

Informe Técnico ICC 2008-05-02

Adding camera functions to the Webots

OPEN-R wrapper object for Aibo robots

Juan C. Peris, Jorge Grande and M. T. Escrig

Cognition for Robotics Research

Mayo 2008

Departamento de Ingeniería y Ciencia de los Computadores

Correo electrónico: jperis@lsi.uji.es, jorge.grande@uji.es, escrigm@icc.uji.es

Universidad Jaime I

Campus de Riu Sec, s/n

12.071 - Castellón

España

Technical report C4R2 - Cognition for Robotics Research

 3

Adding camera functions to the Webots OPEN-R
wrapper object for Aibo robots
Juan C. Peris

1
, Jorge Grande

2
 and M. T. Escrig

3

Cognition for Robotics Research

Jaume I University

Abstract
We use the Webots

TM
 mobile robot simulation software for testing

controllers and for using a common interface for all our robotic platforms.

In the case of the Aibo
TM
 robots we use cross-compilation to combine the

Webots
TM
 controller programs with an OPEN-R wrapper object in order to

obtain binary code executable on the live robot. The problem we have found

is that the OPEN-R wrapper object delivered with Webots
TM
 does not have

implemented the functions for accessing the Aibo
TM
 camera. The objective

of the present work is the implementation of these camera functions in the

wrapper object.

1
 Departamento de Lenguajes y Sistemas Informáticos

E-mail: jperis@lsi.uji.es
2
 Departamento de Ingeniería y Ciencia de los Computadores
E-mail: jorge.grande@uji.es
3
 Departamento de Ingeniería y Ciencia de los Computadores
E-mail: escrigm@icc.uji.es

 4

Implementación de funciones para la cámara del Aibo
en el compilador cruzado OPEN-R/Webots

Juan C. Peris
4
, Jorge Grande

5
 y M. T. Escrig

6

Cognition for Robotics Research

Universidad Jaume I

Resumen

En nuestro grupo de investigación C4R2 utilizamos el simulador de robots

móviles Webots
TM
 para probar los controladores y poder utilizar un interfaz

común para todas nuestras plataformas robóticas. En el caso de los robots

Aibo
TM
 utilizamos una compilación cruzada para combinar los controladores

programados en Webots
TM
 con los objetos OPEN-R para obtener el código

binario ejecutable en los robots Aibo
TM
 reales. El problema con el que nos

hemos encontrado es que el compilador cruzado para OPEN-R de Webots
TM

no tiene implementadas las funciones para acceder a la cámara del Aibo
TM
.

El objetivo del presente trabajo es la implementación de estas funciones de la

cámara en el compilador cruzado.

4
 Departamento de Lenguajes y Sistemas Informáticos

E-mail: jperis@lsi.uji.es
5
 Departamento de Ingeniería y Ciencia de los Computadores
E-mail: jorge.grande@uji.es
6
 Departamento de Ingeniería y Ciencia de los Computadores
E-mail: escrigm@icc.uji.es

Technical report C4R2 - Cognition for Robotics Research

 5

Contents
LIST OF FIGURES..7

ABOUT TRADEMARKS..9

CHAPTER 1. INTRODUCTION..11

1.1 AIBO ..11
OPEN-R:...11

1.2 WEBOTS ...12
Cross-compilation of Webots controllers for Aibo robots ..13

1.3 PROJECT OBJECTIVES ...13

CHAPTER 2. SYSTEM OVERVIEW..15

2.1 OPEN-R ..15
2.1.1 Features of OPEN-R: ...15
The virtual objects OVirtualRobotComm and OvirtualAudioComm ..15
2.1.2 Inter-object communication..16
2.1.3 OPEN-R objects description...17
2.1.4 Programming in OPEN-R...18
2.1.5 The stub.cfg config file..19
2.1.6 The connect.cfg config file..21
2.1.7 The Notify() function...22

2.2 AIBO’S CAMERA ...22
2.2.1 Accessing the camera ...22
2.2.2 Format type of the camera data..22

2.3 WEBOTS CROSS-COMPILATION FOR AIBO ROBOTS ...23

CHAPTER 3. ADDING CAMERA FUNCTIONS TO THE WEBOTS OPEN-R WRAPPER

OBJECT FOR AIBO ROBOTS..27

3.1 CONTROLLER.H ..27
3.2 CONTROLLER.CC ..27

3.2.1 Notify method..27
3.2.2 camera_enable and camera_disable ..28
3.2.3 camera_get_width and camera_get_height..28
3.2.4 camera_get_image..29
3.2.5 camera_get_fov ..31

3.3 STUB.CFG ...31
3.4 CONNECT.CFG...32

REFERENCES ...33

ANNEX I. EXAMPLE OF A WEBOTS CONTROLLER FOR AIBO ROBOTS35

Technical report C4R2 - Cognition for Robotics Research

 7

List of Figures

FIGURE 1. AIBO ERS-7 ROBOT. ... 11

FIGURE 2: WEBOTS WITH THE AIBO_ERS7.WBT WORLD ... 12

FIGURE 3: INTER-OBJECT COMMUNICATION... 16

FIGURE 4: OPEN-R OBJECT EXAMPLE. .. 18

FIGURE 5: EXAMPLE OF AN INTER-OBJECT COMMUNICATION. ... 21

FIGURE 6. OFBKIMAGEVECTORDATA STRUCTURE.. 23

FIGURE 7. AIBO CROSS-COMPILATION. .. 24

FIGURE 8. OPEN-R DIRECTORY. ... 24

FIGURE 9. THE WEBOTS/TRANSFER/OPENR DIRECTORY. .. 25

Technical report C4R2 - Cognition for Robotics Research

 9

About trademarks

• AiboTM is a registered trademark of SONY Corporation.

• Memory StickTM is a trademark of SONY Corporation.

• WebotsTM is a registered trademark of Cyberbotics Ltd.

• MatlabTM is a registered trademark of The MathWorks, Inc.

• Mac OS XTM is registered trademark of Apple Computer, Inc. in the United States
and/or other countries.

• UNIXTM
 is a registered trademark of The Open Group in the United States and/or

other countries.

• LinuxTM is a registered trademark of Linus Torvalds.

• WindowsTM is registered trademark of Microsoft Corporation in the United States
and/or other countries.

• MIPSTM is a registered trademark of MIPS Technologies, Inc. in the United States
and/or other countries.

• Other system names, product names, service names and firm names contained in this
document are generally trademarks or registered trademarks of respective makers.

Technical report C4R2 - Cognition for Robotics Research

 11

Chapter 1

Introduction

1.1 Aibo

Aibo is a four-legged dog-like entertainment robot developed by Sony (www.aibo.com).

While it is primarily intended for use as a toy, its flexibility in design and the ability to

program on-board software using a C++ API (called OPEN-R) makes the Aibo a

particularly interesting object for robotic research as well. In particular, the Robocup

Sony Four-Legged Robot League (www.openr.org/robocup) is very popular among

roboticists throughout the world.

These robots have a MIPS R4000 processor and a number of sensors and actuators that

can be manipulated by software. Each leg has three motors (three degrees of freedom).

The head has also three degrees of freedom and the tail and the ears have two degrees of

freedom each one. Therefore Aibo robots can make a great variety of movements.

Aibo robots have LEDs in their head that can be used to express emotions. Moreover it

has two infrared sensors, vibration and temperature sensors and a color camera.

The ERS 210 Aibo model has a slot which allows the use of a wireless card supporting

the 802.11b protocol of the IEEE. In the more recent Aibo ERS 7 model this feature is

built-in. This card allows a wireless communication with the robot at 11Mbps. It is

possible to use the TCP/IP and UDP protocols, or a telnet connection to the Aibo port

59000.

The Aibo robot has also a slot for inserting a Memory Stick card (data storage device).

Inside this Memory Stick users can program the behaviours of the robot.

Figure 1. Aibo ERS-7 robot.

OPEN-R:

Sony provides the OPEN-R SDK for developing software for the Aibo robots using the

C++ language. The user can program the movements of the robot, as well as to obtain

data from the sensors. Even that this development kit is mainly targeted to the Linux

platform, it is also possible to use it on Windows platforms by installing the Cygwin

application.

Adding camera functions to the Webots OPEN-R wrapper object for Aibo robots

 12

OPEN-R is a run time system built using the GCC C++ compiler targeted for the MIPS

R4000 processor. The central idea of OPEN-R is that a program is built using one or

more OPEN-R objects, which incorporate a state machine and send messages to each

other.

The usual procedure to work with Aibo robots is the following: a program is created on

a PC computer using OPEN-R and C++. This program is then compiled in the PC to

target the Aibo platform. Then, the resulting binaries are transferred from the PC to a

memory stick, which is inserted into the Aibo. Finally, when the robot is swiched on,

the code is loaded and executed.

1.2 Webots

Webots (http://www.cyberbotics.com), is a three dimensional mobile robot simulation

software created by Cyberbotics Ltd. It was initially developed at the Laboratoire de

Micro-Informatique (LAMI) of the Swiss Federal Institute of Technology, Lausanne,

Switzerland (EPFL). It is available for Linux i386, Mac OS X and Windows. It allows

the user to:

• Model and simulate any type of mobile robot (wheeled, legged, winged) in a
complete world with possibly light, obstacles and water using OpenGL and the

Open Dynamics Engine library (ODE) for realistic physics simulation.

• Program the robots in C, C++ and Java or from third party software (like for
example Matlab) through TCP/IP.

• Transfer a shipped or a self-programmed controller to a real mobile robot.

The Webots software is shipped with a simulation of the Aibo robot models ERS-210

and ERS-7 (worlds aibo_ers210.wbt and aibo_ers7.wbt).

Figure 2: Webots with the aibo_ers7.wbt world

Technical report C4R2 - Cognition for Robotics Research

 13

Furthermore, the simulation model includes a tool that allows one to remotely control

the Aibo, both the simulated model and the real Aibo either separately or

simultaneously. This tool is simply called remote control. When using it with a real

Aibo, the communication is achieved through its wireless LAN interface. When using it

with the simulated version, the commands are directly sent through software. The

remote control is accessible by double-clicking on the Aibo model in the main Webots

window showing the 3D world.

In order to achieve the communication between Webots and the real Aibo, special

software must be running on Aibo. This software was programmed in OPEN-R and is

called RCServer. Once Webots is running on the client computer, Aibo is up and

running the RCServer and both “see” each other on the network, a connection can be

established in order to remotly control the real Aibo robot.

Cross-compilation of Webots controllers for Aibo robots

Webots has also the possibility of transfer the code of robot controllers to some real

robots using intermediate libraries and/or applications. For Aibo robots Webots allows

the use of cross-compilation, wherein the controller code is cross-compiled to produce a

binary executable which then runs on the live robot directly. You can develop and test

your controllers on the simulator, and once you are happy with the results, you can

cross-compile that controller into OPEN-R code that will be executed on the real robot.

Software for the Aibo robot is written using Sony’s proprietary object-oriented API

called OPEN-R. The basic idea of cross-compilation is this: an OPEN-R wrapper object

running on Aibo basically translates all Webots robot controller API calls into OPEN-R

meaningful instructions for the live robot. Because OPEN-R programs are written in

C++, it is actually rather straightforward to combine the Webots controller program

with the OPEN-R wrapper object to obtain a binary code executable on the live robot.

1.3 Project objectives

We are working in the Cognition for Robotics Research group (C4R2) in the Jaume I

University. In our laboratory we have different robots (pioneer robots, aibo robots, a

six-legged robot called Lauron IV, Khepera robots). We use the Webots software to test

controllers before using the real robots and to use a common interface for all the robotic

platforms.

In the case of the Aibo robots we use cross-compilation to translate all Webots

controllers into OPEN-R code for the live robot. As we have mentioned in the previous

point, there is an OPEN-R wrapper object which runs on Aibo. The problem we have

found is that the wrapper object does not have implemented the functions of the camera.

The objective of the present work is the implementation of these functions in the

wrapper object.

First, in section 2 we will see an overview of the basic concepts needed to understand

the work done in this technical report. After that, in section 3 the functions added to the

wrapper object will be explained. Finally, in the attached document, a base code using

the added camera capabilities is shown.

Technical report C4R2 - Cognition for Robotics Research

 15

Chapter 2

System Overview

In this section we will explain some important concepts needed to develop the present

project.

2.1 OPEN-R

“OPEN-R” is the interface promoted by Sony to expand the capabilities of the

entertainment robot systems. ”OPEN-R SDK” discloses the specifications of the

interface between the system layer and the application layer.

2.1.1 Features of OPEN-R:

Modularised software and inter-object communication: OPEN-R software is object-

oriented and modular. Software modules are called “objects” (specifically, “OPEN-R

objects”). Processing is performed by multiple objects with various functionalities

running concurrently and communicating via inter-object communication.

An OPEN-R object is not an object in the traditional C++ sense of the word. The

concept of an object is similar to one of a process in the UNIX or Windows operating

systems with regard to the following points of view:

• An object corresponds to one executable file.

• Each object runs concurrently with other objects.

Connections between objects are defined in external description files. When the system

software boots, these description files are loaded and used to allocate and configure the

communication paths for inter-object communication. Connection ports in objects are

identified by the service name, which enables objects to be highly modular and easily

replaceable as software components.

Layered structure of the software and services provided by the system layer: The

OPEN-R system layer provides a set of services (input of sound data, output of sound

data, input of image data, output of control data to joints, and input of data from various

sensors) as the interface to the application layer. This interface is also implemented by

inter-object communication.

OPEN-R services enable application objects to use the robot's underlying

functionalities, without requiring detailed knowledge of the robot hardware.

The system layer also provides the interface to the TCP/IP protocol stack, which

enables programmers to create networking applications utilizing the wireless LAN. The

IPStack is an OPEN-R system layer object. Objects can use the network services

offered by the IPv4 protocol stack by communicating with the protocol stack through

normal message passing, i.e. by sending special messages to and receiving special

messages from the IPStack.

The virtual objects OVirtualRobotComm and OvirtualAudioComm

The OPEN-R SDK provides two special objects (virtual objects), which provide an

interface to Aibo's hardware:

OVirtualRobotComm interfaces with the dog's joints, sensors, LEDs and camera.

Adding camera functions to the Webots OPEN-R wrapper object for Aibo robots

 16

OVirtualRobotAudioComm interfaces with the robot audio devices.

The use of those objects is the same as the use of user defined objects by means of

communication gates. The gates in those objects are already predefined to send

messages to and receive messages from them.

2.1.2 Inter-object communication

Each OPEN-R object can communicate with other OPEN-R objects in order to make

tasks more complex. This type of communication is known as “inter-object

communication”. The connections between objects have to be defined in two files,

called stub.cfg and connect.cfg. These files are used by the system for making the

connections between the objects.

The objects are classified in two categories: observers and subjects. The objects are

observers when they receive messages from other objects. The objects are subjects

when they send messages to other objects. The objects can simultaneously be subjects

and observers.

When two objects communicate, the side that sends data is the “subject,” and the side

that receives data is the “observer”. The subject sends a ‘NotifyEvent’ to the observer.

‘NotifyEvent’ includes the data that the subject wants to send to the observer. The

observer sends a ‘ReadyEvent’ to the subject. The purpose of ReadyEvent is to inform

the subject that the observer is ready to receive data or not. If the observer is not ready

to receive data, the subject does not send any data to the observer.

Figure 3 shows a case where the subject of object A communicates with the observer of

object B.

Figure 3: Inter-object communication

Before the observer receives data from the subject, the observer must inform the subject

of its current state. When the observer is in a state ready to receive data, the observer

sends ‘ASSERT-READY’ to the subject. When the observer is in a state not ready to

receive data, the observer sends ‘DEASSERT-READY’ to the subject. When the

subject receives ASSERT-READY from the observer, the subject starts to send data to

the observer. After the observer receives this data and is ready to receive the next data,

the subject sends ASSERT-READY again.

Technical report C4R2 - Cognition for Robotics Research

 17

When the AIBO is switched on, all the objects are loaded into the system and all the

connections between subjects and observers are established. The processing of each

object is strictly sequential. This means that although an object can be an observer of

several connections, only can process a message simultaneously. All the messages that

arrive are placed in tails.

2.1.3 OPEN-R objects description

An OPEN-R object is represented with a core class (a C++ class). Each object should be

represented by only one core class. The characteristics of core classes are:

• A core class inherits from the OObject class.

• A core class implements DoInit(), DoStart(), DoStop(), DoDestroy().

• A core class has the necessary number of OSubjects and OObservers.

• Some member functions in the core class correspond to specific methods in the

object:

o Methods that are called at start up and shutdown:

� Init method. This is called at start-up. This method initializes

instances and variables.

� Start method. This is called at start-up after Init is executed in all

objects.

� Stop method. This is called at shutdown.

� Destroy method. This is called at shutdown after Stop is executed

in all objects. This method destroys the subject and observer

instances.

The Init method, Start method, Stop method, and Destroy method

correspond to each DoInit(), DoStart(), DoStop() and DoDestroy()

function in the object’s corresponding core class, respectively.

o When a message is received from another object, the following methods
are used:

� Methods used in subjects:

• Control method. This receives the connection results

between the subject and its observers.

• Ready method. The subject receives ASSERT-READY or

DEASSERT-READY notifications from the observers.

� Methods used in observers:

• Connect method. This receives the connection results

between an observer and its subjects.

• Notify method. This receives a message from the subject.

These methods have the following characteristics:

• The member functions corresponding to Control methods,

Ready methods, Connect methods, and Notify methods

are described in stub.cfg.

Adding camera functions to the Webots OPEN-R wrapper object for Aibo robots

 18

• The member functions receiving a message are described

in stub.cfg, but it is not necessary to describe the member

functions sending a message in stub.cfg.

Below, we will show an example to illustrate these concepts. The SampleClass inherits

from OObject. The four standard OPEN-R member functions (DoInit(), DoStart(),

DoStop() and DoDestroy()) are defined here. The object communicates with other

objects and we must define the necessary number of OSubjects and OObservers. The

necessary number has to be described in def.h.

Figure 4: OPEN-R object example.

2.1.4 Programming in OPEN-R

• An OPEN-R program consists of a set of objects that are executed concurrently on
the robot, plus a set of configuration files that specify how those objects must

interact. The flow of development of an OPEN-R program is the following (for a

more detailed description see the OPEN-R SDK Programmer’s guide [OPEN-R SDK

Programmer’s Guide. 2004, Sony Corporation]:

• Design of the objects and the communication between them.

• The connection between the entry points of an object and the actual member

functions is described in an external file called stub.cfg.

• Implementation of the objects by means of core C++ classes.

• Decide the configuration of the .ocf file. This file is used to specify the

configuration of the object.

• The objects are compiled and linked in the host machine producing executable

code. There is one executable file (.bin) for each object.

• Edit the setting files: OBJECT.CFG, CONNECT.CFG and DESIGNDB.CFG

#include <OPENR/OObject.h>

#include <OPENR/OSubject.h>

#include <OPENR/OObserver.h>

#include "def.h"

class SampleClass: public OObject {

public:

SampleClass2();

virtual ~SampleClass2() {}

OSubject* subject[numOfSubject];

OObserver* observer[numOfObserver];

virtual OStatus DoInit(const OSystemEvent& event);

virtual OStatus DoStart(const OSystemEvent& event);

virtual OStatus DoStop(const OSystemEvent& event);

virtual OStatus DoDestroy(const OSystemEvent& event);

//Describe the member functions corresponding to Notify,

//Control, Ready, Connect method.

};

Technical report C4R2 - Cognition for Robotics Research

 19

• The executable code is then transferred to a memory stick that is inserted in the

Aibo robot and executed on it. When Aibo boots, all the compiled objects are

loaded into memory and started as concurrent processes.

The behaviour of every object is described as the transitions between its internal states.

Each object is based on its present state and the transitions that lead to other states. This

means that an object will be always on a state. The design of an object is the design of

its required states, transitions and functions to apply when going from one state to

another. Transitions are activated by the reception of messages, and can have several

paths going to several states. Only the path that satisfies the condition will be taken. As

you will see, conditions must be exclusive in order to do not allow the object be in two

different states at the same time.

A message contains some data and a selector, which is an integer that specifies a task to

be done by the receiver of the message. When an object receives a message, the

function corresponding to the selector is invoked, with the data in the message as its

argument. A function corresponding to a selector is called a “method”.

An important feature of objects is that they are single-threaded. This means an object

can process only one message at a time. If an object receives a message while it is

processing another message, the second message is put into the message queue and

processed later.

The typical life cycle of an object can be divided in the next steps:

(1) The object is loaded by the system.

(2) The object waits for a message.

(3) When a message arrives, the object executes the corresponding method.
Possibly sends some messages to other objects.

(4) When the method finishes execution, goes to step 2.

Note that this is an infinite-loop: an object can not terminate itself. It persists until the

system is deactivated.

2.1.5 The stub.cfg config file

A stub is used to connect an entry point of an object with a member function in a core

class. The stub is defined in xxxStub.cc, which is automatically generated from stub.cfg,

by a stub generator (the stubgen2 command). Only one instance of a core class is

generated as a global variable in xxxStub.cc and every object has its own stub.cfg file.

The “Stubgen2” command reads stub.cfg and generates intermediate files to connect the

methods of an object with the member functions of a core class. def.h is one file that is

generated by Stubgen2.

The following items are described in stub.cfg:

• The number of subjects and the number of observers

• Services used in inter-object communication

The subjects and observers provide the services for inter-object communication. Each

service has a unique name, in order to distinguish that service from other services in the

system. You have to connect the subject’s service to the observer’s service by

describing both service names in connect.cfg (we will see this file in the next point).

Adding camera functions to the Webots OPEN-R wrapper object for Aibo robots

 20

The following is a sample of a stub.cfg file:

ObjectName : SampleClass

NumOfOSubject : 1

NumOfOObserver : 2

Service : "SampleClass.Func1.Data1.S", Control(), Ready()

Service : "SampleClass.Func2.Data2.O", Connect(), Notify1()

Service : "SampleClass.Func3.Data2.O", null, Notify2()

The descriptions of each item are:

• ObjectName: The core class name.

• NumOfOSubject: This is the number of subjects. You must specify at least 1

subject. When you do not need a subject in your program, you should register one

dummy subject.

• NumOfOObserver: This is the number of observers. You must specify at least 1.

When you do not need an observer in your program, you should register one

dummy observer.

• Service: Here, you specify the communication service for the object. A service

corresponding to each subject and observer is described. A service consists of the

following items below:

"(Connection name)", (Member function 1), (Member function 2)

o Connection name: The connection name consists of the following items.

(Object name). (Subname). (Data name). (Service type)

� Object Name: You can use any name you like, but this is usually

the core class name.

� Subname: This is a service name and must be unique. Do not use

the same subname that other services use.

� Data name: This is the name corresponding to the data type used

in inter-object communication.

� Service type: S(subject) or O(observer) is specified.

o Member function 1: This member function is called when a connection

result is received. You can freely use any names for this function. This

function is implemented in the core class. In case you do not need it, you

can specify “null” here.

o Member function 2: If this service is for observers, this function is

called when a message is received from a subject. If this service is for

subjects, this function is called when ASSERT-READY or DEASSERT-

READY is received from an observer. You can use any name you like

for this function. This function is implemented in the core class. In case

you do not need it, you can specify “null” here.

Next, we will explain how messages are sent and received between the subject “a” of

object A and the observer “b” of object B, using Figure 5 and the next sample

descriptions of the stub.cfg file for each object.

Technical report C4R2 - Cognition for Robotics Research

 21

ObjectName : ObjectA

NumOfOSubject : 1

NumOfOObserver : 1

Service : "ObjectA.SendString.char.S", null, subject_a()

Service : "ObjectA.DummyObserver.DontConnect.O", null, null

ObjectName : ObjectB

NumOfOSubject : 1

NumOfOObserver : 1

Service : "ObjectB.DummySubject.DontConnect.S", null, null

Service : "ObjectB.ReceiveString.char.O", null, observer_b()

Figure 5: Example of an inter-object communication.

The following are the steps of sending and receiving a message:

• DoStart() in object B sends ASSERT-READY to the subject in object A. This

notification reaches subject_a() of the core class in object A.

• subject_a() sends a message to Object B. This notification reaches observer_b()

of the core class in object B.

• When observer_b() requests Object A to send the next message, observer_b()
sends ASSERT-READY to Object A.

2.1.6 The connect.cfg config file

The connection between a subject and an object is described in connect.cfg. This is a

unique file by program and it must be placed in the OPENR/ MW/CONF/ directory of

the memory stick.

An example of a connect.cfg file is:

Class1.Func1.Data1.S Class2.Func2.Data1.O

Each line includes the following items.

Adding camera functions to the Webots OPEN-R wrapper object for Aibo robots

 22

"a subject service" (.S) ,"a space", "an observer service (.O)"

The data name in the subject service and the data name in the observer service must be

the same.

For example, the connection of the service between subject a and observer b, see figure

5, is described in connect.cfg as follows.

ObjectA.SendString.char.S ObjectB.ReceiveString.char.O

2.1.7 The Notify() function

The Notify(const ONotifyEvent& event) is a special function that is called when a

message arrives in the gate of the object where it is in. It is the only way to retrieve the

message that was sent to the object. Therefore, it is the entry point that one must use in

order to get the data from a sensor or from function's argument each time that such a

message is ready. Its content can be retrieved by casting the variable in which it was

copied in (in our case it is the variable event):

DataType* dt = (DataType*)event.Data(0);

At the end of the Notify() function, an AssertReady must be sent to the subject that sent

the message with:

observer[event.ObsIndex()]->AssertReady();

2.2 Aibo’s camera

2.2.1 Accessing the camera

Sensors and joints are called primitives in Sony's official documentation. In Aibo's

design, each primitive can be referred to by using a primitive locator supplied in the

Sony's model information document. The primitive locator provides the address of the

primitive and the OPENR::OpenPrimitive static function convert this adress to an ID. In

OPEN-R SDK the type OprimitiveID holds ID information. This design was chosen by

Sony's developers in order to make objects portable between different Aibo models

since the same sensor can have a different index within two different models

2.2.2 Format type of the camera data

OFbkImageVectorData is the data structure that holds image data. It is the type of the

data sent from the camera, i.e. the type of the messages sent from the outgoing gate

named FbkImageSensor of OVirtualRobotComm . Actually, a OFbkImageVectorData

message contains the same picture in different resolutions but all in color that are stored

in different layers accessible by their indices. The index of the layer can be one of the

following predefined constants: ofbkimageLAYER_H (high resolution),

ofbkimageLAYER_M (medium resolution), ofbkimageLAYER_L (low resolution).

Images are in the YCrCb format, which means they are coded using 3 bands: Y

luminance, Cr (red component - Y) and Cb (blue component - Y).

The OFbkImageVectorData object contains several data and information objects, just as

the OCommandVectorData object. OFbkImageVectorData has a few methods to obtain

this data and information like GetData() and GetInfo(). Of course it is also necessary to

know the amount of data objects when using these methods, therefore the maxNumData

member can be used. Needless to say, in this case the data represents images. Figure 6

shows the structure of the OFbkImageVectorData class.

Technical report C4R2 - Cognition for Robotics Research

 23

Getting information about an image is done by calling the GetInfo() method. This

method returns an OFbkImageInfo object which can be used to obtain the size and some

other information of the image. Getting the corresponding image data can be done by

the GetData() method. GetData() returns a pointer to a byte array that represents the

image.

For the programmer it is not necessary to know how an image is stored. To read out the

color of a pixel from an image the programmer only needs to use the OFbkImage object.

OFbkImage has methods to easily access image data without having to know the

underlying structure. The constructor of this class requires the information and data

objects. To retrieve these objects the GetInfo() and GetData() methods can be used.

Figure 6. OFbkImageVectorData structure

For an example of the access to the Aibo’s camera see the document attached at the end

of this report.

2.3 Webots cross-compilation for Aibo robots

As we have mentioned in point 1.2, Webots allows us the use of cross-compilation for

Aibo robots, wherein the controller code is cross-compiled to produce a binary

executable which then runs on the live robot directly.

There are some test controllers coming with Webots for the two Aibo models placed in

the controllers directory of Webots webots/controllers/ (these controllers are called

ers7* and ers210*). The controller code is contained in the files named ers7*.c and

ers210*.c (the directory and the name of the controller have to be the same in Webots).

There are two makefiles inside these directories: Makefile and Makefile.openr. Makefile

is necessary for the compilation of the controller for Webots execution and

Makefile.openr manage the cross-compilation creating the executable code for Aibo

robots. The source code files to be compiled by both makefiles are listed in

Makefile.sources.

For creating new controllers we will use the existing Aibo base controllers as initial

patterns. Below we show the steps for creating the Aibo executable code from a Webots

controller (see figure 7):

1. First we should copy to the memory stick an OPEN-R system directory from the
OPEN-R SDK containing the system configuration (see figure 8). These files are

inside the OPEN-R SDK directory in OPEN_R/MS/ and there are three posible

Adding camera functions to the Webots OPEN-R wrapper object for Aibo robots

 24

configurations: BASIC (without a wireless LAN environment), WLAN (with

wireless LAN and without wireless console) and WCONSOLE (with both

wireless LAN and console). Each one of these configurations can use a system

with memory protection (memprot o nomemprot directories).

The actual cross-compiler is Sony’s OPEN-R cross-compiler included in the

OPENR SDK available for download from the official OPEN-R website. In

order to take advantage of controller cross-compilation in Webots, the OPEN-R

SDK must therefore be installed first.

Figure 7. Aibo cross-compilation.

Figure 8. OPEN-R directory.

/OPEN-R/ MW/ CONF/ Configuration

 DATA/ E/

 P/ Content data

 OBJS/ Executable files

SYSTEM/ System files

Technical report C4R2 - Cognition for Robotics Research

 25

2. Then we should execute the file Makefile.openr (make -f Makefile.openr), which

calls the files placed in the Webots folder webots/transfer/openr (see figure 9).

This directory contains intermediate cross-compiled files of the Controller

OPEN-R wrapper object. Makefile.openr compiles all source code files specified

in Makefile.sources (*.c, *.cc or *.cpp) using Sony’s cross-compiler and links

them with the already existing files. If there is not yet a directory called OPEN-

R/ in the controller directory, a default OPEN-R directory is copied from

webots/transfer/openr. Calling make -f Makefile.openr clean will again remove

the OPEN-R/ directory.

Figure 9. The webots/transfer/openr directory.

3. The controller binary file CONTROLL.BIN resulting from the controller cross-
compilation, using the wrapper object files placed in

webots/transer/openr/Controller, is then placed into the OPEN-R/MW/OBJS/

subdirectory in the webots/controllers/my_controller directory. The binary files

of the other remote software objects are also located in that target subdirectory.

(Initially, the CONTROLL.BIN binary code already in place corresponds to a

void controller.) Four MTN motion sequence files are already present in OPEN-

R/MW/DATA/P/ and thus do not need to be uploaded separately.

4. The webots/controllers/my_controller/OPEN-R/ directory may be directly

copied to the Memory stick, overwriting the adecuate files of the OPEN-R

directory created previously from the OPEN-R SDK. The archives MTN that can

be used have to be copied in the directory OPEN-R/MW/DATA/P/ of the

Memory Stick.

In order to be able to add the necessary functions for the use of the camera in the

OPEN-R wrapper object (Controller), we had to modify the source files of the wrapper

object, which generates the object files found inside the

webots/transfer/openr/Controller/ folder. In the next chapter we will see how this has

been done.

webots/transfer/openr/

Controller/ Controller.o

 Controller.ocf

 ControllerStub.o

 MTNFile.o

 MTNFile_Print.o

 OPEN-R/ MW/ CONF/ connect.cfg

 object.cfg

 DATA/ P/

 OBJS/ controll.bin

 jointmvr.bin

 powermon.bin

 rcserver.bin

Technical report C4R2 - Cognition for Robotics Research

 27

Chapter 3

Adding camera functions to the Webots OPEN-R
wrapper object for Aibo robots

In order to be able to extend the wrapper object with the purpose of being able to use the

camera, we have to modify the source files of the Webots wrapper object that we will

describe in this chapter.

3.1 Controller.h

We have to add to the Controller object, in the Controller header, the next functions

targeted from the Webots API:

 unsigned short camera_get_width(DeviceTag t);

 unsigned short camera_get_height(DeviceTag t);

 unsigned char *camera_get_image(DeviceTag t);

 float camera_get_fov(DeviceTag t);

We will also add the function Notify that we use to receive the information from the

camera:

void Notify(const ONotifyEvent& event);

And the macros used to obtain a colour component from a pixel of the image:

#define camera_image_get_red(image,width,x,y) (image[3*((y)*(width)+(x))])

#define camera_image_get_green(image,width,x,y) (image[3*((y)*(width)+(x))+1])

#define camera_image_get_blue(image,width,x,y) (image[3*((y)*(width)+(x))+2])

We also declare the next private variables:

//Array to keep the image in RGB

unsigned char *VectorImage;

//Array to obtain the image from the Aibo camera

OFbkImageVectorData* fbkImageVectorData;

//The index for the vector of pixels

static const int B_PIXEL = 0;

static const int G_PIXEL = 1;

static const int R_PIXEL = 2;

3.2 Controller.cc

3.2.1 Notify method

In the Controler.cc source file, first we define the function Notify:

Adding camera functions to the Webots OPEN-R wrapper object for Aibo robots

 28

 void Controller::Notify (const ONotifyEvent& event) {

 //To receive data from the public area, invoke event.Data(0)

 fbkImageVectorData = (OFbkImageVectorData*)event.Data(0);

 //To request the next data, invoke AssertReady()

 observer[event.ObsIndex()]->AssertReady();

 }

The last line means that the object is prepared to receive the following event. We will

have in fbkImageVectorData all the information of the captured image.

3.2.2 camera_enable and camera_disable

These functions do not need code for the real Aibo robot.

 void camera_enable(DeviceTag t, unsigned short ms) {}

 void camera_disable(DeviceTag t) {}

3.2.3 camera_get_width and camera_get_height

The function camera_get_width returns the width of the image. We use the information

of the high resolution image.

 unsigned short camera_get_width (DeviceTag t) {

 return mySelf->camera_get_width(t);

}

 unsigned short Controller::camera_get_width (DeviceTag t) {

 //The image of high resolution

 OFbkImageLayer layer = ofbkimageLAYER_H;

 // Obtaining the information of the camera

 OFbkImageInfo *info = fbkImageVectorData->GetInfo(layer);

 // Obtaining the information of the image

 byte *data = fbkImageVectorData->GetData(layer);

 //Obtaining the image by layers in YCrCb

 OFbkImage yImage(info, data, ofbkimageBAND_Y);

 OFbkImage uImage(info, data, ofbkimageBAND_Cb);

 OFbkImage vImage(info, data, ofbkimageBAND_Cr);

 //Using the function int Width() of the class OFbkImage to obtain the

 //width of the image

 slongword width = yImage.Width();

 return (unsigned short)width;

 }

Technical report C4R2 - Cognition for Robotics Research

 29

The function camera_get_height returns the height of the image. We also use the

information of the high resolution image.

 unsigned short camera_get_height (DeviceTag t) {

 return mySelf->camera_get_height(t);

}

 unsigned short Controller::camera_get_height (DeviceTag t) {

 //The image of high resolution

 OFbkImageLayer layer = ofbkimageLAYER_H;

 // Obtaining the information of the camera

 OFbkImageInfo *info = fbkImageVectorData->GetInfo(layer);

 // Obtaining the information of the image

 byte *data = fbkImageVectorData->GetData(layer);

 //Obtaining the image by layers in YCrCb

 OFbkImage yImage(info, data, ofbkimageBAND_Y);

 OFbkImage uImage(info, data, ofbkimageBAND_Cb);

 OFbkImage vImage(info, data, ofbkimageBAND_Cr);

 //Using the function int Height() of the class OFbkImage to obtain the

 //height of the image

 slongword height = yImage.Height();

 return (unsigned short)height;

 }

3.2.4 camera_get_image

The function camera_get_image returns an array with the components of the image.

The Aibo color camera uses a YUV format of space of colors. We have to transform the

YUV format to RGB for compatibility with Webots. For the conversion, we use the

next function, included in the file ycrcb2rgb.h that we must include in Controller.cc.

void YCrCb2RGB(byte y, byte cr, byte cb, byte* r, byte* g, byte* b) {

 double Y, Cr, Cb, R, G, B;

//Normalization of the data

 sbyte scr = (sbyte)(cr ^ 0x80);

 sbyte scb = (sbyte)(cb ^ 0x80);

 Y = (double)y / 255.0; // 0.0 <= Y <= 1.0

 Cr = (double)scr / 128.0; // -1.0 <= Cr < 1.0

 Cb = (double)scb / 128.0; // -1.0 <= Cb < 1.0

 //Conversion

 R = 255.0*(Y + Cr);

Adding camera functions to the Webots OPEN-R wrapper object for Aibo robots

 30

 G = 255.0*(Y - 0.51*Cr - 0.19*Cb);

 B = 255.0*(Y + Cb);

//We verify that the values are between 0 and 255.

 if (R > 255.0) {

 *r = 255;

 } else if (R < 0.0) {

 *r = 0;

 } else {

 *r = (byte)R;

 }

 if (G > 255.0) {

 *g = 255;

 } else if (G < 0.0) {

 *g = 0;

 } else {

 *g = (byte)G;

 }

 if (B > 255.0) {

 *b = 255;

 } else if (B < 0.0) {

 *b = 0;

 } else {

 *b = (byte)B;

 }

}

In the function YCrCb2RGB, we normalize the data, because the YUV format has a

range that goes from -1 to 1 and in RGB the range goes from 0 to 255. Then we do the

conversion from YUV to RGB and finally we verify that the final values are between 0

and 255.

In camera_get_image we divide the image in YUV components. We convert each

component of the image to the corresponding RGB value, and we kept them in order r,

g, b in an array called VectorImage. This array is defined in the constructor with the

dimensions of the image of high resolution multiplied by the three components in which

the image is divided. The function returns this array.

 unsigned char *camera_get_image(DeviceTag t) {

 return mySelf->camera_get_image(t);

 }

 unsigned char *

 Controller::camera_get_image(DeviceTag t) {

 //The image of high resolution

 OFbkImageLayer layer = ofbkimageLAYER_H;

 byte pixel[3];

 //It obtains the information of the camera

Technical report C4R2 - Cognition for Robotics Research

 31

 OFbkImageInfo *info = fbkImageVectorData->GetInfo(layer);

 //It obtains the information of the image

 byte *data = fbkImageVectorData->GetData(layer);

 //It obtains the image by layers in YCrCb

 OFbkImage yImage(info, data, ofbkimageBAND_Y);

 OFbkImage crImage(info, data, ofbkimageBAND_Cr);

 OFbkImage cbImage(info, data, ofbkimageBAND_Cb);

 //Width ahd height of the image

 slongword w = yImage.Width();

 slongword h = yImage.Height();

 int f = 0;

 for(int y=0;y<h;y++){

 for(int x=0;x<w;x++){

 //conversion of YCrCb to RGB

 YCrCb2RGB(yImage.Pixel(x,y), crImage.Pixel(x,y),

 cbImage.Pixel(x,y),

 &pixel[R_PIXEL],&pixel[G_PIXEL],&pixel[B_PIXEL]);

 //It keeps each layers in a position of the vector

 VectorImage[f]=pixel[R_PIXEL];

 VectorImage[f+1]=pixel[G_PIXEL];

 VectorImage[f+2]=pixel[B_PIXEL];

 f=f+3;

 }

 }

 return VectorImage;

 }

3.2.5 camera_get_fov

The last function is camera_get_fov. In Webots there is only one value for the camera

fov value and you can choose that value, but in the real Aibo robot there are two

different values, its lens has a opening of 56.7° horizontal and 45.2° vertical.

We return only one value for compatibility with Webots, the height in radians.

 float camera_get_fov(DeviceTag t){

 return mySelf->camera_get_fov(t);

 }

 float

 Controller::camera_get_fov(DeviceTag t){

 return 0.993092

 }

3.3 stub.cfg

This file contains the inter-connect objects information and it is necessary to define the

subjects and observers of the object.

Adding camera functions to the Webots OPEN-R wrapper object for Aibo robots

 32

We have to add the next row to the file stub.cfg that we found in the source directory of

the Controller object:

 Service : "Controller.Image.OFbkImageVectorData.O", null, Notify()

And we have to add one to the NumOfOObserver.

3.4 connect.cfg

The connect.cfg file is located in the directory /OPEN-R/MW/CONF of the memory

stick. It contains the connections between the subjects and the observers.

We have added the next rows:

 OvirtualRobotComm.FbkImageSensor.OFbkImageVectorData.S

 Controller.Image.OFbkImageVectorData.O

Technical report C4R2 - Cognition for Robotics Research

 33

References
This report is based on the information that can be found mainly in the following

articles:

• Remote control of the Aibo
TM
 camera from Webots

TM
. Raphaël Haberer-Proust,

Olivier Michel, Auke Jan Ijspeert. 2006 Semester Project. School of Computer &

Communication Sciences, Swiss Federal Institute of Technology, Lausanne (EPFL).

http://birg.epfl.ch/webdav/site/birg/users/161181/public/report-semester_project.pdf

• Introduction to the Aibo programming environment. 2005, Ricardo A. Téllez

(r_tellez@ouroboros.org). http://www.ouroboros.org/notes.pdf

• OPEN-R Essentials. 2004, Ricardo A. Téllez (r_tellez@ouroboros.org).

http://www.ouroboros.org/open-r_v1.0.pdf

• Manual de Open-R. Francisco Martín Rico, Rafaela González-Careaga. Universidad

Rey Juan Carlos, 28933 Móstoles (Spain). {robotica-profes}@gsyc.escet.urjc.es.

http://www2.udec.cl/~clcastro/manual-openr.pdf

• OPEN-R SDK Programmer’s Guide. 2004, Sony Corporation.

• Webots User Guide. 2005, Cyberbotics Ltd.

• Aibo programming using OPEN-R SDK. 2003, François Serra and Jean-Christophe

Baillie. ENSTA. http://www.ensta.fr/˜baillie

Technical report C4R2 - Cognition for Robotics Research

 35

Annex I

Example of a Webots controller for Aibo robots

In this attached document we can see a base code of a Webots controller for Aibo robots

where an image is captured and stored on disk. This code can be executed both in

Webots and live Aibo robots.

///

// Base Webots controller for Aibo robots.

// Cognition for Robotic Research group (C4R2). Jaume I University.

// 03/2007

///

// Includes ///

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <fstream>

#include "../../include/device/robot.h"

#include "../../include/device/servo.h"

#include "../../include/device/led.h"

#include "../../include/device/distance_sensor.h"

#include "../../include/device/touch_sensor.h"

#include "../../include/device/camera.h"

#include "../../include/device/mtn.h"

//Constants //

#define SIMULATION_STEP 16

#define IMAGE_SIZE 208*160

#define MTN_REPLAY 15

// Webots compilation.

//#define MTN_PATH "../../data/mtn/ers7/"

//#define MTN_FILE "../../data/mtn/ers7/wwfwd.mtn"

// Aibo compilation.

#define MTN_PATH "/ms/open-r/mw/data/p/"

#define MTN_FILE "/ms/open-r/mw/data/p/wwfwd.mtn"

// Static variables ///

static MTN *mtn;

static DeviceTag camera,

head_distance_near,

head_distance_far,

chest_distance_sensor,

touch_sensor_fore_l,

touch_sensor_fore_r,

touch_sensor_hind_l,

touch_sensor_hind_r,

head_pan,

joint[15];

Adding camera functions to the Webots OPEN-R wrapper object for Aibo robots

 36

// Init function ///

static void init(void) {

camera = robot_get_device("PRM:/r1/c1/c2/c3/i1-FbkImageSensor:F1");

head_distance_near = robot_get_device("PRM:/r1/c1/c2/c3/p1-Sensor:p1");

head_distance_far = robot_get_device("PRM:/r1/c1/c2/c3/p2-Sensor:p2");

chest_distance_sensor = robot_get_device("PRM:/p1-Sensor:p1");

touch_sensor_fore_l = robot_get_device("PRM:/r2/c1/c2/c3/c4-Sensor:24");

touch_sensor_hind_l = robot_get_device("PRM:/r3/c1/c2/c3/c4-Sensor:34");

touch_sensor_fore_r = robot_get_device("PRM:/r4/c1/c2/c3/c4-Sensor:44");

touch_sensor_hind_r = robot_get_device("PRM:/r5/c1/c2/c3/c4-Sensor:54");

 joint[0] = robot_get_device("PRM:/r2/c1-Joint2:21"); // LFLJ1 joint

 joint[1] = robot_get_device("PRM:/r2/c1/c2-Joint2:22"); // LFLJ2 joint

 joint[2] = robot_get_device("PRM:/r2/c1/c2/c3-Joint2:23"); // LFLJ3 joint

 joint[3] = robot_get_device("PRM:/r3/c1-Joint2:31"); // LRLJ1 joint

 joint[4] = robot_get_device("PRM:/r3/c1/c2-Joint2:32"); // LRLJ2 joint

 joint[5] = robot_get_device("PRM:/r3/c1/c2/c3-Joint2:33"); // LRLJ3 joint

 joint[6] = robot_get_device("PRM:/r4/c1-Joint2:41"); // RFLJ1 joint

 joint[7] = robot_get_device("PRM:/r4/c1/c2-Joint2:42"); // RFLJ2 joint

 joint[8] = robot_get_device("PRM:/r4/c1/c2/c3-Joint2:43"); // RFLJ3 joint

 joint[9] = robot_get_device("PRM:/r5/c1-Joint2:51"); // RRLJ1 joint

 joint[10] = robot_get_device("PRM:/r5/c1/c2-Joint2:52"); // RRLJ2 joint

 joint[11] = robot_get_device("PRM:/r5/c1/c2/c3-Joint2:53"); // RRLJ3 joint

 joint[12] = robot_get_device("PRM:/r1/c1-Joint2:11"); // Neck Tilt1 joint

 joint[13] = robot_get_device("PRM:/r1/c1/c2-Joint2:12"); // Neck Pan joint

 joint[14] = robot_get_device("PRM:/r1/c1/c2/c3-Joint2:13"); // Neck Tilt2 joint

// Enabling sensors.

camera_enable(camera,SIMULATION_STEP);

distance_sensor_enable(head_distance_near,SIMULATION_STEP);

distance_sensor_enable(head_distance_far,SIMULATION_STEP);

distance_sensor_enable(chest_distance_sensor,SIMULATION_STEP);

touch_sensor_enable(touch_sensor_fore_l,SIMULATION_STEP);

touch_sensor_enable(touch_sensor_hind_l,SIMULATION_STEP);

touch_sensor_enable(touch_sensor_fore_r,SIMULATION_STEP);

touch_sensor_enable(touch_sensor_hind_r,SIMULATION_STEP);

 // Setting velocity and acceleration of the joints.

 for (int i = 0; i < 15; i++) {

 servo_set_velocity(joint[i], 2.498);

 servo_set_acceleration(joint[i], 2.498);

 servo_enable_position(joint[i], SIMULATION_STEP);

 }

 // Creating the mtn movement.

 mtn = mtn_new("wwfwd.mtn");

}

// Die function ///

static void die(void) {

 // Deleting the mtn data.

if(mtn) mtn_delete(mtn);

}

Technical report C4R2 - Cognition for Robotics Research

 37

// Run function //

static int run (int ms) {

static int loop=0;

unsigned char *image;

unsigned char *ychannel, *uchannel, *vchannel;

unsigned char r,g,b;

int h,w, aux;

 ofstream is("/ms/open-r/mw/data/p/image.raw");

ychannel = new unsigned char[IMAGE_SIZE];

uchannel = new unsigned char[IMAGE_SIZE];

vchannel = new unsigned char[IMAGE_SIZE];

if ((mtn_is_over(mtn)) && (loop<MTN_REPLAY)){

 // Play mtn until enough loops

 mtn_play(mtn);

 loop++;

}

else if ((mtn_is_over(mtn)) && (loop==MTN_REPLAY)) {

 image = camera_get_image(camera);

 w = camera_get_width(camera);

 h = camera_get_height(camera);

 aux = 0;

 for (int j = 0; j< h; j++) {

 for (int i = 0; i < w; i++) {

 r = camera_image_get_red(image,w,i,j);

 g = camera_image_get_green(image,w,i,j);

 b = camera_image_get_blue(image,w,i,j);

 ychannel[aux] = (unsigned char)(0.299 * r + 0.587 * g + 0.114 * b);

 uchannel[aux] = (unsigned char)(0.492 * (b - ychannel[aux]) + 128);

 vchannel[aux] = (unsigned char)(0.5 * (r -ychannel[aux]) + 128);

 is.put(ychannel[aux]);

 is.put(uchannel[aux]);

 is.put(vchannel[aux]);

 aux++;

 }

 }

}

return SIMULATION_STEP;

}

// main function ///

int main() {

robot_live(init);

robot_die(die);

robot_run(run);

return 0;

}

