to have a common axis (33 slices), we complete the raw data by adding zeros
when the hippocampal surface is finished. Moreover, for all subjects, the first
and last slice area are zero.
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Figure 8: Right (a) and left (b) hippocampal areas for each slice.

4.2. Results of the hippocampus study

Firstly, we consider the right and left hippocampal volumes, which are
classical variables in the literature. Volumes are estimated as the sum of the
slice areas. When volumes of right and left hippocampi are considered, the
number of errors are 5, using linear discriminant analysis and leave-one-out
cross-validation. However, if hippocampi are considered separately, 6 and 7
errors are obtained for the left and right hippocampi, respectively.

Secondly, bivariate functional data compiling slice areas for the left and
right hippocampi are considered. Data are smoothed by 31 (nearly the same
number of slices due to the low sampling rate) Fourier basis functions. The
next step is to perform a registration process in order to take into account the
phase variation (some hippocampi only appear in 24 slices). One registration
for the left and another one for the right hippocampus function are carried
out, applying the function registerfd of the package fda (Ramsay et al., 2009),
using the minimum eigenvalue of a cross-product matrix as the continuous
registration criterion and the mean function as the target function (Ramsay
and Silverman, 2005). Default parameters are used for this function, except
for the number of iterations, which is increased in order to satisfy the criterion
for convergence.

We now use the methodology presented in Section 3.2 with some small
changes due to the nature of the problem. In this problem the number of
samples (slices) practically equals the dimension of the data (28). Although
we could compute as many independent components as signals, this results in
overlearned components having single spikes (Särelä and Vigário, 2003), and
these components are not interpretable. As explained in Särelä and Vigário
(2003), one solution for circumventing overlearning could be to acquire more
samples, but in this case it is not possible to obtain more slices (this would
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increase the already long acquisition time of MR brain scans). Another
solution is reducing dimension: the number of free parameters is n2/2, so
in this problem we compute a maximum of 7 components (n <

√
2 · 30),

taking into account that each hippocampus is described by around 30 slices
(samples). So, the first modification is that we compute the independent
components varying their number from 1 to 7. For each case, we consider
the components for which the difference among the 3 groups is significant.
However, in this problem the t-test cannot be used as before because we have
3 groups, not 2, so we use the Kruskal-Wallis test.

As our objective is the way in which the hippocampi differ among the
three groups, we show the combination for which the best discriminant results
are obtained, by leave-one-out. The error estimate obtained in this way will
be optimistic, but we want to investigate the shape variation among the
groups, obtaining the linear discriminant functions.

The number of misclassifications for the left hippocampi is 2, with 3 sig-
nificant components (1, 2 and 5) from the 5 computed, whereas it is 7 for
the right hippocampi, with 2 components, from the 2 components computed,
which are significant. Note that in Epifanio and Ventura (2008), when we
used all the components without selection, the best result was 3 errors, ob-
tained with 5 components for the left hippocampi. Figs. 9 (a) and (b) display
the mode of variability corresponding to the resulting α(t)s, for the left and
right hippocampi, respectively, with the vertical lines. The solid curve is the
mean. The dashed, dash-dotted and dotted curves represent the mean of the
controls, patients with MCI, and patients with early AD, respectively. The
first linear discriminant explains 96.82 % and 91.86% of the variance between
groups, for the left and right hippocampi, respectively.
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Figure 9: The mode of variability corresponding to α(t)s, for the left (a) and right (b)
hippocampi. See the text for details.

Head, body and tail are the three parts that make up a hippocampus
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(Hasboun et al., 1996). Both for the right and left hippocampus, the zone
where the linear discriminant functions are bigger in absolute value corre-
sponds to the head of the hippocampi. In other studies, with other method-
ologies, the same conclusion was reached (Wang et al., 2003). In particular,
the point where α(t)s takes its maximum absolute value for the left hip-
pocampus is 22, while it is 24 for the right hippocampus. We can find the
left and right slices of each subject corresponding to those maximum values,
inverting the corresponding warping function of the registration process and
rounding to the nearest integer. Besides the (left and right) slice obtained
for each individual with this process, we also consider the previous and sub-
sequent slice to the determined slice, so as not to base the following analysis
only on one single slice. In short, three slices for the right and three slices
for the left hippocampi are considered for each subject. The averages of the
areas of these three slices are shown in Fig. 10 (b), together with the vol-
umes for the right and left hippocampi (Fig. 10 (a)). In Fig. 10 (b) is easier
to discriminate between groups. The number of misclassifications with the
mean hippocampal head areas is 3 by leave-one-out.
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Figure 10: Left vs. right hippocampal volumes (a), and mean of the areas of the determined
hippocampal head slices (b). Crosses, stars and circles indicate the controls, patients with
MCI, and patients with early AD, respectively.

Instead of considering simply the area of the three slices determined, we
can consider their outlines. We parameterize the outlines of each of the
three determined slices by arc length with 45 points. The different slices are
translated to the origin in such a way that their centroids coincide with the
origin. The tracing begins counterclockwise in the easternmost outline point
in the same row as the centroid, using the function bwtraceboundary of the
image toolbox of MatLab, as was done before with the bones. A polygonal
basis (Ramsay et al., 2009) with fifteen functions is used to represent these
outlines. The averages of the three slices considered per individual are cal-

26



culated for the left and right hippocampi. Therefore, we have two pairs of
functions {X(t), Y (t)} (which represent the mean outlines of the three de-
termined slices, X(t) gives the X coordinates, while Y (t) the coordinates in
the Y axis) for each individual, one pair for the right and another pair for
the left hippocampus, i.e. a total of four functional data per individual. In
Fig. 11 the averages of these functions are shown. The dashed, dash-dotted
and dotted curves represent the mean of the controls, patients with MCI,
and patients with early AD, respectively.
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Figure 11: Averages for the left (a) and right (b) slices of the determined hippocampal
head slices.

Using these four functions jointly, we have deleted one individual each
time and computed ICA without that observation. The linear discriminant
scores obtained with the 27 individuals are used to predict the class of the
observation deleted. With this leave-one-out strategy and one independent
component, only 2 misclassifications are achieved, which are very promis-
ing results. Remember that we selected the slices of the hippocampal head
with the 28 individuals, and therefore the estimated error will be optimistic,
but this application is simply an illustration of the methodology. Note that
in Epifanio and Ventura (2008), without selecting the components, we also
obtained 2 errors but using three components instead of one. With the set
approach (concatenating the images for the right and left hippocampi ob-
tained with the mean outlines), 4 errors are obtained with two components,
the most discriminant ones as explained in Section 2.2 (with only one compo-
nent, 4 errors are also obtained). With functional PCA and two components
(the most discriminant ones in each step of the double cross-validation, as
explained in Section 2.3.2) 8 errors are obtained (10 errors with one compo-
nent). Therefore, the advantage of using ICA is clear.
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5. Conclusions and Discussion

In this study we have revealed the role that FDA can play in image
analysis, where despite many descriptors being functions, FDA has hardly
been applied. In particular, we have focused our attention on shape analysis,
where the use of FDA in the functional approach has shown its superiority
over other approaches, such as the landmarks or the set theory approach,
in two different problems (PCA and discriminant analysis) in a well-known
database of bone outlines (see Section 2.4).

Furthermore, we have dealt with a problem that has hardly ever been con-
sidered in the literature: the multivariate functional discrimination (most of
the existing literature on functional classification considers univariate curves
datasets). We have also proposed a discriminant function based on ICA, and
the classification results obtained with this methodology are very promising.

Unlike other papers in the literature where functional PCA is included
as part of the discrimination analysis, we have proposed selecting the com-
ponents. This has also been proposed with ICA. Our option has been to
consider all the components and select the significant ones. However, in the
hippocampus study, the number of samples practically equals the dimension
of the data, and we had to make a small modification in order to avoid
overlearned components. The problem of how many components should be
estimated is an open question in ICA (Hyvärinen et al., 2001). This a point
for future study, and maybe an order could be established such as in Cheung
and Xu (1999). Another point to study is improving the smoothness of the
functions by using a roughness penalty.

We have also applied FDA in the analysis of MR scans in order to study
the hippocampal differences among the subjects in three groups: controls,
MCI, and patients with early Alzheimer’s disease. The database is quite small
for obtaining valid medical conclusions, although the methodology could be
used without modification with a larger database. This is a novel application
of FDA in image analysis, where we use a spatial argument for the functional
data instead of the temporal argument commonly used in FDA.

In the application, we have seen that the head was the most discrimina-
tive part. This point is very interesting, since if segmentation was reduced
only to the hippocampal head, the segmentation time would be shorter.
Furthermore, it is easier to implement an automatic segmentation for the
hippocampal head only, which will decrease that time even more, and will
eliminate variability due to the subjectivity of the manual tracer. (Remem-
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ber that the total time for the manual segmentation of one hippocampus was
approximately 40 minutes).

Some additional points to study are as follows: Firstly, from the statistical
point of view, the use of ICA in other statistical problems such as functional
logistic regression or visualization (Hyndman and Shang, 2010), or the use of
ICA in the construction of a semi-metric for use with non-parametric tech-
niques (Ferraty and Vieu, 2006) (PCA-type semi-metrics could be replaced
by ICA-type semi-metrics by just considering the ICA expansion instead of
the PCA-based expansion. This is a very interesting field of study, since
compared with PCA, ICA allows better observation of the underlying struc-
ture of the data. PCA is a purely second-order statistical method, whereas
ICA requires the use of higher-order statistics; therefore, ICA can be seen
as an extension to PCA.). Secondly, from the image analysis point of view,
is the application of FDA in other problems of shape analysis such as the
definition of confidence and quantile sets (Simó et al., 2004), or its use when
the closed contour of a figure is not always available, such as in Domingo
et al. (2005), maybe using a discontinuous function. Thirdly, FDA can be
exploited in other fields of image analysis besides shape analysis, such as
texture analysis (Epifanio et al., 2009). Finally, in order to introduce the
methodology more easily, we have restricted the analysis to two dimensional
outlines, but FDA can be used for surfaces (multidimensional functions with
two arguments). In fact, in the future, we are going to work in three di-
mensions in the hippocampal analysis. The methodology presented can be
extended for functions with two (or more) arguments.
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González, R., Woods, R., Eddins, S., 2004. Digital image processing using
MATLAB. Prentice Hall.
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López-Pintado, S., Romo, J., 2011. A half-region depth for functional data.
Computational Statistics and Data Analysis 55 (4), 1679–1695.

Marx, B., Eilers, P., 1999. Generalized linear regression on sampled signals
and curves: a P-spline approach. Technometrics 41, 1–13.

Mungas, D., Jagust, W. J., Reed, B. R., Kramer, J. H., Weiner, M. W.,
Schuff, N., Norman, D., Mack, W. J., Willis, L., Chui, H. C., 2001.
MRI predictors of cognition in subcortical ischemic vascular disease and
Alzheimer’s disease. Neurology 57, 2229–2235.

Nettel-Aguirre, A., 2008. Nuclei shape analysis, a statistical approach. Image
Analysis and Stereology 27, 1–10.

Petersen, R. C., 2004. Mild cognitive impairment as a diagnostic entity. J.
Intern. Med 256, 183–194.

R Development Core Team, 2010. R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, ISBN 3-900051-
07-0.
URL http://www.R-project.org

Ramsay, J. O., Hooker, G., Graves, S., 2009. Functional Data Analysis with
R and MATLAB. Springer.

Ramsay, J. O., Silverman, B. W., 2002. Applied Functional Data Analysis.
Springer.

Ramsay, J. O., Silverman, B. W., 2005. Functional Data Analysis, 2nd Edi-
tion. Springer.

Ripley, B. D., 1996. Pattern recognition and neural networks. Cambridge
University Press.

Rossi, F., Conan-Guez, B., 2005. Functional multi-layer perceptron: a non-
linear tool for functional data analysis. Neural Networks 18 (1), 45–60.

33



Rossi, F., Villa, N., 2006. Support vector machine for functional data classi-
fication. Neurocomputing 69 (7–9), 730–742.
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