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Abstract: Few realize that, for large matrices, many dense matrix coatipns achieve nearly the same performance
when the matrices are stored on disk as when they are stoeedeiry large main memory. Similarly, few realize that, given
the right programming abstractions, coding Out-of-Cor®() implementations of dense linear algebra operationgi@h

data resides on disk and has to be explicitly moved in and fauain memory) is no more difficult than programming
high-performance implementations for the case where thexisiin memory. Finally, few realize that on a contempgrar
eight core architecture or a platform equiped with a grapprocessor (GPU) one can solvéd®, 000 x 100, 000
symmetric positive definite linear system in about one h®hus, for problems that used to be considered large, it is not
necessary to utilize distributed-memory architectureh wiassive memories if one is willing to wait longer for théusion
to be computed on a fast multithreaded architecture like li+tore computer or a GPU. This paper provides evidence in
support of these claims.
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Solucibn de Problemas Matriciales de “gran Escala” sobre Procesadores
Multin Gcleo y GPUs

Mercedes Marges, Gregorio Quintana-Gift, Enrique S. Quintana-Qft Robert A. van de Geifh

Resumen:

Pocos son conscientes de que, para matrices grandes, nuattues matriciales obtienen casi el mismo rendimiento
cuando las matrices se encuentran almacenadas en discoansoaesiden en una memoria principal muy grande. De
manera parecida, pocos son conscientes de que, si se usdnsti@cciones de programacin correctas, codificar atgosit
Out-of-Core(OOC) para operaciones ddgebra matricial densa (donde los datos residen en diséengn que moverse
explicitamente entre memoria principal y disco) no resulésmdifcil que codificar algoritmos de altas prestaciones para
matrices que residen en memoria principal. Finalmenteygeon conscientes de que en una arquictura actual cocl&os
0 un equipo con un procesado&afico (GPU) es posible resolver un sistema lineaksiino positivo definido de dimertsi
100,000 x 100,000 aproximadamente en una hora.iAsara problemas que $ah considerarse grandes, no es necesario
usar arquitecturas de memoria distribuida con grandes mi@s& uno est dispuesto a esperar un cierto tiempo para que
la solucbn se obtenga en una arquitectura multihebra como un pamesaultinicleo or una GPU. Este trabajo presenta
evidencias que soportan tales afirmaciones.
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Algebra lineal densa, operacion@st-of-Core procesadores multirctleo, procesadoresajicos (GPUs), altas prestaciones.
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Abstract

Few realize that, for large matrices, many dense matrix agtapns achieve nearly the same performance when the
matrices are stored on disk as when they are stored in a vege lenain memory. Similarly, few realize that, given the
right programming abstractions, coding Out-of-Core (OO@iplementations of dense linear algebra operations (where
data resides on disk and has to be explicitly moved in and fotain memory) is no more difficult than programming high-
performance implementations for the case where the matiix imemory. Finally, few realize that on a contemporary eigh
core architecture or a platform equiped with a graphics mesor (GPU) one can solvel®0,000 x 100,000 symmetric
positive definite linear system in about one hour. Thus, foblems that used to be considered large, it is not necegsary
utilize distributed-memory architectures with massivemoges if one is willing to wait longer for the solution to benaputed
on a fast multithreaded architecture like a multi-core cangy or a GPU. This paper provides evidence in support ofghes
claims.

1 Introduction

Examples of problems that require the solution of very latgiese linear systems or linear least-squares problemsalimcl
the estimation of Earth’s gravitational field, Boundaryant formulations in electromagnetism and acoustics, anldan
ular dynamics simulations [2, 19, 17, 31, 38]. In these apapibns large refers to matrices with a number of rows/columns
in the 10° to 107 range. When these matrices become too large to fit in memoeymurst either change the mathematical
formulation of the problem or use secondary memory (e.gk)diWe will focus on the latter. While data stored on disk
can be accessed via virtual memory, careful design of O@ere (OOC) algorithms is generally required to attain high
performance. Moreover, in the past cutting-edge architestoften did not incorporate virtual memory, which maygep
again for future multi-core architectures particularlycg virtual memory consumes considerable power. Thuspthie of
developing OOC algorithms for dense linear problems comesito be an active area of research.

There are only a few Open Source libraries available for O@@sd linear algebra computations. The traditional sequen-
tial LAPACK [1] library does not include OOC routines and there recent i bf | ane [37] library only includes prototype
OOC capabilities [22]. For large-scale problems ScaLAPAR&vides prototype OOC implementations of Cholesky, LU,
and QR factorization based solvers [3, 9, 13] as does the $O[38] library that builds upon ScaLAPACK routines for
in-core computation. The Parallel Linear Algebra Pack&eAPACK) [34], which inspired thé i bf | ane sequential li-
brary, is an alternative to ScaLAPACK for message-passicljt@ctures and provides an OOC extension, POOCLAPACK,
that, like ScaLAPACK and SOLAR, targets message-passiclgitactures [30, 29, 20, 21, 38]. A survey on parallel OOC



implementations of individual operations and/or machipectic libraries for dense linear systems is given in [38%idhts
about how storing matrices by tiles (what we call blocks)litates scalability can be found in that paper.
In this paper,

e We briefly review the concept of algorithms-by-blocks anevtem Application Programming Interface (API) devel-
oped as part of the FLAME project facilitates programminglsalgorithms. In brief, algorithms-by-blocks view
matrices, possibly hierarchically, as a collection of sabmes (blocks) that become units of data. The algorithms
then orchestrate the computation as operations with thos&d) which become units of computation.

e \We review a run-time system, SuperMatrix, which given adinalgebra code constructs a Directed Acyclic Graph
(DAG) of tasks (operations with blocks) and dependenciésdzen tasks.

e We discuss how this approach can be extended by using the ®pfetch and/or cache data so that I/O is overlapped
with computation transparently to the programmer.

e We report our experience with this approach on a platfornitiddudes multiple cores and/or a graphics processor
(GPU), and a RAM of moderate size, using the Cholesky faation as a motivating example.

e We show that, once the problem size becomes large, the pefme attained by the OOC implementation rivals that
of a high-performance algorithm for matrices that fit in meyno

e We reason that this approach can also accommodate OOC impiations of algorithms-by-tiles for the level-3 Basic
Linear Algebra Subprograms (BLAS) [15] and the LU and QRdsezations.

e We argue that the approach may become a highly cost-eféestilution for solving these kinds of operations, making
it possible for less well-funded projects to address mediufarge size problems.

Together, these contributions advance the state-of+the-tnis area.

The rest of the paper is structured as follows. In Section Pawiew some of the fundamental parts of the FLAME project
using the Cholesky factorization. An infrastructure ingogt of OOC computation is proposed in Section 3. Parallel ex
cution of dense linear algebra operations with the dataie-ts briefly addressed by using algorithms-by-blocks daet
with dynamic scheduling and multi-threaded implementetiof BLAS, as described in Section 4. Experiments reporting
performance for the OOC Cholesky factorization on a mudtieglatform and a workstation equiped with a GPU are regorte
in Section 5. We briefly indicate how a traditional applioatmay interface with the proposed solvers in Section 6. \&eecl
the paper with a few concluding remarks and a brief discassiduture work in Section 7.

2 Cholesky Factorization using FLAME

Over the last decade we have developed a complete framewpffadt and reliable generation of dense and banded
libraries as part of the FLAME projechf t p: / / www. cs. ut exas. edu/ user s/ f| ane). The set of “tools” comprises
a high-level notation for expressing algorithms for densd banded linear algebra operations [18], a formal deowati
methodology to obtain provably correct algorithms [7],Hyigvel APIs to transform algorithms into codes [8], and a-ru
time system for the automatic parallelization of those saatemulti-core platforms; see [28] and the references ihefde
result is a high-performance library for dense linear atgebi bf | ane, with support for all major BLAS as well as the
most relevant factorization routines for the solution akkr systems. This infrastructure is the basis on which wd bur
approach for the development of OOC codes.

In our papers, we often start by presenting a prototypicelaton, which is then used throughout the paper to illtstra
various aspects of the topic at hand. As we have done in a nuofitther papers that are closely related to the present
one [12, 26], we will use the Cholesky factorization as thatneple. We note that what is different in the current paper is
that we focus on the left-looking algorithmic variant fomeputing the Cholesky factorization. Much of this section te
skipped by those who are very familiar with the FLAME project

Consider am x n Symmetric Positive Definite (SPD) matrik Its Cholesky factorization is given by = LL”, whereL
is then x n lower triangular Cholesky factor. In traditional algoritks for this factorization[. overwrites the lower triangular
part of A while the strictly upper triangular part remains unmodifiétereafter, we denote the operation that overwrites
with its Cholesky factor byl := {L\ A} = CHOL(A).



Algorithm: A := CHOL_UNB_VAR3(A) Algorithm: A := CHOL_BLK_VAR3(A4)
. Arr, ATR) " (ATL ATR)
Partition A Partition A
- <ABL ABRr ~\ A5 Asn
where A7 is0 x 0 where Ay is0 x 0
while m(Ary) < m(A) do while m(Arr) < m(A) do
Determine block sizeb Determine block sizeb
Repartition Repartition
A A Ao | Ao1 | A
ATL ATR ’;)‘0 ao1 ’;)‘2 ATL ATR AOO AOl A02
Apr|ABr | o fun9ip Apr|ABr - LU Riak R
Asp | az1 | Az Agg | A21 | A2
where A;;isb x b where A1isb x b
Qi = a1 — ajpady A = A — A Al
11 = /a1 Ay = {L\A}ll = CHOL,UNB,VAR3(A11)
as = az — Aspaly Aoy = A9y — Ag AT
ag1 = agi/ai; Agy = An L7"
Continue with A A Continue with A A 1A
Arp | Arr e o1 = Arp|Arr 0001102
A A — am a1 a12 A A — A10 A11 A12
BEIZBR Asg|agi | A2z BLIZBR Az | Az1 | Aoz
endwhile endwhile

Figure 1. Unblocked (left) and blocked (right) algorithms f or computing the Cholesky factorization
(left-looking variant).

A key element of FLAME is the notation for expressing algamis much like they are presented on a chalk board [18, 35].
Figure 1 shows unblocked and blocked algorithms for comgutihe Cholesky factorization using the FLAME notation.
Therem/(A) stands for the number of rows of a matrix We believe the rest of the notation to be intuitive. The athms
in the Figure correspond to the “left-looking” algorithmiariant for computing the factorization. It is well-knowmet this
variant requires roughly half the disk I/0O when comparedtie better-known right-looking variant for the operation

Using the FLAME/C API for the C programming language, theckld algorithm in Figure 1 (right) can be trans-
formed into the C code given in Figure 2 (left). Note the clossemblance between algorithm and code: Moving the
boundaries of the partitioning imposed on the matrix is grened with routines=LA Part 2x2, FLA Repart _. . .,
and FLA Cont with_... from the FLAME/C API. The updates during the iteration (lobpdy) are computed us-
ing routinesFLA Syr k, FLA_Genm and FLA_Tr sm which are simple wrappers to the analogous BLAS, and reutin
FLA_Chol _unb_var 3 which corresponds to the FLAME/C unblocked implementat@rthe algorithm in Figure 1 (left).

With the advent of multi-core processors, the desigalgbrithms-by-block$16] for dense linear algebra has regained
great interest due to their higher degree of parallelismlziter data locality [28]. (In the next section we will shdvat
they are also the key to the OOC implementation of the Chglémsstorization.) Algorithms-by-blocks view matrices as
collections of submatrices and express the computatioaring of these submatrix blocks. Algorithms are then wrigen
before, except with scalar operations replaced by opersto the blocks, which now become the unit of computation. We
note that one of the first incidences of such algorithms wa®©foC dense linear computations and blocks were referred to
as tiles [32]. Some refer to algorithms-by-blocks as athams-by-tiles or tiled algorithms [11, 10].

A contribution of ours to programmability of algorithms-bjocks was the recognition that the FLAME/C API could be
extended to describe algorithms hierarchically by all@mach element in a matrix to itself be a matrix. We call thig/ve
simple extension of FLAME/C the FLASH API [24, 27]. Using tReASH API an algorithm-by-blocks for the Cholesky
factorization is given in Figure 2 (right). The differendestween the blocked algorithm and the algorithm-by-blankbat
Figure (left and right, respectively) lie in the dimensiafishe partitioning and the routines which are invoked froithim the
loop body. For the algorithm-by-blocks, the fact that theénras indeed a matrix of submatrices, leads to a unit sizete



FLA Error FLA Chol _blk_var3( FLA_ bj A, int nb_alg ) FLA_Error FLASH Chol _by_bl ocks_var3( FLA Cbj A)
{
FLA_Cbj ATL, ATR A00, A01, AO02, FLA_Obj ATL, ATR A00, A01, A02,
ABL, ABR, A10, All, Al12, ABL, ABR, A10, All, Al2,
A20, A21, A22; A20, A21, A22;
int b;
FLA Part_2x2( A &ATL, &ATR, FLA Part_2x2( A &ATL, &ATR,
&ABL, &ABR, 0, 0, FLATL ); &ABL, &ABR, 0, 0, FLATL );
while ( FLA Obj _length( ATL ) < FLA Cbj _length( A) ) { while ( FLA Obj _length( ATL ) < FLA Obj _length( A) ) {
b = min( FLA Obj_length(ABR), nb_alg );
FLA_Repart _2x2_t o_3x3( FLA_Repart _2x2_to_3x3(
ATL, /*=/ ATR, &A00, /=*x/ &AD1, &A02, ATL, /*x/ ATR, &A00, /=] &A01, &A02,
R T N B Y R Y
&A10, /*x] &All, &A12, &A10, /*x/ &ALl, &Al2,
ABL, /*x] ABR, &A20, [*x] &A21, &A22, ABL, /*x] ABR, &A20, /x| &A21, &A22,
b, b, FLABR); 1, 1, FLABR);
e e e eioaooo */ e e e eeioeaaoo */
FLA Syrk( FLA LOAER_TRI ANGULAR, FLA NO TRANSPCSE, FLASH Syrk( FLA _LOAER TR ANGULAR, FLA NO TRANSPOSE,
FLA M NUS_ONE, A10, FLA M NUS_ONE, A10,
FLA ONE, All ); FLA ONE, All );
FLA_Chol _unb_var 3( All ); FLA_Chol _bl k_var 1( FLASH MATRI X _AT( A1l ) );
FLA Genm( FLA_NO TRANSPOSE, FLA_ TRANSPOSE, FLASH Genm{ FLA_NO_TRANSPCSE, FLA TRANSPCSE,
FLA_M NUS_ONE, A20, Al0, FLA_M NUS_ONE, A20, A10,
FLA_ONE, A21); FLA_ONE, A1 );
FLA Trsm( FLA_RIGHT, FLA LOAER TRI ANGULAR, FLASH Trsm( FLA RI GHT, FLA_LOAER TRI ANGULAR,
FLA_TRANSPCSE, FLA_NONUNI T_DI AG FLA_TRANSPCSE, FLA_NONUNI T_DI AG
FLA_ONE, All, FLA_ONE, All,
A21 ) A21 );
e e el */ o m e e e ieeeieeioeaaoo */
FLA Cont _wi th_3x3_to_2x2( FLA Cont _with_3x3_to_2x2(
&ATL, [**/ &ATR, A00, A01, /#x/ A02, &ATL, [*x/ &ATR, A00, A01, /#x/ A02,
A10, All, /=x/ Al2, AL0, All, /*x/ Al2,
R T e R e -
&ABL, /*x/ &ABR, A20, A21, /x| A22, &ABL, /x| &ABR, A20, A21, /x| A22,
FLATL ); FLATL );
} }
return FLA_SUCCESS; return FLA_SUCCESS;
1 1

Figure 2. FLAME/C implementation of the blocked algorithm f or the Cholesky factorization (left) and
FLASH implementation of the corresponding algorithm-by-b locks.

repartitioning operatiofrLA Repar t 2x2_t 0_3x3. Here, many of the details of the FLASH implementation,uidighg the
manipulation of the data structures, have been buriedmvilte FLASH-aware FLAME object definition and the partitiogi
routines. Abbreviated implementations of algorithm-bgelxs for the building block$LASH Syr k, FLASH.Tr sm and
FLASH Germmare given in Figure 3FLA_Chol _bl k_var 1 corresponds to the blocked implementation of the righkilog
Cholesky factorization, which usually yields higher penfiance on multi-threaded architectures.

3 OOC Implementation

OOC algorithms for dense linear algebra operations t@uhily consider a (logical) partitioning of the matrix into
submatrices that are stored contiguously on disk. Inytiadhtrices were partitioned into submatrices that were kel af
columns [14, 23]. Later it was recognized that this does not scale as matresdbecome huge (or when memory is rel-
atively small). This is overcome by partitioning the matbix rows and columns, with the simplest case corresponding to
submatrices being squatites (except perhaps for submatrices on the fringe when the xngir@ is not an integer multiple
of the tile size) [33, 20, 21, 6]. In a nutshell, the reasorha the size of the tile brought into memory can always be kept
constant, and therefore the ratio between the computatio/@ overhead can be fixed. Starting from a square parititgpn
an OOC algorithm-by-blocks brings a few tiles in-core (Uit fill a considerable part of the RAM), computes with siee
and stores back the results on disk to release space for tagndalved in future operations. Optimizing such an OOC
implementation becomes a matter of carefully orchesgatie computation so as to bring data into memory for comjmurtat
in time while (nearly) minimizing the amount of reads andtesi(l/O) and/or overlapping I/O and computation. It is par-
ticularly the overlapping of /0 with computation (so-@ldouble buffering) that has negatively affected progratuitity,
turning otherwise manageable code into spaghetti code.

In the remainder of this section we present a series of OO®itigns that start with a basic implementation and culn@nat
in an advanced one that manages all I/O via a run-time systetihides details from the library developer.

IMany practical implementations still use this partitioniegpecially on clusters with very large memories.



void FLASH Syrk_I n( FLA Obj al pha, FLA Obj
FLA Obj beta, FLA Obj

I+ Special case with node paraneters
FLASH_Syrk( FLA_LOAER TRI ANGULAR, FLA_NO TRANSPCSE,

A
c)

Assunption: Ais a row of blocks (row panel) =/

FLA Gbj AL, AR A0, AL A2

FLA Part_1x2( A, &AL, &AR 0, FLA _LEFT );

while ( FLA Cbj _width( AL ) < FLA Cbj _width( A) ){

FLA Repart_1x2_to_1x3(
AL, *x] AR,
1, FLARIGHT );

FLA_Syrk( FLA_LOAER TR ANGULAR, FLA_NO_TRANSPOSE,

void FLASH Trsmrltn( FLA Cbj al pha, FLA Obj
FLA_Qbj

I+ Special case with node paraneters
FLASH_ Trsn{ FLA RI GHT, FLA_LOWER TRl ANGULAR,

FLA_TRANSPOSE, FLA_NONUNI T_DI AG,

L,
B)

Assunption: L consists of one block and

B consists of a colum of bl ocks */

FLA Cbj BT, BO,
BB, B1,
B2;
FLA Part_2x1( B, &BT,
&BB, 0, FLATOP );

while ( FLA Qoj _length( BT )
FLA Repart_2x1_to_3x1( BT,

< FLA_Gbj _length( B) ) {

al pha, FLASH MATRI X_AT( Al ), Ix wx %l % xx %]
beta, FLASH MATRIX_AT( C) ); &BI,
K e e */ BB, &B2, 1, FLA_BOTTOM);
o m m e e e e eeeeeeioeaoo */
FLA Cont _with_1x3_to_1x2( FLA Trsn( FLA RIGHT, FLA LOWER TRI ANGULAR,
&AL, [**] &AR, A0, Al, /x*x] A2, FLA_TRANSPOSE, FLA_NONUNI T_DI AG
FLA LEFT ); al pha, FLASH MATRI X_AT( L ),
FLASH_MATRI X_AT( Bl ) );
} e */
} FLA_Cont _wi th_3x1_to_2x1( &BT, BO,
BL,
[ xx %] [ xx %]
&BB, B2 FLA_TOP );
}
b
voi d FLASH Genp_nt( FLA Obj al pha, FLA Obj A, voi d FLASH Gepp_nt( FLA _Obj al pha, FLA Ohj A
FLA_Gbj B, FLA_Obj B,
FLA Cbj beta, FLA Gbj C) FLA Cbj beta, FLA Gbj C)
/+ Special case with node paraneters /+ Special case with node paraneters
FLASH Gemm{ FLA_NO_TRANSPCSE, FLA TRANSPCSE, FLASH Gepp( FLA NO TRANSPCSE, FLA TRANSPOSE,
) )

Assunption: Ais a matrix and
B is a row of blocks (row panel)

Assunption: Cis a block and
B, C are rows of blocks (row panels) */

Cis a colum of blocks (colum panel) */ {
{ FLA Obj AL, AR, A0, AL, A2
FLA Obj AT, A0, CT, 0,
AB, Al, CB, C1, FLA Ohj BL, BR, BO, Bl, B2;
A2, C2;
FLA Part _1x2( A, &AL, &AR 0, FLA LEFT);
FLA Part _2x1( A, &AT,
&AB, 0, FLATOP ); FLA Part_1x2( B, &BL, &BR 0, FLA LEFT);
FLA Part_2x1( C, &CT, FLA Scal ( beta, FLASH MATRIX AT( C) );
&CB, 0, FLATOP);
while ( FLA Cbj _width( AL ) < FLA Cbj _width( A) ){
while ( FLA Obj _length( AT ) < FLA Obj_length( A) ){
FLA Repart_1x2_to_1x3(
FLA Repart_2x1_to_3x1( AT, &AO, AL, [*x] AR, &AO, [*x/ &AL, &A2,
Ix %% %] I* xx %/ 1, FLARIGHT );
&AL,
AB, , FLA_Repart_1x2_t o_1x3(
1, FLA_BOTTOM); BL, /**/ BR &B0, /**/ &B1, &B2,
1, FLARIGHT );
FLA_Repart_2x1_to_3x1( CT, &0, [ e */
[ %% %] [x %% %] FLA Genm( FLA NO TRANSPOSE, FLA_TRANSPOSE,
&C1, al pha,  FLASH MATRI X_AT( Al ),
cB, &C2, FLASH_MATRI X_AT( Bl ),
1, FLA BOTTOM); FLA ONE, FLASH MATRIX_AT( C) );
e e e %/ e e %/
FLASH_Gepp( FLA NO TRANSPCSE, FLA TRANSPCSE, FLA_Cont _wi th_1x3_t o_1x2(
al pha, A1, &AL, [*x] &AR, A0, AL, [=*x| A2,
FLA_LEFT );
FLA_Cont _wi th_1x3_to_1x2(
FLA Cont _with_3x1_to_2x1( &AT, A0, &BL, /**/ &BR, BO, B1, /#*+/ B2,
Al, FLA_LEFT );
[% %% %] [% % %] }
&AB, A2, FLATOP ); |}
FLA Cont _wi th_3x1_to_2x1( &CT, @,
c1,
[x %% ] [x xx %]
&CB, c2, FLA_TOP );

Figure 3. FLASH implementation of the kernels appearing in t
by-blocks for the Cholesky factorization.

he FLASH implementation of algorithm-



3.1 A basic OOC algorithm

An OOC algorithm-by-tiles for the Cholesky factorizatiandirectly obtained from the algorithm-by-blocks in thepre
ous section by just considering the tile to be the unit of cotapon: The routines in Figures 2 (left) together with thas
Figure 3arethe OOC implementation.

Given a SPD matrix, created on disk as an OOC matrix of tiléslif@ensiont x t), a direct OOC implementation of
the Cholesky factorization can be easily obtained from tgerahm-by-tiles by inserting calls to a routirid AOOC_Copy
to bring the necessary data into auxiliary workspaces ne-qust before the calls t6LA_Chol _bl k_var 1, FLA Syr k,

FLA Tr sm FLA_Genm after the operations, calls f.AOOC_Copy could be inserted to store the results back to disk.

Unfortunately, low performance can be expected from thiglémentation as, e.g., there is no overlap between I/O and
computation. In the next two subsections we describe tgclesi and tools to improve performance and programmability,
including a run-time system that handles 1/O transpareithéoprogrammer. As a result, the code does not change: the
different schemes that we describe simply change the pthiagythe run-time system uses to move tiles to and from disk.

3.2 Software cache

The first technique to reduce the amount of I/O is to implenaelogical cache of tiles that are in-core. The idea is that,
every time an operation is to proceed, a run-time inspeetsdfiware cache to check whether the tiles the operatiahies
are already present in-core (cache hit). Thus, actual datafers only occur for cache misses. A least-recentlg-(iIsRU)
replacement policy decides which tile is moved back to diskase there is no place left in the cache to read a new tils. Thi
is also handled by the run-time.

This simple run-time system handles all I/O transparemtlthe user, improving the programmability as no explicit /0
calls need to be inserted in the OOC codes. Depending on ¢éictege, it can also improve performance by reducing the
number of transfers between RAM and disk. However, it dogé®werlap 1/0 with computation yet.

3.3 Overlap I/0 and computation

The run-time knows what tiles are present in-core (i.e.hm $oftware cache) and therefore can exploit some level of
temporal data locality. We next propose going one step éuréimd looking ahead into the future. The domain-specific
feature that facilitates the required fortune-tellinghatt for linear algebra codes, the operations that will eceted in the
future can be known in advance at little cost.

The idea is to perform an initial execution of the code, gatieg a list of tasks (operations on tiles) to be eventually
executed (this is the extra cost we have to pay). Generalisyad tasks for dense linear algebra codes has been usigst ear
to expose a higher the degree of parallelism at run-time fdtiroore processors (see, e.g., [28]). The difference fethat
we are proposing to use it with a different goal, namely r@aythe amount of data transfers and overlapping computatio
with 1/0 for OOC algorithms, in effect prefetching with pect knowledge.

Let us elaborate the description of this sophisticatedtime-system. The codes in Figures 2 (right) and 3, are symbol-
ically executed to generate a list of task®iiding lisj. Each time a call to routineSLA_Chol bl k_var 1, FLA Syr K,
FLA_Tr sm or FLA_Genmis encountered, the run-time simply creates an entry inishelth data to identify the given op-
eration (e.g., operation name and parameters). The orddrigh the tasks appear in the list together with the direetiity
of the operands (input or output) defines the order and dedad which blocks will be transferred between memory and
disk. Therefore, the future is known in advance!

The real execution can now begin. A single thread, knowneasdbutor prefectthread, inspects thgending listin (FIFO)
order. For each entry of the list, provided there are enougpt (tile) slots in the software cache, the scout threaddsri
the necessary tiles into the RAM, moving the entry into a sddist which contains the tasks which are ready for exeoutio
(ready lis). A second thread, theworker, runs over the ready list executing tasks as they are enexashin order. Now, as
all data for the computations that are performed by the wdtkead are guaranteed to be in-core, we can employ an &-cor
library for these operations (to be addressed in the nexdexion). When a task is completed, the corresponding esitry i
removed from the ready list, and any tile used within it, vihis not used by any other task in the ready list, is marked as
candidate for removal from the cache. When new space needsaioeated in the software cache, the scout thread moves
marked tiles back to disk, if they correspond to data thatmwadified, or simply overwrites them with new data otherwise.
When there are no candidates for removal, the scout threaldbémd waits until more tasks are completed.



Probably the most important feature of this approach is hasupports programmability. No change is needed to the
algorithm-by-tiles routines. The run-time system is inrgjeeof all data transfers and automatically overlaps I/widm-
putation. The extra cost for this, creating and managingupleoof lists, is more than paid back by the benefits of reducin
idle times due to 1/O.

4 Parallel In-Core Kernels for Multi-core Processors

In our approach, the worker thread is in charge of computirggdperations on tiles which have been already brought
in-core by the scout thread. Thus, the types of operatioaissttie worker will encounter are symmetric rahkipdates,
triangular system solves, matrix-matrix products, andcm@putation of the in-core Cholesky factorization of thagdinal
tiles (invocations in Figure 3tBLA Syr k, FLA Tr sm FLA_Genm andFLA _Chol _bl k_var 1, respectively).

4.1 Parallel execution on a general-purpose multi-core processor

Let us consider first that the target architecture is a (gg+mrrpose) processor with several cores (or any otheedhar
memory platform with multiple processors). For these dedhirres there exist highly tuned multithreaded implemiéoms
of the former three operations, e.g. as part of Intel's MKirdiry or the GotoBLAS, which efficiently exploit the hardwar
parallelism. For example, when kernsly r k from MKL is invoked from within routind=LA_Syr k to compute a symmetric
rank—k update, multiple threads (as many as the user requestspana 0 compute the operation in parallel, using one
core per thread. (Note that in case computation is overthpgéeh 1/O, in our OOC algorithms these threads will run
concurrently with the scout thread.) The parallel executibthese three BLAS operations is therefore transparetiteto
OOC programmer, which only observes a more reduced exedirtie.

MKL also includes a multithreaded version of the Choleslotdazation which can, in principle, be used to factorize th
diagonal tiles using the multiple cores/processors of theitecture. However, for an operation with complex deemies
like this, it may be more efficient to employ a parallelizatipproach restricted only by the data dependencies (data-fl
parallelism). In particular, this second alternative emgplthe SuperMatrix dynamic scheduling mechanism [27]elbped
as part of the FLAME project, to improve the scalability oéthperation: a scheduling run-time system, different from t
one that deals with OOC data transfers and overlap desdrlibd previous section, is in charge of the parallel fazgtion
of the diagonal tiles. In this case, whEhA_Chol _bl k_var 1 is invoked, the scheduling run-time inspects the code fer th
routine, detecting data dependencies among the blocks tiféhand scheduling for execution those operations gjaskich
have all its dependencies fulfilled. The result is a data-fianallel execution. Details on dynamic out-of-order schied
in the context of a parallel execution on multi-core proocessan be consulted, e.g., in [28]. In our experiments, wk wi
evaluate the performance of both alternatives: MKL and dyinacheduling for the factorization of the diagonal til&¥ge
will refer to the second one as “data-flow” in the experiments

4.2 Parallel execution on a graphics processor

Current workstations include a general-purpose procdpsasibly with multiple cores) and usually also a GPU with it
own (device) memory. Provided the tile size is large enoughatuned kernel exists to compute the particular operation
the GPU, the time to transfer data between main (or host) meard device memory can be more than paid back by the
potential of current GPU. For NVIDIA graphics processorgBLAS [25, 5] provides an efficient implementation of BLAS-
level operations like those needed in the Cholesky factidm, among others. The in-core computation of the Chglesk
factorization itself is not provided in NVIDIA libraries lbgan be easily implemented using the kernels in CUBLAS [4, 36

Thus, using CUBLAS, once the data is in-core the symmetm&-faupdates, matrix-matrix products, and triangular
system solves on tiles are performed in our codes in the GRJ.different alternatives are explored for the computation
of the Cholesky factorization of a (diagonal) tile: a purelC&bmputation and a hybrid one, where computation is shared
between CPU and GPU. In the pure CPU computation all cordseaféneral-purpose processor collaborate in the parallel
computation of the factorization of the tile using, e.ge thulti-threaded implementation of this operation in MKLsshime
for the hybrid computation that the tile initially residesthe device memory. A blocked right-looking algorithm wittock
sizeb is used to compute this factorization as follows: the CHagldactorization of the diagonal x b blocks is computed
by the CPU. To do so, the block is initially transferred totraemory, factorized there, and the result is put back intacge
memory. All other updates of the tile are performed then @@rPU. Once the tile is completely factorized, the result is
brought back from the device memory into the correspondie®f the software cache in host memory.



5 Experimental Results

All experiments in this section were performed using MKLA.Q, CUBLAS 2.0, and single precision. Performance is
measured in terms of GFLOPS (that is, billions of floatingaparithmetic operations —flops— per second), with the usua
count ofn? /3 flops for the Cholesky factorization. The OOC implementagioorrespond to the (left-looking) algorithm-by-
tilesFLASH Chol _by bl ocks_var 3 in Figure 2 (left). Unless otherwise stated, the enhancésrdascribed for the OOC
variants are incremental so that a variant includes a natesly plus those of all previous ones. Several executiome we
performed to tune the tile size; only the results correspantb the best case are shown.

5.1 Results on a general-purpose multi-core processor

The target architecture for this first experiment is a watsh with two Intel Xeon QuadCore E5405 processors (8 gores
at 2.0 GHz with 8 GBytes of DDR2 RAM. The Intel 5400 chipsetypdes an I/O interface with a peak bandwidth of 1.5
Gbits/second. The disk is a SATA-I with a total capacity o IBbytes.

Figure 4 reports the performance of several (in-core and Jo@@ines for the Cholesky factorization:

In-core MKL: The (in-core) implementation of the Cholesky factorizatio MKL 10.0.1.

In-core data-flow: Our (in-core) algorithm-by-blocks with dynamic schedglitescribed in [28].

OOC Basic: Basic OOC implementation as described in Subsection 3.1.

OOC Cache: OOC implementation with a software cache in place to redve@atimber of I/O transfers (see Subsection 3.2).

OOC Reordered + data-flow: Reordered operations to access tiles following a snalespidittern to improve locality in the
access to the software cache. The factorization of the deldgdes is addressed by using the SuperMatrix dynamic
scheduling run-time described in [28].

OOC Overlap I/0: Use of a run-time with scout and worker threads to overlap mgation and 1/0, and manage the
software cache transparently to the user (see Subsec8pn 3.
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Figure 4. Performance of the Cholesky factorization codes o n a multi-core processor.



The results in the figure show a practical peak performanctehéin-core Cholesky factorization (based on the algorith
by-blocks, AB) that is slightly over 90 GFLOPS. Combiningtae OOC techniques mentioned above, yields a performance
that is basically similar to that of the in-core algorithm.
The following table reports the execution time required ampute the Cholesky factorization using tB©C Overlap
I/O variant and the amount of memory that is needed to store thadinse matrix:
Matrix size Time MBytes
10,240 4.9sec 400
51,200 8min 49.9sec| 10,000
102,400| 1h 4min 52.0seq 40,000

5.2 Results on a multi-core processor+ a graphics processor

We next employ an AMD Phenom 9550 QuadCore at 2.2 GHz with 4t€&Bgf DDR2 RAM and 4512 Kbytes of L2
cache. The chipset provides a I/O interface with a peak batidwf 3 Gbits/second. The system has two SATA-II disks
(Seagate ST3160815AS, 7200 r.p.m.) with a total capacidxdf60 Gbytes. The graphics processor is an NVIDIA Geforce

9800 GX2, equipped with 128 cores.
Figure 5 reports the performance of several (in-core and YJ0@@@ines for the Cholesky factorization using the GPU of
the system. The timings for the “in-core” results include tost of transferring data between host and device memories

In-core hybrid: Blocked (in-core) implementation of the Cholesky factatian, with diagonal blocks being factorized in
the processor using MKL and all remaining updates in the Gs&@ Subsection 4.2).

OOC Basic: Basic OOC implementation as described in Subsection 3.1.
OOC Cache: Simple run-time that includes a software cache (see SubeexR).

OOC Hybrid: Computation of the Cholesky factorization of diagonaktiteeing shared between CPU and GPU (see end of
Subsection 4.2).

OOC Overlap I/0: Elaborated run-time that handles the software cache andapgecomputation and 1/0 (see Subsec-
tion 3.3).

Out-of-core Cholesky factorization on NVIDIA 9800GX2 GPU
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Figure 5. Performance of the Cholesky factorization codes o n a multi-core processor equiped with a
GPU.

The results in the figure show a practical peak performancenéin-core and the best OOC codes that are close to 126 and
117 GFLOPS, respectively. Thus, for this architecture tlE3Qechniques rival with the in-core algorithm in perforroan



Finally, the next table shows the time to compute the Chglésétorization using th©OC Overlap I/O variant and the
amount of memory that is needed to store the full dense matrix
Matrix size Time MBytes
10,240 4.4sec 400
51,200| 6min 34.6sec| 10,000
102,400| 50min 52.3seq 40,000

6 An Application Interface

For applications coded in a traditional style, we provide fibllowing prototype API for submitting matrices to disk.ewW
note that, unlike other FLAME/C related routines, theseimas expose indexing into a matrix, in order to facilitatah
traditional applications may wish to access an otherwidddn matrix.

Matrices are created on disk with the following call:

FLAOOC Ohj create( FLA Matrixtype matrixtype, FLA Datatype dat atype,

dimt m dimt n, dimt m, dimt nt,

char =file_nane, FLA Obj *Aooc );
Purpose: Create a new object that describessann matrix Aooc, with entries of typelat at ype (FLA_l NT, FLA_REAL,
FLA_DOUBLE, etc.), and allocate the associated storage array on disk. nithei xt ype parameter can be used {o
roughly half the required space for triangular or symmetric matriceselgctng one fromFLA LOAER TRl ANGULAR
or FLA_UPPER_TRI ANGULAR; for full dense matriced;LA _DENSE is to be selected. The matrix is partitioned intox nt
tiles, with the elements in each tile being stored contiguously on disk in colunjor-order, in a file with naméi | e_nane.

Argumentsnt andnt are user-defined parameters that must be tuned to optimifmpance depending on the problem
dimensions, the size of the RAM, and the numbetilek (basically square blocks) that must be kept in-core durim t
execution.

Once created, filling the contents of an OOC object (transigidata from main memory to disk) can be done using the
following call:

FLAOOC Copy_submatrix_to_global ( FLA Trans trans, dimt m dimt n,
void *X, dimt lIdim
dimt i, dimt j, FLA Obj Aooc );
Purpose: Copy the contents of a conventional column-major matnixith leading dimensioh di minto themxn submatrix
starting at entryi(,j ) of Aooc. Thet r ans argument may be used to optionally transpose the matrix during the copy.
AssumeFLA Tr ans equalsFLA_NO.TRANSPCSE. Then, given ammxn matrix X, in MATLAB notation the previous call is
equivalent to
Aooc( i:i+tml, j:j+n-1) =X
whereAooc is an object with the corresponding data stored on disk. \Weige, but do not specify here, a call that can add
a multiple of an incore matrix tdooc.
Data transfers in the opposite direction, i.e. from OOC todre, can be performed with the following routine:

FLAOOC Copy_gl obal _to_submatrix( FLA Trans trans, dimt i, dimt j, FLA Ooj Aooc,
dimt m dimt n, void *X, dimt |dim);
Purpose: Copy the contents of thexn submatrix ofAooc whose top-left element is thé § ) entry into a conventiona

column-major matrixX with leading dimensioh di m Thet r ans argument may be used to optionally transpose the matrix
during the copy.

Again, an alternative call allows a submatrix fréxnoc to be added to a contentional matkx
When no longer needed, a callkb AOOC_Obj _f r ee is required to ensure that all disk space associated with@@ O
object is properly released:

FLAOOC Ohj _free( FLA Ooj =*Aooc );

Purpose: Release all resources allocated to store data associateAadgthon disk.

Note that these are the routines that a typical applicatiomdvwse to access parts of OOC matrices. The OOC FLAME/C
API includes a routinei-LAOOC_Copy, which is used to copy tiles to and from disk.




7 Concluding Remarks

We have described an approach to easily develop OOC algwrithr dense linear algebra operations. A run-time system
in charge of 1/0 transfers inspects the code before the bekegution begins to bring data from disk before it is needed
thus completely hiding 1/O latency. As an additional bendfieé run-time system also unburdens the library develapen f
having to adapt his codes to include routines to explicitlpdiie the 1/0. Thus, all computational routines inbf | ane can
be fundamentally transformed into OOC codes without hatanchange the contents of the library.

Results for an operation like the Cholesky factorizatioovgthat the overhead introduced by the run-time is offsetiay t
gains delivered by the overlap of computation and commtiicgl/O). Using the new run-time, the FLAME code for the
left-looking variant of the Cholesky factorization allo¥gsdecompose &0, 000 x 100, 000 matrix on a multi-core platform
with 8 cores in slightly more than one hour. A similar workita equipped with a current GPU can decompose this matrix
in approximately 50 minutes.

Future work will include applying the same approach to sladbtded algorithms for the LU and QR factorization; solving
real OOC applications using the resulting codes; and ektgritie run-time to distributed-memory OOC packages.
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