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Abstract

This  report  describes  how  USARSim  and  MATLAB  have  been 
combined with some graphic design tools such as 3D Studio Max 
and Adobe Photoshop producing a personalized simulator  which 
combines a high level of detail with a real time computing speed 
and a flexible interface for users.  What is achieved in this way is 
that students of robotics of the University Jaume I in Castelló have 
at  their  disposal  a  tool  that  allows  them  to  carry  out  virtual 
experiments with robots, whose satisfaction level is similar to that of 
a real test at the university.
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1. INTRODUCTION 
 

The tests with robots realized in the frame of the investigation involve several 

familiar problems, derived from both the physical characteristics of the available 

robots and the environment of the experiment. 

On the one hand, the robots leading the tests need to be configured again and 

again in order that the advances consequence of those essays can be 

incorporated. In this way, it is common there to be continuous operations of 

assembly or substitution of sensors, cameras and actuators of all kinds which 

have to be acquired in the case they are not at disposal, with the consequent 

cost in time and money. 

Similarly, the spaces needed for such experiments are not always available 

and, when they are, a multitude of retouches are required  to get them adjusted 

to the changeable conditions of the ongoing investigation. 

A good solution for these problems consists of moving the whole experiment to 

a virtual world where everything is always available and with a reduced cost of 

time and money [1]. To this end several simulators for robots have been 

developed in either 2D (Stage [2], MobileSim [3]) and 3D (Gazebo, Simbad [4], 

Webots [5]), but most of them fail to capture the interest of users, mainly due to 

their lack of realism. In other words, the graphical quality of the virtual 

environment turns out to be insufficient to allow the test to be easily followed 

and convincing for the researcher and, in addition, this fact makes it more 

difficult or even impossible to use the simulator for vision-based software 

development. 

Unreal Tournament 2004 (UT2004) is a commercial first person shooter video 

game with a powerful physics engine (Epic Games’ Unreal Engine 2.5) built for 

graphical realism and smooth gameplay [6]. USARSim is a high fidelity 3D robot 

simulator built on top of Unreal Engine 2.5, which provides detailed models with 

high quality physics of interaction allowing accurate simulations [7]-[11]. 

Besides, USARSim is an open source software that let users to build their own 

environments and robots. These reasons have led us to be part of the 

USARSim’s active development community. 
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Figure 1 shows the ERA robot (ERRATIC Robot developed by Videre Design) 

moving inside the TI building of the University Jaume I of Castellón during a test 

with the simulator developed in this work. This picture can be compared with a 

photograph taken with the same angle corresponding to a real experiment 

(figure 2). 

 
 

Fig. 1.  ERA robot during a simulation in the TI building. 

Fig. 2.  ERA robot during a real experiment in the TI building. 
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Figure 3 and 4 show images of classical simulators with low level of graphics 

realism. On the one hand, in figure 3 can be observed a screenshot 

corresponding to the Stage 2D simulator, which distinguishes the path of three 

robots moving through the classroom building at the Superior School of 

Technology and Experimental Sciences of the University Jaume I in Castellón. 

The result is not always easy to interpret. On the other hand, the figure 4 shows 

an image corresponding to the Gazebo 3D simulator in which a Pioneer P2AT 

robot can be distinguished while focusing with his camera a spherical form in 

front of a green background. In view of these images, there can be no doubt 

that 3D simulators offer a greater degree of clarity when informing a researcher 

how his experiment is developing. In this respect, Webots provides a step 

forward, offering high quality 3D graphics, but for the educational community it 

has, by contrast, the disadvantage of being a closed source commercial 

simulator. 

 

Fig. 3.  Player Stage 2D robot simulator. 



L

 
Fig. 4.  Gazebo simulator showing a Pioneer2AT. 

 

In conclusion, this work tries to improve the image and sense of satisfaction that 

most current simulators offer, taking advantage of the enormous graphical and 

simulation capacity of the current video games like Unreal Tournament 2004, as 

well as the increasing computing speed of machines, offering a powerful tool for 

the educational and research community. 
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2. OJBECTIVES 

The objective of this work is to obtain a high fidelity 3D simulator using custom 

models of environments and robots and combining testable and reliable 

experiences with real time execution speed. 

On the one hand, it must be obtained a 3D model of a robot with the appropriate 

characteristics in shape, texture and physics. 

On the other hand, it is required a 3D environment rich with different scenarios 

and levels that allow varied experiments.  

In addition, for the experiment to be testable, both the robot and its environment 

must have a match in the material world. This has been possible by modeling a 

robot available in the Intelligent Robotics lab at the University Jaume I and the 

whole building containing the latter and its immediate surroundings. 

Finally, it is also important that the simulator provides a powerful and flexible 

interface suitable for researchers and students in robotics. In this sense, it was 

decided to use MATLAB and its package of features for USARSim. 
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3. STATE OF THE ART 
 
More than six years ago appeared USARSim as a simulation tool linked to the 

3D engine of Unreal Tournament (UT 2003). Since then, researchers around 

the world have made use of this tool for developing a multitude of works for the 

educational community with different purposes, but with one common 

characteristic: all of them have benefited from the huge graphics and simulation 

capabilities of this software to move their experiments to a virtual world, 

obtaining a configurable, infinite, economical and always available testing field. 

So, we can find lines of research in the field of psychology of human-robot 

interaction [12], learning models in recognition of the environment [13], objects 

and people [14] with vision systems, sonar or laser, simulators for unmanned 

aerial vehicles [15], frameworks for the development of robotic games [16]... 

This research aims to go one step further in graphical quality of models, trying 

to gain in realism while maintaining a high computing speed. In this way it will 

be possible to improve the reliability of vision-based experiments, while 

increasing researchers’ satisfaction. 
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4. METODOLOGY 
 

The procedure followed to move experiments with robots to a virtual plane can 

be divided into the phases of design, dynamic diversification, testing and 

programming, each different stage needing the use of distinct software tools as 

shown in the flow chart of the figure 5. 

 

Fig. 5.  Flowchart and software used during the simulator development. 
 

4.1. Design 
 
Firstly, the 3D modeling of the TI building, the ERA robot and of some movable 

objects has been carried out by using 3D Studio Max 9.0 (see the figure 6) [12]. 

The TI building is important for this simulator because it contains the 

Department of Engineering and Computer Science and some robotics 

laboratories. The dimensions and shape of every element have been defined 

from drawings and measurements, whereas the textures, which give the 

appearance of color and material, have been obtained by means of photos 

treated with Adobe Photoshop CS2. 
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Secondly, some collision hulls have been added to every object in order to 

define the limits of their contour when coming into contact with other objects or 

surfaces. These envelopes have been defined from one or more simple 

geometric shapes, such as a box, a cylinder or a sphere, simplifying the 

physical behavior of objects and improving the simulator performance. 

 

Thirdly, each object together with its collision hull has been exported from 3D 

Studio Max 9.0, generating an ASCII file with extension .ase 

This is the recommended format for UnrealEd can import 3D objects created by 

other applications. 

 

 

Fig. 6.  ERA robot design phase using 3D Studio Max 9.0. 

 

Finally, from UnrealEd 3.0 textures have been imported first and then the 

objects, generating texture libraries and sets of elements, which have been 

gathered as they belong to the ERA robot, to movable objects or to the static 

environment. UnrealEd is the level editor used to create levels for Unreal 

Tournament. 
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4.2. Dynamics Diversification 
 

At this stage all the 3D objects have been adjusted according to the nature of 

their dynamics. 

The static environment consists of motionless objects such as walls, floors, 

sidewalks, windows and some doors. From UnrealEd 3.0 these objects have 

been placed in their corresponding locations as Static Mesh, generating the TI 

building and its surroundings. Static Mesh is an UnrealEd term used to refer to 

objects that cannot be moved. Later, their graphic parameters concerning 

lighting have been adjusted to achieve a suitable appearance. The doors 

provided with motion, by contrast, have been placed in the virtual building as 

Karma Actor [13] or Mover [14] according to their mode of interaction, defining 

the parameters that govern their physical behavior. Karma Actor and Mover are 

both UnrealEd terms, the first one is used to refer to objects whose motion is 

defined by the Karma Physics Engine and the second one is used to call 

objects that can move between predefined positions and rotations. These doors 

also need some axes of rotation to restrict their movements. 

 

The movable objects, with which robots can interact, have been treated similarly 

to those doors provided with motion, but these have been included in a set 

named Toys. These are objects with simple geometric shapes and varied 

physics and dynamics which have been created with a double aim: to be used 

for grasping or vision-based recognition experiments; to serve as the basis for 

developing   any other object required by the educational community. Figure 7 

shows some of these objects. 
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Fig. 7. Movable objects for robot interaction. 

With the static elements and the movable objects in their right places, some 

points of light have been entered so that the whole virtual environment remains 

properly illuminated and offers a sensation of realism to the user. 

 

3D models in ASCII format corresponding to robot parts have been imported 

from Unreal Editor and, later, classified in a file called ERARobot, which 

contains groups of elements according to their function or location within the 

robot. Then, each one of these elements has been defined as a USARSim 

recognizable class, placing the resulting files in the folders listed in Table I. 
 
 

USARBot Classes USARModels Classes USARMisPkg Classes 
ERA 
ERARangeSensor 
ERASonarSensor 
USAR_ERALTire 
USAR_ERARTire 
USAR_ERASmallTire 

ERAComputerBody 
ERALasser 
ERALTire 
ERARTire 
ERASmallTire 

ERAComputer 
ERAComputerBody 

Table I.  USARSim ERA Robot Classes. 

 

Afterwards, the files USARMisPkg.ini and USARBot.ini have been modified 

from the System folder at UT2004 directory created when installing the game 

Unreal Tournament 2004 and then all classes have been compiled. The file 

USARBot.ini contains information about those robots used by USARSim and, 
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therefore, it has been necessary to insert a few lines to add the ERA robot to 

this list. Below are displayed the lines that have been entered in the 

USARMisPkg.ini file, in  a similar way, in order to define the computer on board 

of the ERA robot (ERAComputer) as an optional accessory consisting of only 

one element named ERAComputerBody. 

 

;------------------------------------------------------------------------------------------------------------------------------ 

; Computer mission package used for the ERA 

;------------------------------------------------------------------------------------------------------------------------------ 

[USARMisPkg.ERAComputer] 

Links = (LinkNumber = 1, LinkClass = Class'USARMisPkg.ERAComputerBody', DrawScale3D = 
(X=1.0, Y=1.0, Z=1.0), ParentLinkNumber = -1, SelfMount = "A") 
;------------------------------------------------------------------------------------------------------------------------------ 

; Computer Links used for the ERA 

;------------------------------------------------------------------------------------------------------------------------------ 

[USARMisPkg.ERAComputerBody] 

MountPoints = (Name = "A", JointType = "Revolute", Location = (X= 0.0, Y=0.0, Z=0.0), 
Orientation=(X = 1.5707963267948966192313216916398, Y = 0, Z = 0)) 

MountPoints=(Name="B",JointType= "Revolute", Location = (X= -0.0, Y = 0.0, Z= -0.0), 
Orientation=(X=1.5707963267948966192313216916398, Y=0, Z=0)) 

MaxSpeed=0.1745 

MaxTorque=20 

MinRange=0.0 

MaxRange=3.14159 
 
;------------------------------------------------------------------------------------------------------------------------------ 
 

 

This stage ends up by editing the usar_s.bat file in the mentioned System folder 

and changing the name of the current map by the one obtained by means of 

UnrealEd 3.0. 
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4.3. Testing 
 

The phase of testing has served to adjust and optimize all the work developed 

during the previous stages. 

 

Regarding the 3D models and the number of polygons that they are made up of, 

many experiments have been realized with virtual objects in different degrees of 

approximation to their real shape until obtaining high graphical quality models 

and real time execution speed. In order to avoid interferences produced by high 

resources consuming software, these tests have been carried out by using the 

simple interface under Windows that provides USAR_UI (see figure 8), taking 

as a reference the computational speed offered by a laptop with the following 

characteristics: 

 

Processor:   Intel Core Duo T2300 1.66 GHz 

RAM Memory:  2 Gb 667 MHz 

Video Card:       NVIDIA GeForce Go 7400 

 

 
 

Fig. 8.  USAR_UI user interface. 
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Concerning the elements provided with predefined movements such as some 

doors, during this phase has been redefined their speed, path and, in some 

cases, their behavior in the presence of robots or any other event that activates 

those movements. 

 

Likewise, the physical parameters of the movable objects have been adjusted 

again and until suitable dynamics were obtained. 

 

Similarly, the ERA robot has been the object of numerous additional tests with 

various objectives such as verifying the correct positioning of all its elements 

and sensors, confirming the readings of these ones, examining the images 

captured by its camera, checking the maximum speed and torque, etc. 

 

Moreover, obtaining a good lighting in the virtual environment has led to many 

trials with a high cost in time, since it takes UnrealEd 3.0 several minutes to 

calculate the quantity of light that affects  each one  of the multiple surfaces that 

conform the TI building and its surroundings. 

 

 

4.4. Programming 
 

Once adjusted both environment and robot, the next step was to set customized 

functions to provide users with the capability of controlling one or multiple robots 

as well as the information flow perceived by their sensors and cameras. 

 

This part of the work has been developed by means of MATLAB R2007b, 

turning this tool into a suitable interface between the user and USARSim due to 

a series of reasons shown bellow. 

 

 MATLAB allows functions for simulating mechanical systems to be created, 

generating graphical interfaces, achieving mathematical calculations, 

acquiring information and data from different hardware systems and, 

farther, managing databases.  
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 There exists a software package called MATLAB USARSim ToolBox [15], 

which combines MATLAB's functions (m files) with other functions Java to 

generate an interface between the user and USARSim. 

 The final aim of this work is to serve to scientific community and, therefore, 

it is very important to choose an interface that is familiar to its members 

such as MATLAB. 

 

Flow chart in Figure 9 shows the process followed to obtain the desired 

simulator. 

 

 
Fig. 9a. Classes flowchart. 
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Fig. 9b. Methodology flowchart. 
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During the process of creating, programming and testing of the 3D environment 

and robot it has been necessary to use different software applications to solve 

the various problems that this task entails. Here are the tools that have stood 

out as very useful or essential. 

 

 

5.1. Unreal Tournament 2004 and USARSim 

In the first place, it is important to highlight the importance of the couple of tools 

Unreal Tournament and USARSim. 

 

Work on USARSim began in late 2002 under an NSF ITR grant to study Robot, 

Agent, Person (RAP) teams in Urban Search And Rescue (USAR). As work 

was beginning, Epic Games released Unreal Tournament 2003, a first person 

shooter (FPS) video game available for multiple platforms and operating 

systems, whose Karma Physics engine was soon seen as a powerful simulation 

tool [17]. 

 

Currently, the Unreal Tournament 2004 engine (Unreal Engine 2.5) integrates 

Karma Physis SDK, offering high-quality graphics and high realistic simulation 

of physical systems, while maintaining a smooth real time data transfer. Unreal 

Engine 2.5 also incorporates other features that differentiate it from other 

contemporary engines: it has an object-oriented design, has a scripting 

language similar to Java and, moreover, Epic Games has developed a scripting 

language for allowing the introduction Unreal modifications, providing the 

scientific community make the Unreal Tournament engine a research tool. So, 

USARSim can be understood as a modification of Unreal tournement 2004 that 

incorporates a generous amount of prebuilt robot platforms, sensors and levels. 

Robot, sensor, and map models are inputted and compiled into UT2004. The 

UT2004 networking is proprietary, however, with the University of Southern 

California’s GameBots a protocol allows client controllers access to characters 
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in UT2004 via network sockets. The MATLAB USARSim toolbox connects to 

UT2004 through this protocol. The Unreal Client is used to generate video from 

the game. Using the multiview feature, multiple robot cameras can be captured 

and displayed on the screen. An image server can grab the video from the 

Unreal Client through a DirectX hook. 
 

5.2. 3D Studio Max v 9.0 
 

The environment where virtual robots will move around is the TI Building at 

University Jaume I of Castellón, which has an X-shaped section and five floors. 

The complexity of this environment suggests to use specialized software 

applications in order to carry out an accurate modeling. In this sense, it has 

been chosen Autodesk 3D Studio Max for this job. This is a widely used tool for 

modeling objects and recreating all kind of 3D scenes such as characters, 

objects or vehicles for video games, animation films, simulators of all kinds, 

computer graphics for architectural projects, etc … This feature has allowed 3D 

Studio Max to have very good ability when opening, importing, exporting or, in 

general, processing data from many applications necessary to complete the 

modeling work. Here are the main reasons why 3D Studio Max is ideal for the 

purposes of this paper. 

First, we used the floor plans and elevation of this building as the foundation for 

its development. These drawings have been created using Autodesk's 

AutoCAD and their source files in dwg format are available on the OTOP 

website. 3D Studio Max v 9.0 offers full compatibility for data import in dwg 

format and can treat them like any other object created with 3D Studio Max, 

retaining all its original properties as measures, dimensions, etc... 

 

Secondly, it is known that 3D models require textures that help to define the 

material they are made. 3D Studio Max lets you apply textures to objects in 

many formats and, more specifically, the Targa. tga 24-bit required by UnrealEd 

(level creator for Unreal Tournament). This will be essential during the 

development stage. 
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Third, this tool allows exporting objects in ASCII format with extension. ase. 

This type of file it is necessary for UnrealEd to be able to import 3D models 

while retaining all its properties of form, texture and collision hull. 

 

Finally, it is important to note the tremendous ability of 3D Studio Max when 

creating any type of character, object or environment in three dimensions, as 

well as its ease of use. 

 
 
 

5.3. Adobe Photoshop CS2 
 

As it can be learned from the previous section, this work has required modeling 

a wide variety of objects made of different materials and in different colors. 

Once built the 3D model of any such objects, the next natural step is to apply a 

distribution of textures that faithfully simulate those colors or materials. 

 

Textures can be obtained in several ways: searching through computer files or 

on the web, scanning images or taking photographs. For the development of 

this work have been used a lot of digital photographs and only two textures from 

images obtained from the web. In any case, it is not usual to found textures that 

do not require certain changes before being applied to a 3D model, which leads 

to the need of using photo editing software for this task. In addition, the Unreal 

level editor (UnrealEd) only supports textures in 24-bit Targa format file (. tga) 

and its pixel dimensions must be powers of 2, features very restrictive if you're 

looking for textures ready to use. 

 

To prepare all necessary textures for the virtual environment of the TI building 

as well as robots and other objects, we have chosen the Adobe Photoshop CS2 

due to a number of reasons listed below. 

 

Adobe Photoshop is the most commonly used graphic design tool, allowing 

image files exchange with many graphics applications, and therefore, with a 

huge variety of formats, among which is the Targa. 
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Finally, it is important to note that more than 100 textures have been created to 

complete this work and no one of them has required a transformation that could 

not be done by this application. 
 
 
 

5.4. Unreal Editor (UnrealEd) 
 

USARSim uses the Unreal Tournament 2004 graphics engine to carry out the 

simulation of robots moving through virtual environments. Thus, it is absolutely 

necessary to use the map editor of Unreal Tournament (Unreal Editor 3.0) to 

build a virtual environment compatible with this engine. 

 

Unreal Editor 3.0 allows creating high quality virtual objects and maps, offering 

a very complete working environment, similar to many software applications for 

3D design. Although Unreal Editor cannot possibly create objects with so much 

detail as other applications like 3D Studio Max, what makes it different from 

other 3D design software is its huge capacity to simulate the behavior of 

mechanical systems in virtual environments, requiring the setting of a reduced 

set of parameters. 

 

To facilitate the incorporation of models of objects created by other applications 

to their maps, Unreal Editor can import them easily admitting very common 

formats like. obj and. ase, being Studio 3D Max the recommended source for 

this purpose. This capability ensures the quality of the models used by Unreal 

and has been widely exploited in this work to the point that almost all of its 

components are modeled in 3D Studio Max. 
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5.5. MATLAB R2007b 
 

With all the elements necessary for virtual testing completed, we decided to use 

MATLAB as user–USARSim interface, due to a series of reasons detailed 

below. 

 

On the one hand, it is known throughout the scientific community the enormous 

power of this tool to perform mathematical calculations, simulating mechanical 

systems, generating and managing databases, creating custom functions and 

interfaces for each user and acquiring data from various systems and hardware. 

 

On the other hand, MATLAB has been for many years a widely used tool for 

students and researchers from around the world. This is expected to increase 

the number of potential users of this virtual environment as well as and their 

ability to customize it according to their purposes.  

 

In addition, as discussed in paragraph 3.1 of this work, there is a set of 

functions grouped in the package MATLAB USARSim ToolBox optimized for 

simulations of robots with USARSim. These functions allow commanding one or 

more robots and acquiring all data captured by their sensors, including images 

from their cameras. 
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6. DEVELOPMENT 

The procedure for moving the robot tests the virtual plane consists of several 

phases which, in turn, depend on which item you try to virtualize: a robot, an 

inanimate object or environment. 

 
 

6.1. Virtual robot creation

The Department of Engineering and Computer Science at the University Jaume 

I has 6 units ERA robot. Since its acquisition, these robots are doing many 

experiments to provide information to different lines of research. To expedite 

such testing and, in turn, make them more accessible we have chosen this type 

of robot. 

 

 

6.1.1. Drawings and measures 

To obtain a virtual model of the ERA robot it has been necessary to have all the 

dimensions that determine the size of all its elements. In this sense, we have 

proceeded to collect all documents containing such information. However, in the 

documents consulted we have not found all the dimensions that define the 

geometry of the robot, requiring some measurements on one of the available 

robots to be done. 

 

6.1.2. Pictures 

Once collected all the dimensions that give form to the 3D model of the robot, 

we must focus on the color and textures that will give real look at those 

materials that compose it. With this objective we have taken photographs of 
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different parts of the real robot, until obtaining a representative sample from 

each of the materials in it. 

 

The photographs have been treated with Adobe Photoshop CS2 to get the 

desired textures, which must meet two additional requirements to be used by 

UnrealEd: UnrealEd 3.0 only allows textures to be imported in 24 bit TARGA 

format (.tga file) and, moreover, their dimensions in pixels must be powers of 2. 

 

 

6.1.3. 3D Robot 

With the dimensions and textures of the robot it begins the development phase 

of the virtual model using 3D Studio Max. Figure 10 shows the 3D model of the 

ERA robot during its design in 3D Studio Max 9. 

 

 
 

Fig. 10. Robot model in 3D Studio Max 
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6.1.3.1 LowPoli approximation 

First we built the 3D model of the robot from its size, claiming that it be as close 

as possible to the real one without losing computing speed during the 

simulations. This was achieved by approximating the shapes of the robot to sets 

of geometric primitives, which shall be composed of a number of polygons or 

faces that is not too high and therefore consume a large amount of computation 

time. At this point, the 3D robot consists of several sets of elements to be 

separated or grouped to form independent entities according to the type of 

object they constitute. For example, sonar, laser, wheel, chassis... are separate 

entities to be treated differentially. In general, any element that has an individual 

job or can describe a relative motion respect the others must be regarded as 

independent. 

 

It is important to note that the map editor UnrealEd for Unreal Tournament 2004 

requires that imported objects consist of a single mesh with all its textures 

distributed according to a UVW map layout. In addition, these textures should 

be properly grouped and stored in a file with .utx extension. Figure 11 shows 

one of these .utx files containing the textures of the ERA robot laser. 

 

Second, each one of these separate elements has become a unique mesh. This 

operation removes any prior geometric information and converts the 3D object 

into a set of polygons defined by triangular faces. As stated, the greater the 

number of triangles, the greater the resemblance of the model with the real 

thing, but also the greater computational load. It is therefore necessary to reach 

a degree of reality simplification to solve the compromise between graphic 

quality and speed of simulation. 
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Fig. 11. UnrealEd texture browser showing some ERA laser textures. 

 

 

6.1.3.2. Material Multi-Subobject 

Then, with the small robot parts converted to mesh, we have proceeded to 

provide them with the corresponding textures. Most of the component parts of 

the robot have more than one color or texture and, in turn, can only be a single 

mesh. This requires the use of multi-subobject materials when working with 3D 

Studio Max, which can consist of as many textures as desired. 

 

Thus, it has been created a suitable material for each independent element 

(mesh) of the robot and its distribution has been defined on it by a UVW map, 

as required for proper textures import by UnrealEd. Figure 12 shows a 

screenshot of 3D Studio Max taken when applying its corresponding multi-

subobject material to the ERA robot laser mesh. 
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Fig. 12. ERA robot laser and its multi-subobject material in 3D Studio Max. 

 

 

 

6.1.3.3. Collisions 

Once finished the physical appearance of the elements that compose the robot, 

they must be provided with an envelope that defines their collision outline. 

Otherwise, the robot will pass through all surfaces in its path, falling for ever 

because it cannot even collide with the floor. 

 

UnrealEd allows assigning these collision envelopes not only to objects created 

using this program, but also to those imported in. ase format. However, there is 

a problem when using UnrealEd to define the collision hulls of imported objects, 

because those envelopes must whether match the mesh of the object or have 

very simple geometries (cubes, cylinders, spheres...). In the first case, the 
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computation time is usually very high, because the resulting envelope will 

contain a large number of triangles or faces. In the second case, we get a high 

computing performance, but it is not easy to set one simple geometric shape as 

a collision envelope. In the figure below you can see how a simple object like 

the ERA robot's computer takes several primitives to define acceptably its 

collision outline.  

 

 
 

Fig. 13. ERA robot’s computer collision hulls. 

This being the case, it was decided to use 3D Studio Max to define the collision 

envelopes of the items created with this program. Working with 3D Studio Max, 

the assignment of this type of outlines is very easy due to several reasons: 

 

First, and since the object is being created and with 3D Studio Max, there is no 

need to switch applications and envelopes can be created like any other shape. 

We can even make use of those primitives (simple shapes) that were used to 

create the object itself, which already have the appropriate shape and location. 
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Secondly, 3D Studio Max can export the collision envelope along with the 

modeled object. You only need to go to the properties menu of the primitives 

that define such envelopes and name them correctly (see table II). Once that is 

done, select the object’s mesh and those of the envelope and export them as 

an ASCII file . ASE with the name you want. 

 

Collision Hull Name Primitive Example 

MCDBX_Name Box MCDBX_ComputerChassis

MCDSP_Name Esphere MCDSP_ERAWheel 

MCDCY_Name Cylinder MCDCY_Columna 

MCDCX_Name Convex Mesh MCDCX_Extintor 

 

Table II. Collision hull names. 

 

 

6.1.4. Unreal Editor 

With all the robot parts completely modeled in 3D Studio Max and exported to 

ASE format, it is time to create a file that lets you store them in order to be 

accessed and understood by Unreal Tournament 2004 engine. To achieve this 

goal, we followed the following steps: 

 

1. From UnrealEd Static Mesh Browser, we imported the .ASE file 

corresponding to the part of the robot we wanted to save, by defining a 

suitable group for it (body, camera, wheels ...). 

 
2. Once imported and distributed in groups all the elements that make up 

the robot, we saved a static mesh file in .USX format. 

 

Following this procedure we obtained the file ERARobot.usx, which contains all 

the information of the appearance and collision hull of the robot, required to 

perform simulations with USARSim. In the figure below you can see the ERA 
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robot’s chassis, which was stored in the group chassis of the above mentioned 

file. 

  

 
 

Fig. 14. UnrealEd Static Mesh Browser showing ERA robot’s body. 

 

 

 

 

 

 

 

6.1.5. Virtual robot programming 
 

6.1.5.1. Classes 
 

Once the 3D model of the robot is obtained and stored it in a .USX file, the next 

step is to generate a series of files .UC to define classes for each part of the 

robot. To define the ERA robot, it has been necessary to have the following 

class hierarchy: 
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USARBot Classes  ERA.uc 

    ERARangeSensor.uc 

    ERASonarSensor.uc 

    sensor.uc (mirar si es una modificación) 

    USAR_ERALTire.uc 

    USAR_ERARTire.uc 

    USAR_ERASmallTire.uc 

 

USARModels Classes ERAComputerBody.uc 

    ERALasser.uc 

    ERALTire.uc 

    ERARTire.uc 

    ERASmallTire.uc 

 

USARMisPkg Classes ERAComputer.uc 

    ERAComputerBody.uc 

 

6.1.5.1.1. USARBot Classes 

ERA.uc defines the ERA robot as belonging to the class SkidSteeredRobot 

used by USARSim to simulate robots the rotation of which is produced by a 

change in the speed of rotation of the drive wheels. Skid Steered robots do not 

have steering wheels to change its orientation. Such is the case of P2DX and 

P2AT robots, both implemented in USARSim. ERA.uc class was obtained from 

the class P2DX.uc by modifying some lines to fit the physical parameters of 

ERA robot. 

 

USAR_ERALTire.uc defines the left driving wheel of the ERA robot as an 

extension of the class BulldogTire.uc, which is used by USARSim to simulate 

robots as P2DX or P2AT. In this file are set the parameters that define the 

physical behavior of the wheel, which is associated with the mesh called 

ERARobot.Wheels.ERALeftWheel, that is the mesh ERALeftWheel contained in 

the group Wheels at the static mesh file ERARobot.utx. 
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USAR_ERARTire.uc is similar to the previous class, but in this case the wheel 

is associated with the static mesh ERARobot.Wheels.ERAReftWheel. 

 

USAR_ERASmallTire.uc defines the ERA robot's rear idler (castwheel) as an 

extension of the class BulldogTire.uc, used by USARSim to simulate robots as 

P2DX. In this file we configured the physical parameters of that wheel and 

associated it with the static mesh called ERARobot.Wheels.ERASmallWheel. 

 

 
Fig. 15. P2DX and ERA robot wheels. 

 

ERARangeSensor.uc is equal to the USARSim class RangeSensor.uc, but in 

this case, we have changed the name to allow modifications that only affect the 

ERA robot's sensors. RangeSensor.uc is an extension of the class Sensor used 

as a basis for programming all types of USARSim robots sensors. 

RangeSensor, in turn, is used as a basis for sonar or laser sensors. 

 
ERASonarSensor.uc defines the operation and scale of the ERA robot sonar. 
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Fig. 16. 3D Studio Max screenshot showing an ERA robot’s sonar. 

 
6.1.5.1.2. USARModels Classes 
 
ERAComputerBody.uc defines the body of the ERA robot's computer as an 

extension of the class KDPart, used by USARSim as the basis for all parts of 

the non-wheeled robots. In this case, we configured the physical parameters of 

the computer’s body and associated it with the static mesh called 

ERARobot.Computer.Computer. 

 

ERALasser.uc defines the ERA robot's computer as an extension of the class 

RangeScanner used by USARSim as the basis to simulate laser sensors. In this 

file the static mesh ERARobot.Lasser.Lasser is assigned to the ERA robot laser 

and is scaled to have the right size. 

 

ERALTire.uc defines the robot's left drive wheel as an extension of 

USAR_ERALTire class and sets all its physical parameters of simulation. 

 

ERARTire.uc defines the robot's right drive wheel as an extension of 

USAR_ERARTire class and sets all its physical parameters of simulation. 

 

ERASmallTire.uc defines ERA robot’s cast wheel as an extension of the class 

USAR_ERASmallTire and adjusts all its physical parameters of simulation. 
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6.1.5.1.3. USARMisPkg Clases 
 

ERAComputerBody.uc defines the body of the ERA robot's computer as an 

extension of the class MisPkgLinkInfo used by USARSim to simulate a wide 

range of accessories (or parts of them) for robots. In this case, the class 

ERAComputerBody is assigned to the computer’s body, which is detailed by an 

USARModels class with the same name. 

 

ERAComputer.uc defines the ERA robot's computer as an accessory. Later in 

the file USARMisPkg.ini it is specified that ERAComputer is an accessory 

consisting of a single element called ERAComputerBody. 

 

Once all these classes have been defined and stored in their corresponding 

folders, we have compiled them by running the file make.bat in each of those 

folders. Thus, all the ERA robot parts are defined physically and cinematically. 

But, so that the robot can be simulated, it is necessary to tell USARSim how are 

these parts interconnected. With this objective, we proceeded to modify the files 

USARMisPkg.ini and USARBot.ini in the Unreal Tournament 2004 System 

folder. 

 

 

6.1.5.2. USARMiskPkg 
 

Experiments with robots often require the use of a variety of devices, mostly 

optional, which must be mounted on those robots. In other words, each test 

requires the robot to mount a series of accessories such as a camera, an arm, a 

clamp... according to the experiment purposes. All these optional devices are 

included within a USARSim group called USARMisPkg. As discussed earlier in 

this document, the folder USARMisPkg contains a directory called classes 

where are defined all those classes corresponding to robot accessories. 
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On the other hand, the System folder contains the file USARMisPkg.ini, which 

describes how many parts make up every accessory and how are they 

interconnected. In order that the ERA robot's computer can be removed from 

the robot when needed, we have added the following lines in the file 

USARMisPkg.ini: 

 
;-------------------------------------------------------------------------------------------------------------- 

; Computer mission package used for the ERA 

;-------------------------------------------------------------------------------------------------------------- 

[USARMisPkg.ERAComputer] 

Links = (LinkNumber = 1, LinkClass = Class'USARMisPkg.ERAComputerBody', DrawScale3D = 

(X=1.0, Y=1.0, Z=1.0), ParentLinkNumber = -1, SelfMount = "A") 

;-------------------------------------------------------------------------------------------------------------- 

; Computer Links used for the ERA 

;-------------------------------------------------------------------------------------------------------------- 

[USARMisPkg.ERAComputerBody] 

MountPoints = (Name = "A", JointType = "Revolute", Location = (X= 0.0, Y=0.0, Z=0.0), 

Orientation=(X = 1.5707963267948966192313216916398, Y = 0, Z = 0)) 

MountPoints=(Name="B",JointType= "Revolute", Location = (X= -0.0, Y = 0.0, Z= -0.0), 

Orientation=(X=1.5707963267948966192313216916398,Y=0,Z=0)) 

MaxSpeed=0.1745 

MaxTorque=20 

MinRange=0.0 

MaxRange=3.14159 

 

In this way, the ERA robot's computer (ERAComputer) is defined as an optional 

part of the robot, consisting of a single body (ERAComputerBody), which can 

rotate around its z axis. 

 

 

6.1.5.3. USARBot 

Once declared all parts of the ERA robot, next step is to add the ERA robot to 

the list of those available to be simulated with USARSim. This objective requires 

the file USARBot.ini (located in the System folder) to be modified by inserting a 

block of lines containing at least the following information: 
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1. Robot’s weight. 

2. Robot’s maximum load. 

3. Parts of the robot, including accessories. 

4. Location of the binding sites between adjacent parts. 

5. Type of articulation that restricts the relative movement between 

adjacent elements 

 

With this objective we have introduced the following lines in the USARBot.ini 

file: 

 

 [USARBot.ERA] 

bDebug=false 

Weight=9 

Payload=20 

ChassisMass=2.000000 

bMountByUU=False 

JointParts=(PartName="RightFWheel",PartClass=class'USARModels.ERARTire',DrawScale3D

=(X=1.0,Y=1.0,Z=1.0),bSteeringLocked=True,bSuspensionLocked=true,Parent="",JointClass=cl

ass'KCarWheelJoint',ParentPos=(Y=0.1606467,X=0.077586700,Z=0.09909333),ParentAxis=(Z

=1.0),ParentAxis2=(Y=1.0),SelfPos=(Z=-0.0),SelfAxis=(Z=1.0),SelfAxis2=(Y=1.0)) 

JointParts=(PartName="LeftFWheel",PartClass=class'USARModels.ERALTire',DrawScale3D=(

X=1.0,Y=1.0,Z=1.0),bSteeringLocked=True,bSuspensionLocked=true,Parent="",JointClass=cla

ss'KCarWheelJoint',ParentPos=(Y=-0.1606467, X=0.077586700, Z=0.09909333), 

ParentAxis=(Z=1.0), ParentAxis2= (Y=1.0), SelfPos = (Z=-0.0), SelfAxis=(Z=1.0), 

SelfAxis2=(Y=1.0)) 

JointParts = (PartName = "RearWheel", PartClass = class'USARModels.ERASmallTire', 

DrawScale3D = (X = 1.0,  Y = 1.0, Z = 1.0), bSteeringLocked = False, bSuspensionLocked = 

true, Parent="",JointClass = class'KCarWheelJoint', ParentPo s = (Y = 0.0, X = -0.19948333, Z 

= 0.1438400), ParentAxis = (Z = 1.0), ParentAxis2 = (Y = 1.0), SelfPos = (Z=-0.0), SelfAxis = (Z 

= 1.0), SelfAxis2=(Y = 1.0)) 

MisPkgs=(PkgName="CameraPanTilt",Location=(Y=0.10,X=0.08,Z=-

0.01),PkgClass=Class'USARMisPkg.CameraPanTilt') 

MisPkgs=(PkgName="ERAComputer",Location=(Y=0.00,X=-0.09,Z=-

0.01),PkgClass=Class'USARMisPkg.ERAComputer') 

Cameras=(ItemClass=class'USARBot.RobotCamera',ItemName="Camera",Parent="CameraPa

nTilt_Link2",Position=(Y=0.08,X=0.06,Z=-0.0188),Direction=(Y=0.0,Z=0.0,X=0.0)) 
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HeadLight=(ItemClass=class'USARBot.USARHeadLight',ItemName="HeadLight",Parent="Cam

eraTilt_Link2",Position=(Y=0.08,X=0.079999916,Z=0.07399993),Direction=(Y=-

0.2876214,Z=0.0,X=0.0)) 

Sensors=(ItemClass=class'USARBot.ERASonarSensor',ItemName="F1",Position=(X=0.147216

67,Y=-0.11129667,Z=0.03873333),Direction=(Y=0.0,Z=-1.5707964,X=0.0)) 

Sensors=(ItemClass=class'USARBot.ERASonarSensor',ItemName="F2",Position=(X=0.182916

67,Y=-0.09289333,Z=0.03873333),Direction=(Y=0.0,Z=0.0,X=0.0)) 

Sensors=(ItemClass=class'USARBot.ERASonarSensor',ItemName="F3",Position=(X=0.174180

00,Y=-0.06439000,Z=0.03873333),Direction=(Y=0.0,Z=0.747001,X=0.0)) 

Sensors=(ItemClass=class'USARBot.ERASonarSensor',ItemName="F4",Position=(X=0.162360

00,Y=-0.04142000,Z=0.03873333),Direction=(Y=0.0,Z=0.204029,X=0.0)) 

Sensors=(ItemClass=class'USARBot.ERASonarSensor',ItemName="F5",Position=(X=0.162360

00,Y=0.04142000,Z=0.03873333),Direction=(Y=0.0,Z=-0.204029,X=0.0)) 

Sensors=(ItemClass=class'USARBot.ERASonarSensor',ItemName="F6",Position=(X=0.174180

00,Y=0.06439000,Z=0.03873333),Direction=(Y=0.0,Z=-0.747001,X=0.0)) 

Sensors=(ItemClass=class'USARBot.ERASonarSensor',ItemName="F7",Position=(X=0.182916

67,Y=0.09289333,Z=0.03873333),Direction=(Y=0.0,Z=0.0,X=0.0)) 

Sensors=(ItemClass=class'USARBot.ERASonarSensor',ItemName="F8",Position=(X=0.147216

67,Y=0.11129667,Z=0.03873333),Direction=(Y=0.0,Z=1.5707964,X=0.0)) 

Items=(ItemClass=class'USARBot.Item',ItemName="cosa",Position=(X=0.114999875,Y=0.1299

9986,Z=-0.01),Direction=(Y=0.0,Z=1.5707964,X=0.0)) 

Sensors=(ItemClass=class'USARModels.ERALasser',ItemName="Scanner1",Position=(X=0.13

83900,Y=0.0,Z=-0.0039600),Direction=(Y=0.0,Z=0.0,X=0.0)) 

Sensors=(ItemClass=class'USARBot.INSSensor',ItemName="INS",Position=(X=0.0,Y=0.0,Z=-

0.0),Direction=(Y=0.0,Z=0.0,X=0.0)) 

Sensors=(ItemClass=class'USARBot.OdometrySensor',ItemName="Odometry",Position=(X=0.0

,Y=0.0,Z=-0.0),Direction=(Y=0.0,Z=0.0,X=0.0)) 

Sensors=(ItemClass=class'USARBot.EncoderSensor',ItemName="ECLeft",Parent="LeftFWheel

"Position=(X=0.0,Y=0.0,Z=-0.0),Direction=(Y=0.0,Z=1.5707964,X=0.0)) 

Sensors=(ItemClass=class'USARBot.EncoderSensor',ItemName="ECRight",Parent="RightFWh

eel",Position=(X=0.0,Y=0.0,Z=-0.0),Direction=(Y=0.0,Z=1.5707964,X=0.0)) 

Sensors=(ItemClass=class'USARBot.EncoderSensor',ItemName="ECTilt",Parent="CameraPan

Tilt_Link2",Position=(X=0.0,Y=0.0,Z=-0.0),Direction=(Y=0.0,Z=1.5707964,X=0.0)) 

Sensors=(ItemClass=class'USARBot.EncoderSensor',ItemName="ECPan",Parent="CameraPa

nTilt_Link1",Position=(X=0.0,Y=0.0,Z=-0.0),Direction=(Y=1.5707964,Z=0.0,X=0.0)) 

Sensors=(ItemClass=class'USARBot.RFIDSensor',ItemName="RFID",Position=(X=0.0,Y=0.0,Z

=-0.0),Direction=(Y=0.0,Z=0.0,X=0.0)) 

Sensors=(ItemClass=class'USARBot.VictSensor',ItemName="VictSensor",Parent="CameraPan

Tilt_Link2",Position=(Y=0.0,X=0.06,Z=-0.0088),Direction=(Y=0,Z=0,X=0)) 
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Sensors=(ItemClass=class'USARBot.GroundTruth',ItemName="GroundTruth",Position=(X=0.0,

Y=0.0,Z=-0.0),Direction=(Y=0.0,Z=0.0,X=0.0)) 

Effecters=(ItemClass=class'USARBot.RFIDReleaser',ItemName="Gun",Parent="",Position=(Y=

0.0,X=-0.1523808,Z=0.142857),Direction=(Y=0.0,Z=3.1415927,X=0.0)) 

 

At this point the ERA robot is ready for virtual experiments using USARSim. 

Now we have to create a virtual world. 

 

6.2. Creating a virtual world 
 

The virtual world needed for virtual testing should include the research labs of 

the Engineering and Computer Science Department at the University Jaume I 

and some of their immediate environment. This is consistent with much of the 

ground floor and first floor of the TI building at the university, so it was decided 

to model the whole building and its immediate surroundings. Figures 17 and 18 

show exterior views of the virtual TI building. 

 

 
 

Fig. 17. TI building exterior view. 
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Fig. 18. TI building exterior view. 

 

In order to create the virtual TI building we have followed a similar procedure to 

that used to obtain the virtual ERA robot, but there are, by contrast, some 

differences that it is important to note. 

 

 

6.2.1. Drawings and measures 
 

To model the TI building we have used its drawings in AutoCAD .dwg format 

(see figure 19), what have done things easier. However, although those files 

contain much useful information, it has been necessary to do many 

measurements, especially with regard to height of windows and some items not 

appearing on the drawings. Most of these elements are part of the furniture 

inside the building such as: bulletin boards, bins, vending machines, benches, 

information boards, maps of evacuation...; others, however, could be included 

as part of the building installations: switches of many types (light, elevator, fire 

alarm), sensors (smoke detectors or presence detectors) lamps, fire hydrants, 

fire extinguishers... 
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Fig. 19.  TI building first floor AutoCAD drawing 

 

 

6.2.2. Pictures 
 

The wide diversity of materials and colors that make up the elements that 

conform the TI building and its surroundings has forced to make many 

photographs. Thus, we have taken pictures of the walls, ceilings, floors, doors, 

sidewalks, cement, asphalt, signs, lamps, railings, columns, vents, sensors, 

etc… Those pictures have been treated with Adobe Photoshop CS3 to get the 

desired textures, similarly to the process for the ERA robot. 

 

 

6.2.3. 3D environment 
 

With the dimensions and textures of the building and its immediate 

surroundings, begin the development phase of the virtual environment model 

using 3D Studio Max. 
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6.2.3.1 LowPoli aproximation
 

The construction of the virtual TI building has taken many hours due to the large 

number of elements that conform it such as walls, ceilings floors, columns, 

windows, doors... 

 
 
Walls 

On the one hand, there are the walls, slab, floor and ceiling of each floor. These 

elements have been created from AutoCAD drawings of the building. Thus, the 

drawings of each floor have been imported from 3D Studio Max, then they have 

been superimposed on the distance between floors and each wall has been 

created so that its shape is as simple as possible. That is, we have tried to 

create as many walls as possible from extruded rectangles, generating 

parallelepipeds. This approach brings many important advantages and some 

minor inconveniences that is interesting to note. 

 

It is easier to apply texture maps and collision envelopes when dealing with 

hexahedral walls (boxes). Texture maps use to accommodate to certain simple 

geometric shapes such as hexahedrons, cylinders, spheres or planes. When 

importing 3D models from UnrealEd, those which offer better simulation 

performance are those whose collision hulls are based on combinations of 

geometric figures as above. Moreover, if working with 3D Studio Max we export 

a single hexahedron as a wall, there is an additional advantage because when 

we import this wall from UnrealEd we will be able to associate a box as collision 

hull. Although this latter option does not always work as desired depending on 

the orientation of the wall (see figure 21). 

 

In contrast, dividing all walls into hexahedral shapes involves multiplying the 

number of objects to export, which is already very high. You just have to take a 



"+

look at the drawing of a floor to realize that the number of walls is higher than 

200 (figure 21 shows that in the first floor there are more than 122 walls).  

 

 
Fig. 20. TI building wall being created with 3D Studio Max 

 

  
Fig. 21. Static Mesh Browser showing a wall with an UnrealEd box collision hull 
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Floor slabs and ceilings 
 

From the floor drawings of each building we have created both floor slabs and 

ceilings. In general, this task has been easier than wall creation, as the number 

of elements is reduced. 

 

Basically, to obtain the 3D shape of these elements, we have redrawn the outer 

edge of each floor and those lines defining the gaps between different floors. 

The resulting line has been extruded forming a floor slab (see figure 22) in 

some cases and, in others, a ceramic coating or a ceiling. 

 

 
Fig. 22. Floor slab in 3D Studio Max 

Concerning to ceilings, they are modeled from photographs, respecting their 

paneled structure, fluorescent lamps and air conditioning diffusers (see figure 

23). 
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Fig. 23.  Paneled office ceiling with fluorescent lamps and air conditioning 

diffuser 
 
 
Columns 

The cylindrical columns that are part of the building structure have been 

modeled according to the drawings of each floor. In this case, and for obvious 

reasons, they have come into cylinders with a sufficient number of faces to look 

appropriate. 

 

 

Windows 

In the TI building there are various types of windows that have been shaped 

differently to facilitate their export to UnrealEd. In general, the windows are 

located in places where no direct clashes will occur with the robot or at least, if 

these contacts are realized, there will be simultaneous collisions with the wall 

that holds the window. This represents a considerable advantage in dealing with 

such objects as it does not require any collision envelope for windows. 
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With the outside windows of laboratories, workshops and offices we have 

followed a different procedure to that used to obtain the internal windows. This 

is due to the presence of blinds, which are modeled as a plane with a texture 

that mimics these mechanisms (see figure 24). This procedure requires export 

to ASCII format one by one all those windows, because of difficulties with UVW 

maps that determine the placement of textures on objects. Explanation is 

simple: all objects whose texture is a more or less uniform color (like green 

textured aluminum frames of a window) can be exported as a whole, so that 

when imported from UnrealEd they continue to retain its texture apparently 

intact, whereas this does not happen the same way when the texture is not 

uniform, despite being the same for all exported objects. 

 

 
 

Fig. 24. Outside window with blinds 

 

As described in previous paragraph, those windows equipped with only frame, 

hinges, handle and glass are easier to export to ASCII format because, in many 

cases, we can include several of these windows in one only mesh, what 

reduces the number of objects and work. Figure 25 shows an exterior window 

with the above characteristics. 
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Fig. 25. Window with only frame, hinges, handle and glass 

As regards the export of windows it is important to explain the benefits of the 

particular way in which a robot may collide or not with them. However, it is 

important to note that the objects exported with no collision hull from 3D Studio 

Max to UnrealEd have certain peculiarities during a simulation: on the one 

hand, they have no capability to hit the robots, so they are traversed by robots 

with no interaction; on the other hand, they are detected by the robot’s sensors 

and are able to collide with any other mobile entity. This permits saving collision 

envelopes for windows and other objects that are not reachable by the robots 

and, in many cases, to export these objects in groups. 

 

 

Doors 

Despite its apparent simplicity, the doors are difficult to treat elements in a 

virtual world. That is, their shape is usually simple (like a hexahedron) as well 

as their textures, but their position and movement possibilities result in the need 

to take certain decisions prior to their placement in a virtual world. 

 

At the TI building we can distinguish three types of doors: those static, those 

that can be pushed by the robot and those that open automatically when the 

robot is approaching. The former are treated as if they were walls. The second 

and third, however, must be considered as moving objects with the difficulties 

that this entails. 

 



"K

The doors of the laboratories and seminars of the TI building have a glass in the 

middle of each door sheet. If we consider one of these doors as fixed (static), 

then we can use the following simplification: modeling the door without its glass, 

handle, lock and hinges, as they are separate items that can be exported into 

homogeneous groups to UnrealEd. Thus, each one of these independent 

elements has a texture and a simple collision envelope and, moreover, we can 

create the glass from UnrealEd as an independent and stationary object. In 

contrast, if a door with glass is required to be mobile, then we will have to model 

the whole set as a unique mesh with all their textures properly distributed and 

their collision hull; also UnrealEd can import only objects with image-based 

textures in tga format (this is an important handicap that will be explained later). 

Figure 26 shows a door with glass. 

 

 

Fig. 26. Hall door with glass porthole 

 
So, there are still some questions that need to be explained: What happens 

when we have glass or opaque materials? Can we export them from 3D Studio 

Max or other 3D design application? 

 

To export successfully doors with parts of glass we have followed this 

procedure: first, we have taken the name of a glass texture of those used by 

UnrealEd and then from 3D Studio Max, we have assigned that name to any 
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texture not used; second, we have applied that texture to the transparent parts 

of the door in construction and, when ready, we have exported that door in 

ASCII format; third, with the UnrealEd texture browser opened we have 

selected the texture whose name we have been using and then we have 

imported the door using the UnrealEd static mesh browser; what have forced 

UnrealEd to whether searching the door texture by its name or, if not found, 

applying the default texture (the selected texture in the texture browser) to the 

transparent surface. In this way, we can get moving objects with transparent or 

semi-opaque parts. Figure 27 shows some of the UnrealEd texture possibilities 

to simulate glass. 
 

 
 

Fig. 27. UnrealEd texture browser showing glass textures 
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Once imported to UnrealEd, the swinging doors should be treated very 

differently to those static. Since there are two types of swinging doors and they 

are very different, we will describe them separately. 

 

Fig. 28. Pushable door properties (KActor properties) 
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Pushable doors 

 

Doors that only move when they are pushed by robots must be introduced to 

the map as an Actor rather than StaticMesh (such as walls, and other non-

moving objects). This done, the next step is to adjust the parameters describing 

the kinematics of each door of this type present on the virtual level. We can do 

that by clicking the right mouse button over the door in process and then 

clicking the Kactor Properties shown in the figure above (figure 28). The most 

important variables are: 

 

 KarmaParams 

bHighDetailOnly: Some objects introduced as Karma Actor 

(KActor) will only use Karma Physics if this parameter is set to 

True. In addition, to avoid slow machines change it to False, trying 

to increase their performance in the simulation, you must change 

the following lines in the file default.ini 

   [Engine.LevelInfo] 

PhysicsDetailLevel=PDL_Medium 

Instead of 

 Engine.LevelInfo] 

 PhysicsDetailLevel=PDL_High 

KActorGravScale: Parameter that describes how much an object 

is affected by gravity during a motion. 

KAngularDamping: Parameter that describes how much air friction 

attenuates the rotational movement of an object. 

KBuoyancy: Applies in water volumes. This parameter set to 1.2 

will allow the object to float to the surface when within a water 

volume. 0 = no buoyancy.  

KLinearDamping: Linear velocity damping (drag). 

KMass: Mass used for Karma physics. 
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KarmaParamsCollision 

KFriction: Parameter that defines the friction coefficient between 

the actor and the ground or other surfaces. 

KRestitution: Factor describes how much an object is able to 

absorb a collision. The value of 0.0 makes the object behave like a 

block of stone 

Additionally, it is important to know that if an object with no defined collision 

envelope must hit against others, then it is necessary to set to True the 

parameter UseSimpleKarmaCollision from the StaticMesh Browser, otherwise, 

UT2004 won’t find any envelope and collisions will not occur. When an 

envelope is defined in this way, it is possible to adjust to simple geometric 

shapes like a box or a line by setting the parameters UseSimplelinCollision 

UseSimpleBoxCollision to true or false. 

 

Next, it is necessary to define the restrictions on the movement of the doors 

(constraints). In the TI building there are no sliding doors, all of them rotate 

about an axis. Therefore, for each one of these doors we have defined a 

rotation axis as shown in the figure below. 

 

 

Fig. 29. Laboratory door rotation axis in orange 
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When working with UnrealEd the axes of rotation as described are called 

KHinge and we have added them to our map by selecting from the Actor 

Classes Browser the KHinge option in the Kconstraint group at the KActor 

directory (see figure 30). Later, we have clicked the right mouse button on the 

desired entry point, and then we have selected the choice "Add KHinge here". 

Finally we have taken the KHinge from the its insertion point and we have 

located it into its right place (door rotation axis). 

 

 
 

Fig. 30. Actor Classes Browser showing KConstraint tree 

With the axis in place, we have proceeded to assign the sheet of a door as an 

object whose motion likely will be constrained by that. So, we have accessed to 

the axis properties (Khinge Properties) and opened the group KarmaConstraint. 

The parameter KConstraintActor1 must poi nt to the door sheet in process, with 

this objective we have clicked on this parameter and chosen the 

aforementioned sheet as shown in Figure 31. 
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Fig. 31. KHinge parameters 
 

Automatic Doors 

 

To get doors that open automatically when approaching a robot we have 

followed an entirely different procedure than above. First, we have introduced a 

Mover on the TI building map and then we have assigned it to the mesh of a 

moving door sheet. This last step can be done from the Mover’s properties 

selecting the option StaticMesh from Display group as shown in figure 32. 

 

 

Fig. 32. Assigning a mesh to a Mover 
 



8"

It is then necessary to define what kind of movement makes the Mover, linear 

(sliding door) or circular (swinging door), from the parameter KeyNum in the 

group Mover of Mover properties (see figure 33). Thus, starting from the door in 

closed position (KeyNum 0), we have selected KeyNum 1 and placed the sheet 

of the door in fully open position, so that with only two positions (NumKeys 2) its 

trajectory is determined. 

 

 

Figure 33. Mover group of parameters 
 

To determine the behavior of automatic doors is also necessary to adjust 

various parameters of the Mover properties, the most important of which are 

described below sorted by categories: 

 

Mover  

bTriggerOnceOnly: Boolean variable indicating in this case if the 

door will open once and remain open. 

EncroachDamage: Variable that determines the amount of 

damage caused by the Mover by colliding with an agent who has 

crossed his path. 
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MoverEncroachTipe: Describes the behavior of the Mover when 

an agent (eg a robot) crosses their path. Normally 

ME_IgnoreWhenEncroach option is chosen for this parameter and 

the value 0 for EncroachDamage. So agents can pass through the 

doors that automatically open to them. 

MoveTime: Time required by a Mover to complete a trajectory. In 

our case the time in seconds it takes for the door to switch from its 

open to closed position or vice versa. 

StayOpenTime: Time the door remains opened when the 

triggering agent is gone. 

 

Movement (see figure 34) 

bHardAttach: Boolean variable that determines whether the Mover 

moves attached to other objects. 

Mass: Mover Mass.  

 

Events (see figure 35) 

Tag: Variable used to activate the Mover motion by an event such 

as pressing a remote pushbutton. This parameter must contain a 

character string that identifies a Mover unequivocally. 

 

MoverSounds (see figure 36) 

ClosedSound: Mover Sound when reaching closed position. 

ClosingSound: Mover Sound when closing. 

OpenedSound: Mover Sound when reaching opened position. 

OpeningSound: Mover Sound when opening. 
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Object (see figure 36) 

InitialState: Parameter that defines the initial state of a Mover, and 

therefore its activation event. We have chosen the option 

BumpOpenTimed for the doors activated by the presence of a 

character and TriggerOpenTimed for those doors operated by a 

remote button. 

 

 
Fig. 34. Mover’s Movement parameters group 

 

 
Fig. 35. Mover’s Events parameters group 

 

 
Fig. 36. Mover’s MoverSounds and Object parameters groups 
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Additionally, some doors have been programmed so that robots can open them 

by pressing a pushbutton. Those buttons have been added to the map from the 

UnrealEd Actor Browser by opening the parameters group Triggers and then 

selecting the option Trigger. Then, we have accessed to their properties and 

within the Events group we have given the parameter Event the name on the 

Tag parameter of the door we want to automate. Figure 37 shows an example 

of a remote controlled door. 

 

 

Fig. 37. Laboratory door controlled by a push-button on the bottom left corner of 

the image 

 

 

Stairs 

The stairs were obtained using a method similar to that followed when creating 

walls, but in this case, we only took into account the collision hull for the first 

steps leading to an upper floor. This simplification is justified by the fact that the 

robots available in the Department of Engineering and Computer Science at the 

University Jaume I can not go up or down stairs. If these conditions changed 

with the need to simulate a robot capable of moving up or down the stairs, it 

would be easy to correct by adding a BlockingVolume for every step from 

UnrealEd or by adding a suitable collision hull from 3D Studio Max and re-
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exporting the new stairs. The latter option has the advantage that the new steps 

being re-imported from UnrealEd would automatically appear in the correct 

place and with all properties identical to those defined for old stairs, except that 

in this case the new stairs would incorporate different collision envelopes. 

 

It is important to note the functionality of those BlockingVolume for the current 

work, as they have been used to provide collision envelopes to various objects 

and parts of the environment with complex or large contours, such as soil or 

building slabs. This has prevented in some cases the robot fall indefinitely due 

to lack of collision with the ground. 

 
 
Outer environment 

It was decided to include the IT building close environment in order to give a 

likeable look to simulations, so that the building does not seem to be floating in 

outer space. For this purpose, we have created an approximate model of the 

landscape around the building making sure that what is observed through the 

windows and glass doors match reality. 

 

Thus, we have constructed a realistic environment composed basically of land, 

streets, the library building of the University Jaume I and a blue sky. Because all 

of them are immobile elements, the procedure to create them was similar to that 

followed for walls, ceilings and floors, but in this case have not defined collision 

envelopes to simplify work and improve simulation speed. So, instead of 

collision envelopes we have added some BlockingVolumes. 

 

Miscellaneous objects 

Inside the TI building there is a large diversity of elements that have been 

necessary to include in the virtual environment to increase the realism degree of 

simulations. This is the case of railings, visible parts of the fire facility, posters of 

various types, vending machines, lamps, etc ... The static nature of these 

elements suggests giving them the same treatment as the walls. For obvious 
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reasons, we have omitted collision hulls for those objects not reachable by 

robots. Figure 38 shows some miscellaneous items such as posters and 

vending machines. 

 
Fig. 38.  Vending machines on the ground floor hall 

 

 

6.2.4. Lights 

The appearance of a virtual environment depends largely on the type of lighting 

that was used in its creation. Thus, the absence of light is unacceptable, 

because all surfaces would become black regardless of their original color. 
 

To understand how it has solved the problem of lighting in this virtual 

environment it is necessary to know that the light reflected by the surface of an 

object comes from two sources: the object’s own light auto lighting (if any) and 

the external light reaching the object. 

 

When a new object is introduced in an UnrealEd virtual environment, in the 

absence of light sources, we can see that all its surfaces become black without 

any other distinguishing color or texture. To fix this, at first, we introduced 

external lights to illuminate all surfaces within their reach trying to get a natural 

look. The result, however, was not as expected. Surfaces near light sources 
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were almost white, that is burned, while distant objects to those lights were 

barely distinguishable in the dark. 

 

The next step was to multiply the number of external lights, dividing their power 

with the hope that this would cause overexposed and underexposed areas to 

disappear. The result of this new lighting attempt was not significantly different 

from the previous, because, although to a lesser extent, there were still many 

over illuminated and infra illuminated surfaces. As a conclusion, it was drawn 

that only if the number of external lights tended to infinity it would disappear that 

problem, while a new one would emerge. The new problem was the growing 

shadow attenuation as light sources increased and, therefore, the number of 

angles from which they reach an object. If the shadows disappear, so does the 

realistic look of a virtual environment. 

 

Parallel to the testing with external light sources we have done many 

experiments with self-illuminated objects from which we concluded that this type 

of lighting affects only on self-illuminated object colors. So we could see them 

as darker or lighter homogeneous colors, but without gloss or shadows on any 

of their faces and, therefore, without three-dimensional appearance. This is 

because for obtaining surfaces that degrade from light to dark colors or 

shadows cast by opaque objects, we must define at least a point from which 

lights up our virtual world. 

 

 
Fig. 39. UnrealEd point of light 
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From all the above we can conclude that each object must have its own light 

degree in order to ensure a minimum illumination on all its sides and to  

minimize the amount of required external lights to give it a natural look . Figure 

39 shows an UnrealEd light (external light) from which we can obtain shadows 

on nearby surfaces. 

 

 

Fig. 40. Graphic properties of an UnrealEd object 
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Figure above shows the graphical properties of an object when working with 

UnrealEd. AmbientGlow and ScaleGlow parameters are those most important 

when it comes to light in UnrealEd. The first relates to the amount of light falling 

on all sides of the object in question, while the second expresses how the object 

is affected by being hit by a light source nearby. AmbientGlow parameter is set 

to value 70, because this will get the minimum amount of self-illumination as 

explained above. ScaleGlow parameter depends very much on the available 

external light and, in general, values between 0.4 and 0.7 have been successful 

for both TI building's interior and its external environment. 

 

Below are the most important parameters that define UnrealEd external lights: 
 

LightColor 

LightBrightness: Light brightness. 

LightHue: Light tone. With this parameter we can get different 

colored lights. 

LightSaturation: This factor acts on the base color of light making it 

a brighter color or a more desaturate color. When we desaturate a 

picture, we obtain a grayscale one. 

 

Lighting 

LightCone: This parameter determines the angles in which the 

light is emitted from its insertion point.  

LightRadius: Range of light. 

LightType: Light type. You can define several types of light such 

as static or intermittent. 
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The following figure shows the average values that have been assigned to the 

above parameters, after doing many tests in the virtual environment and 

studying their results. However, depending on the location, number of lights and 

the size of the area to be lit, these values have changed, especially 

LightBrightness and LightRadius because of they are prone to produce 

overexposure in areas close to the point of light emission. 
 

 

Fig. 41. UnrealEd lights parameters  
 

 

6.3. Movable objects 

In many experiments, a robot must recognize an object, chase, grab or 

manipulate it with a predefined purpose. To meet these needs, we have 

modeled some inanimate objects, but movable. They are mainly toys with 

simple shapes and kinematics that can serve as a basis for developing more 

complex objects, depending on the needs of each experiment. Thus, we have 

introduced in the virtual environment a soccer ball, a candy, a punching bag and 

a dispenser of objects operated by robots 
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6.3.1. Soccer ball 

To start with something simple, we have introduced a soccer ball, so that the 

robots of the simulations have an object that can be pushed from side to side. 

With this goal we have taken the diameter of a real soccer ball and its color 

scheme, so that it looks as real as possible. Then, from 3D Studio Max we have 

given shape and color to it (see figure 42) and, later, we have associated a 

spherical collision envelope to the ball. Done this, we have placed the geometric 

center of the ball and its envelope at the point of coordinates X = 0 Y = 0 Z = 0 

and then we have exported both ball and envelope in ASCII format, generating 

the soccer_ball.ase file. 

 

 
 

Fig. 42. 3D Studio Max screenshot showing a soccer ball at (0, 0, 0) point 

 

At this point, it is important to note that the location of the geometric center of an 

object at the origin of coordinates is advantageous when it is expected to 

undergo operations of rotation or translation from UnrealEd. Thus, during the 

introduction of this object in the virtual world, UnrealEd will take the center of 

the object as both insertion point and axis of rotation. This avoids the following 

problem: when rotating some objects in UnrealEd, they have whether gone out 
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of the 3D view or seemed to be moving linearly instead of rotating, all due to 

rotation axes far away from those objects. 

 

To continue with the process of generation of mobile inanimate objects, we 

have created from UnrealEd a file (in this case Toys.utx) to keep them all. Then 

from the StaticMesh Browser, the ball has been imported (soccer_ball.ase) as 

ball  within the group Soccer_Ball  of Toys.utx file as shown in figure 43. 

 

 
 

Fig. 43. UnrealEd Static Mesh Browser showing the soccer ball 

 

Finally, the ball was inserted in the virtual lab as an Actor, because it is not a 

static object. Next, we had to make the ball not only looks good physically, but 

also reacts appropriately to the forces acting on it. This was achieved by 

adjusting the KarmaParams within the properties of the Actor in question as 

follows: 

 

KarmaParams 

bHighDetailOnly:  False 

KActorGravScale:  1.0 

KAngularDamping:  0.7 

KBuoyancy:    0.2 
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KLinearDamping:  0.7 

KMass:    0.2 

 

KarmaParamsCollision 

KFriction:    0.7  

KRestitution:   1.0 

The explanation of KarmaParams can be found in paragraph relative to the 

pushable doors. 

 

 

6.3.2. Candy 

The next object in order of simplicity is a "candy", which consists of a long 

cylindrical body ending in two circular caps slightly larger in diameter. In this 

case, the dimensions were chosen so that a robot equipped with a gripper can 

grab the entire length of the object as if it were a can of beer. 

 

As in the case of the ball, we have elaborated by means of photoshop a texture 

that permits to determinate whether the object is rotating around one of its axes. 

The texture of red and white stripes spiral perfectly fulfills this role and has 

served to give the name "candy". 

 

From 3D Studio Max we have given shape and texture to the candy, and also a 

cylindrical collision envelope. Then, we have placed the geometric centers of 

the candy and its collision envelope at the point of coordinates X = 0 Y = 0 Z = 0 

(see figure 44) and then we have exported them in ASCII format, generating the 

caramelo.ase file. 

Similar to the case of the soccer ball, we have opened the UnrealEd StaticMesh 

Brower and then the file called Toys.utx in order to import the candy 

(caramelo.ase) into the group named caramelo. 
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Fig. 44. Candy and its collision hull at coordinates (0, 0, 0) 

 

Finally, we have inserted the candy in the virtual lab as an Actor and we have 

adjusted its KarmaParams from UnrealEd Actor properties as shown bellow. It 

should be noted that these parameters have been defined so that the candy has 

little weight, slides easily on the floor and has some ability to bounce off any 

surface. 

KarmaParams 

bHighDetailOnly:  False 

KActorGravScale:   0.6 

KAngularDamping:  0.1 

KBuoyancy:    0.8 

KLinearDamping:  0.2 

KMass:    0.2 

 

KarmaParamsCollision 

KFriction:    0.6  

KRestitution:   1.0 
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6.3.3. Punching bag 

In order to exploit the simulation capabilities of USARSim, it was decided to 

create a punching bag (see figure 45). This way we can simulate the motion of 

a pendulum to be beaten by a robot, which introduces restrictions on the 

movement possibilities of movable objects, opening a wide range of possibilities 

for future experiments In this case, although the actual dimensions have been 

taken for both the bag and for the support, is likely to have to make changes in 

them to bring this subject to potential needs. 

 

Fig.45. 3D Studio Max screenshot showing the punching bag 

 

Unlike the above objects, the punching bag is not composed of a single 

element, but three: the bag, the chains and the structure. However, his process 

of creation doesn’t differ much of that of the previous objects. Thus, textures of 

sailcloth, wood and metal have been created in Photoshop for the bag, the 

structure and the chains, respectively. Next, we have modeled these three 

elements in a single file of 3D Studio Max, choosing appropriate collision 

envelopes (see figure 46) and then we have exported each element separately 

generating the files Estructura_Punching.ase, Chain.ase, Punching_Bag.ase 

and Punching_Bag2.ase. As can be seen, two bags were created to take 
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advantage of a comprehensive structure which allows a robot to easily 

maneuver (see figure 45). 

 

The following figure shows the collision envelopes used for each of the parts of 

the punching bag. Notice that those parts not expected to be hit don't have 

collision envelope (upper bolster of the wooden structure). 

 
Fig 46. Punching bag elements with their collision hulls 

Once the components of the punching bag have been exported to ASCII format, 

from UnrealEd we have opened the file Toys.utx and imported them into the 

group Punching_Bag with the names: Chain, Estructura_Punching, 

Punching_Bag and Punching_Bag2. 

 

Next, these objects have been inserted into the virtual lab. Whereas the strings 

and the bag have been introduced as Actor, the structure has been introduced 

as StaticMesh, since it supposed to be static. Therefore, there has only been to 

adjust the KarmaParams of initial length of the chain (element called Chain) and 

the group called Punching_Bag, which are detailed below. 
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Chain 

KarmaParams 

bHighDetailOnly:  False 

KActorGravScale:   1.0 

KAngularDamping:  0.2 

KBuoyancy:    0.0 

KLinearDamping:  0.2 

KMass:    0.1 

KarmaParamsCollision 

KFriction:    0.0  

KRestitution:   0.0 

 

Punching_Bag 

KarmaParams 

bHighDetailOnly:  False 

KActorGravScale:   1.0 

KAngularDamping:  0.8 

KBuoyancy:    0.0 

KLinearDamping:  1.0 

KMass:    2.0 

KarmaParamsCollision 

KFriction:    0.0  

KRestitution:   0.0 
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Fig. 47. Punching bag movement constraints 

 
 

Later, we added the movement constraints for the punching bag moving parts 

such as the first length of chain (Chain) and the bag with the second length of 

chains (Punching_Bag) (see figure 47). These restrictions have been 

materialized by means of two conical joints, which correspond to the class 

KBSJoint that is located at the same subgroup of the Actor Classes Browser as 

KHinge. This latter constraint has been previously used for some doors. 

 

Finally, for each constraint (joint) we have set the parameters that determine the 

actors whose movement is being restricted as described below. 

 

Conical joint 1 (Estructura_Punching-Chain joint) 

 KarmaConstraint 

KConstraintActor1:   KActor'myLevel.KActor8' 

 

Conical joint 2 (Chain-Punching_Bag joint) 

 KarmaConstraint 

KConstraintActor1:   KActor'myLevel.KActor8' 

KConstraintActor2:   KActor'myLevel.KActor9' 
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Conical joint 1 only restricts the movement of the first length of chain (Chain). 

By default this length of chain has its parameter Name set to ‘KActor8’. 

 

Conical joint 2, by contrast, restricts the movement of two elements (Chain and 

Punching_Bag) which have their Name parameters set to KActor8 and KActor9 

respectively. 

 

6.3.4. Toy dispenser 

In order to allow users to choose which object they want to interact with, we 

designed a dispenser of toys. It consists of a ramp that ends in a horizontal 

surface where there are two objects (toys), which can be forced to fall down the 

slope by means of two handles located on the sides of the ramp (see figure 48). 

 

We have given to the static part of the mechanism a look of wood and a 

collision envelope composed of several boxes (Box). Moving the handles have 

a metal look with rubber coated ends and simple collision envelopes (two 

boxes). We have also added two axes to restrict the possibilities of movement 

of the handles. The creation process for this mechanism is very similar to that 

followed to obtain some doors. 

 

 
Fig. 48. Toy dispenser 
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6.4. MATLAB functions 
 

With all the elements necessary for virtual testing finished and in place, the next 

step was to use the MATLAB USARSim Toolbox package to establish a flexible 

interface between the user and USARSim. Thus, we have implemented 

navigation and databases management functions to check both the robot's 

mobility and the flow of information collected by its sensors, being at the 

discretion of each user to implement specific functions for each particular 

experiment. 

 

7.  RESULTS 
 

The simulator result of this work meets the goals set at the beginning of this 

document and is currently available to the researchers at the University Jaume I 

in Castellón. 

 

Table III shows the sensitive detail difference (measured in triangles) between 

the obtained model of the ERA robot and the P2DX available in the platform 

USARSim. 

Table III.  Robot detail measured in triangles 
 

 

Robot Part P2DX ERA 
Body 449 17569 
Computer 0 4690 
Laser 224 2968 
Left wheel 200 11524 
Right wheel 200 11524 
Rear Wheel 200 4124 
TOTAL 1273 52399 

 

Figure 49 compares the performance of the obtained simulator (measured in 

frames per second) using two different computers. The first one is the laptot 
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Fig. 51.  Virtual library building seen from TI building ground floor hall. 
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8.  CONCLUSIONS AND FUTURE WORK 
 

Three years ago it was decided to use USARSim and MATLAB as a basis for 

developing a high graphical quality simulator adapted to educational needs 

identified by the Engineering and Computer Science Department at University 

Jaume I in Castellón. Over time it has been demonstrated that the conjunction 

of those tools with 3D Studio Max and Adobe Photoshop allows 3D simulators 

to be created whose limits exist only in the imagination of their users. 

 

Given the versatility of the present simulator a large number of possible 

improvements and future applications may be suggested. The ones which have 

the clearest priority are the following: 

 Increasing the number of available robots including all those commonly 

used by students and researchers of the Engineering and Computer 

Science Department at the University Jaume I in Castellón. 

 Introducing the specific furniture of each laboratory where experiments 

with robots are going to be carried through. 

 Modeling the 3D objetcs needed to perform each test. 

 Improving the lighting method for both interiors and exteriors in order to 

obtain one more similar to that of the real world. 

 Creating objects with a center of mass configurable and independent of its 

geometric center. 

 Programming MATLAB functions so that those actions most commonly 

required by robotics students and researchers can be carried out. 
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