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Abstract:

This paper addresses the efficient explotation of task-level parallelism, present in
many dense linear algebra operations, from the point of view of both computational
performance and energy consumption. In particular, we consider a procedure, the Slack
Reduction Algorithm (SRA), to optimize the execution frequency of a collection of
tasks (in which many dense linear algebra algorithms can be decomposed) on multi-
core architectures. The results from this procedure are modulated by an energy-aware
simulator, which is in charge of scheduling/mapping the execution of these tasks to
the cores, leveraging dynamic frequency voltage scaling featured by current technol-
ogy. Simultaneously, the simulator evaluates the performance benefits of the solution.
Experiments with these tools show significant energy gains for two key dense linear
algebra operations: the Cholesky and QR factorizations.
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Técnica DVFS para Algoritmos de Algebra Lineal
Densa en Procesadores Multinicleo

Pedro Alonso’,
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Enrique S. Quintana-Ort{®

Resumen:

En este trabajo se aborda la explotacion eficiente del paralelismo a nivel de tareas,
presente en muchas de las operaciones de dlgebra lineal densa desde el punto de vista
del rendimiento y el consumo de energia. En particular, se presenta el Algoritmo de Re-
duccin de Holguras, para optimizar la frecuencia de ejecucién de un conjunto de tareas
(en la que muchos algoritmos de dlgebra lineal densa pueden ser descompuestas) en las
arquitecturas multinticleo. Los resultados de este procedimiento son procesados por un
simulador de consciente del consumo, encargado de la planificacién/asignacién a eje-
cucion de estas tareas en los nicleos, aprovechando la escalado dindmico del voltaje y la
frecuencia presente en los procesadores actuales. Al mismo tiempo, el simulador evalia
las ventajas de rendimiento del algoritmo presentado. Los experimentos con estas her-
ramientas muestran significativos ahorros de energia para dos importantes operaciones
de dlgebra lineal densa: la factorizacion de Cholesky y QR.

Palabras clave:
Algebra lineal densa, planificacién, consumo energético, procesadores multintcleo,
DVEFS.
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Abstract This paper addresses the efficient explotation of task-level parallelism,
present in many dense linear algebra operations, from the point of view of both
computational performance and energy consumption. In particular, we consider a
procedure, the Slack Reduction Algorithm (SRA), to optimize the execution fre-
quency of a collection of tasks (in which many dense linear algebra algorithms
can be decomposed) on multi-core architectures. The results from this proce-
dure are modulated by an energy-aware simulator, which is in charge of schedul-
ing/mapping the execution of these tasks to the cores, leveraging dynamic fre-
quency voltage scaling featured by current technology. Simultaneously, the sim-
ulator evaluates the performance benefits of the solution. Experiments with these
tools show significant energy gains for two key dense linear algebra operations:
the Cholesky and QR factorizations.

Key words:Dense linear algebra, scheduling, power consumption, multi-core pro-
cessors, DVFS.

1 Introduction

Large-scale HPC facilities are big consumers of energy, which is employed to oper-
ate the computing resources as well as auxiliary systems like backup equipment, air
cooling, etc. [1,2,3,4,5]. Power® consumption has a direct impact on the operation and
maintenance costs of these centers, compromising their existence and impairing the in-
stallation of new facilities. But the electricity cost is not the only problem; in general,
energy consumption results in carbon dioxide emission, a hazard for the environment
and public health, and heat, which reduces reliability of hardware components [3].

The pressure from HPC centers, and especially that of the embedded and mobile
market segments, has forced hardware manufacturers to improve the energy efficiency

3 Note the difference between energy and power, with the former referring to the power con-
sumed over a period of time (Energy = Power x Time). For simplicity, in this document we
will use both terms indistinctively, though in most cases the meaning is that of energy.
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of their designs: CPU, memory and disks usually feature low-power modes to trade-
off performance for energy by decreasing frequency and voltage operation (DVFS or
Dynamic Voltage Frequency Scaling [6,7]). While being a mature subject in other seg-
ments, the development of power-aware software for HPC applications, which opti-
mizes both execution time and energy conservation, is still in its beginnings, in spite of
the tremendous assets it can yield [8,3].

Recent work has demonstrated the benefits of exploiting task-level parallelism in
multi-core processors; see, e.g., [9,10,11], among many others. Following this trend,
numerical dense linear algebra libraries like 1ibflame [12] and LAPACK [13] are
being rewritten to accommodate task-level parallelism for this class of architectures. In
these projects, (blocked) dense linear algebra algorithms are statically (PLASMA [14])
or dynamically (1ibflame) decomposed into a collection of tasks (or kernel opera-
tions), identifying the dependencies among them. The result is a directed acyclic graph
(DAG) with the information implicit in the algorithm, which is then passed to a sched-
uler in charge of issuing tasks to the computational resources. As a result, tasks are exe-
cuted in the order dictated by dependencies (data-flow parallelism) instead of the order
they appear in the code (control-flow parallelism), which unleashes a richer degree of
concurrency. Unfortunately, as of today, these projects address high performance but
ignore power consumption.

In this paper we investigate how to leverage DVFS in the execution of dense lin-
ear algebra algorithms on state-of-the-art multi-core processors. In particular, we ap-
ply CPM to a DAG that represents a collection of tasks and data dependencies among
these, corresponding to the computation of a dense linear algebra operation. Our goal
is to detect which tasks lie in non-critical paths, in order to adjust the frequency/volt-
age (DVFS) of the processor cores in charge of their execution and thus save energy.
As the execution time depends linearly on the frequency, but the power consumption
is a function of the square of the voltage times the frequency, we expect that reducing
the operation frequency (and, therefore, the associated voltage) results in significant
energy savings while maintaining the execution time. However, we note that reducing
the frequency during the execution of a task does not always lead to energy savings
because doing so, surely results in a longer execution time and, sometimes, more power
usage. Since, in general, this is not the case for dense linear algebra kernels, we will not
comment on this issue further.

The main contributions of the paper include:

— We apply the Slack Reduction Algorithm (SRA), which aims at exploiting the
slacks (idle times) existing in the DAG that represents a dense linear algebra oper-
ation by carefully tuning frequency execution of certain tasks.

— In addition, we develop a simulator that validates the theoretical energy gain, cal-
culating a schedule of the tasks which takes into account practical constraints like
actual number of resources (processor cores), the cost of varying processor fre-
quency, the discrete range of frequencies, etc.

— We analyze the energy performance of the solution using highly efficient blocked
algorithms for the Cholesky and QR factorizations, two important operations re-
quired for the solution of (symmetric positive definite) linear systems and linear
least squares problems, respectively.
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The article is organized as follows. After a brief discussion of related work in the
next subsection, Section 2 reviews the Critical Path Method and its application to iden-
tify tasks which can be delayed without negatively affecting the total execution time of
a project, represented by a collection of dependent tasks. The two main contributions
of this work, the application of the Slack Reduction Algorithm (SRA) and the energy-
aware simulator, are next introduced in Sections 3 and 4, respectively. Experiments are
reported in Section 5, and a few concluding remarks as well as a summary of future
work close the paper in Section 6.

1.1 Related work

There exist a number of related investigations. In [15], the authors model a scheduler
for clusters that can map tasks and adjust node frequencies, depending on the number
of pending jobs. In [16,17] the authors discuss scheduling of independent tasks (jobs)
in a DVFS-enabled processor, while in [18,19] this technology is used to schedule tasks
with dependencies in a multiprocessor setup. The authors of [20,21,22] introduce sev-
eral real-time, power-aware schedulers for tasks with dependencies. The work in [23]
describes a platform that combines real-time mapping with DVFS to reduce power us-
age of dependent tasks. The algorithm LPHM in [24] dynamically adjusts the execution
time of noncritical tasks using DVFS.

In [25] new heuristics are proposed for an energy-aware task scheduler in an hetero-
geneous cluster. In [26] a strategy is employed to stretch or reduce the execution time
of noncritical jobs. In [27], the authors perform a similar investigation, but frequency is
statically tuned at the beginning of the algorithm, and fixed for its complete duration.
The authors of [28] also follow the same strategy, with stretch/compress stages, which
are iteratively applied until the consumption of power is below a certain threshold. Fi-
nally, algorithm LPHEFT (low power HEFT algorithm) is presented in [29] as a means
to reduce power consumption, based on scheduling of idle time-slots (or gaps).

2 The Critical Path Method

The Critical Path Method (CPM) is commonly used in the field of management and
project planning [30] to control the duration of the project by carefully scheduling so-
called “critical” tasks (that is, those tasks which are likely to delay the project execution
time in case of a late start/finish). We next discuss how to apply CPM to detect slacks
in a DAG using a simple case study from linear algebra.

2.1 Demonstration example

We illustrate our goal using the Cholesky factorization of a symmetric positive definite
matrix A € R™*", which renders the decomposition A = LLT, where the Cholesky
factor L € R™*" is lower triangular. Consider a partitioning of this matrix into blocks
of size b x b and denote the (4, j) block in this partitioning as A;;. (For simplicity,
we will assume hereafter that n is an integer multiple of the block size b; i.e., there
exists an integer s such that n = s - b.) Algorithm 1 presents a blocked (right-looking)
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procedure to compute the Cholesky factorization of A, overwriting the lower triangular
part of the matrix with the contents of the lower triangular factor L. Each operation
(i.e., task) in the algorithm is annotated to the right with its theoretical cost in floating-
point arithmetic operations, or flops. (Hereafter we neglect lower order terms in the
evaluation of theoretical costs.)

Algorithm 1 Blocked (right-looking) Cholesky factorization procedure.
1: fork=1,2,...,sdo

3 fori =k+1,k+2,...,sdo

& Awe AnLy TuiavauLAR SYSTEM SoLVE
5: end for

6: fori=k+1,k+2,...,sdo

7 forj=k+1,k+2,...,5— 1do

9 end for

11:  end for

12: end for

Figure 1 shows the dependency graph corresponding to the computation of the
Cholesky factorization of a matrix consisting of 3 x 3 blocks (s = 3) using Algo-
rithm 1. In the graph, nodes stand for tasks and edges identify dependencies. Each task
is labelled with a first letter representing its type (“P” for Cholesky, “T” for triangu-
lar system solve, “G” for general matrix-matrix product, and “S” for symmetric rank-b
update); followed by a number that uniquely identifies the task in the graph; and, in-
side parenthesis, its theoretical computational cost, expressed in units of time, or u.t.,
with the equivalence 1 u.t. = b® flops. For simplicity, we assume that there is a direct
relation between time and theoretical cost, which is quite realistic for the execution of
(Level 3 BLAS-based) dense linear algebra computations on current high performance
architectures.

Figure 1. (Task-node) DAG capturing the data dependencies in the computation of the Cholesky
factorization of a matrix consisting of 3 x 3 blocks using Algorithm 1.

We define the (total) slack as the amount of time that a task can be delayed without
increasing the total execution time of the algorithm. Note that, although in the following
we often refer to time, in our approach the slack will be computed in terms of theoretical
cost, because of the equivalence that we introduced between u.t. and flops. In order to
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apply CPM to calculate the slack of the algorithm tasks, we first transform the rask-
node graph into a task-edge graph, where tasks are represented by edges instead of
nodes. The DAG that results from this transformation is shown in Figure 2. There, new
edges/dummy tasks, labelled as NULL, are introduced to preserve the dependencies
from the original task-node graph.

S331(1)
G.3212) O T322(1) AN S332) N P333(0.33)

4 5 6 7

O, >(5) > 0]

:£ NULL_
P_111(033) TSI NULL
@—> T211(1)
e S221(1 P.222(0.33)

Figure 2. Task-edge DAG capturing the data dependencies in the computation of the Cholesky
factorization of a matrix consisting of 3 x 3 blocks using Algorithm 1.

CPM can now be applied to the task-edge graph in order to detect slacks, which
yields the profile in Table 1. The column labelled as Task lists the task name. Column
1 — j specifies the initial and final nodes of the task, ¢ and j respectively; and column
C; ; its cost (in u.t.). The information computed by the CPM is contained in the next
three columns. For each task ¢ — j, the first column, labelled as ES;, represents the
earliest time at which the tasks leaving from node 7 can start their execution. This value
can be computed as:

ES; = m]?X(ESk + Cki) (1)

for all node k connected to node ¢ by an edge from k& to i. The earliest execution time
for node 0 is, obviously, 0; while, e.g., E.Ss is the maximum between E'Sy 4+ C4 5 and
E S5+ Cs 5. The next column, LF}, indicates for each task ¢ — j the latest time at which
the tasks that reach node j can finish execution without increasing the total time of the
algorithm. This is given by:

LF; = min(LF; — Cji) 2)

for all node k connected to node j by an edge from j to k. In this case, e.g., LF} is
the minimum between LF, — C 2 and LFg — C g, and LF; equals the length of the
critical path, this is, 5.67 u.t. Finally, the last column, S; ;, indicates the slack of the
corresponding task, and can be obtained from:

S;; = LF; — ES; — C; ;. 3)

CPM identifies slack times, but does not provide an explicit strategy (procedure) to
exploit them. In the following section, we introduce an algorithm that conveniently tai-
lors execution frequency, to tune the slack of those tasks with .S; ; > 0, yielding a lower
power usage. In an ideal case where the cores can operate at an infinite (continuous)
range of frequencies, and the transition time (overhead) between any two frequencies
is zero, the slack could be adjusted very accurately. In a real case, processor cores run
at a limited (discrete) number of frequencies, and changing the between any two given
frequencies is not immediate, so that the slack can only be adjusted sub-optimally.
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[ Task [’L—j[C7J[ES¢[LFJ[S7

P_111] 0-1 [033] 0 |033] 0
T211] 18 | 1 033|133 0
0

0

]

T_311| 1-2 1 ]10.33]1.33
NULL 2-3 1 0 [1.33]1.33

T_322| 4- 3.33
5.332| 5-6 1 ]4.33]5.33
P_333| 6-7 [0.33]5.33|5.67
NULL | 83 | 0 |1.33|1.33

(=] K=] =] R}

Table 1. Application of CPM to the task-edge DAG capturing the data dependencies in the com-
putation of the Cholesky factorization of a matrix consisting of 3 X 3 blocks using Algorithm 1.

3 Slack Reduction Algorithm

We next describe the Slack Reduction Algorithm (SRA) to set and assign a tentative
operation frequency to each task, among a discrete number of these, at which it will
be executed. The algorithm is preceded by an initialization stage that decomposes a
given dense linear algebra algorithm into a collection of tasks, and identifies the de-
pendencies among these, resulting in a task-node DAG (alike that in Figure 1). In this
preliminary stage, this information is then transformed into a task-edge DAG (see, e.g.,
Figure 2). Recent work on efficient execution of dense linear algebra operations on
multi-core processors has shown that automatic extraction of this information can be
easily done [31]. Transformation between task-node and task-edge graphs is a simple
and systematic process for which efficient algorithms exist.

$331(1)

- NULL 632102 ﬂ szzm\m SR | o P3O @
P_111(0.33) G><: NULL (6 ————"
(:)—V T211(1)
.< S221(1) M033)
S331(1)

Gw»@i@ e

$221(1) P.222(0.33)
O I CP; = {1,2,5}, 2u.t.

Cj NULL C @

@Am
CP; = {8,9,4}, 1.33 u.t.

( ) NULL @

CcPy, ={0,1,8,3,4,5,6,7}, 5.66 u.t.

CPs = {2,3}, Ou.t.

Figure 3. Critical subpath decomposition using DAG that captures the data dependencies in the
Cholesky factorization of a matrix consisting of 3 x 3 blocks using Algorithm 1.
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The SRA is composed of three stages, with the second and third stages being iter-
ative procedures. To illustrate the algorithm, in the following discussion we will refer
to the DAG in Figure 2. We will also consider the discrete collection of frequencies
FR = {2.27,2.13,2.00,1.87,1.73,1.60}, (in GHz, conformal with current values,
e.g., in Intel Xeon E5520).

Frequency assignment: Initially, all tasks except those marked as NULL are assigned to
be run at the maximum frequency.

Critical subpath extraction: In this step the graph is decomposed into a number of
critical subpaths. First, the critical path is identified. Next, the graph edges that belong
to the critical path (as well as the nodes, if they have no other edge arising at or leaving
from them) are eliminated from the graph. A new critical subpath is then extracted for
this subgraph; and the process is repeated until the graph is empty. Figure 3 details
the application of the procedure to the DAG contained in Figure 2. For each iteration of
the extraction procedure, we indicate the sequence of nodes in the critical path/subpaths
(CPy/CPy,CPy,CPs) and the execution time in the bottom right corner. Note that this
decomposition automatically sorts critical subpaths according to descending execution
time.

SRA: This is the key stage which calculates the (recommended) operation frequency
and, therefore, the execution time of tasks. The algorithm starts by processing critical
subpath CP; = {1,2,5}, trying to adjust the execution time of the tasks embedded
in this subpath with a nonzero slack: this includes only S_331. The execution rate of
the remaining tasks will not be modified during this iteration. The slack for S_331 is 2
u.t. which, under ideal conditions, would allow us to run this task as fiax/2; however,
given the values in F'R, the best one can do is to assign f = 1.60 to this task, which
increases its execution time from 1 to 1.42 u.t.

The process continues next with CP; = {8,9,4}. Both S_221 and P_222 lie in
this subpath and have a slack of 0.67 u.t. which matches that of the critical subpath.
In other words, the slack for this subpath, 0.67 u.t., can be split between the two tasks
or assigned to only one of them. Given the discrete ranges of frequencies available, we
may decide to run both tasks at f =1.73, so that the execution times of S_221 and
P_222 becomes, respectively, 1.31 and 0.44 u.t.

As a result tasks S_331, S_221 and P_222 are run at frequencies 1.60, 1.73 and
1.73, respectively, and the total slack reflected in Table 1 (taking into account the slacks
that are associated with the same subpath) is reduced from 2.0+0.67=2.67 to 2.0-(1.42-
1.0)+(0.67-(1.31-1)-(0.44-0.33))=1.83 u.t.; see Figure 4. Note again that a decrease in
the slack value is achieved by decreasing the operation frequency and, therefore, yields
the sought-after energy savings.

The third critical subpath, CP3 = {2, 3} only contains a dummy task, and therefore,
requires no processing.

Under mild conditions, a user can be interested in trading-off execution time for
energy consumption. To accommodate this, the SRA utilizes a user-defined excess ratio
which specifies the maximum increase in execution time that is acceptable. This makes
the previous algorithm slightly more complicated, but the basic structure remains the
same. For simplicity, we skip the exposition of the modified algorithm, and refer to the
experimental evaluation for a practical demonstration of its effects.
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$331(1.42)
f =1.60

fT;“al2ll.12)7 : ~ NULL C 6.3212) @ T,322mf5\ $3() N PIBOI
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Figure 4. Frequency assignment and cost of the task-edge DAG capturing the data dependencies
in the computation of the Cholesky factorization of a matrix consisting of 3 x 3 blocks using
Algorithm 1.

4 Simulator

In order to evaluate the performance of our strategy, we have developed a flexible,
energy-aware simulator which uses the information obtained with the SRA to produce
a schedule (in graphical form), for a particular target architecture. It also records all
frequency variations occurred during the execution, and displays statistics on energy
saving in terms of percentage of time that each computing resource has operated at a
given frequency. Therefore, this tool can help to analyze the theoretical performance
and energy savings produced by the application of the SRA on different scenarios:
DAGs associated with different task-based algorithms, platform setups, excess ratios,
frequency ranges etc. In general, the static (a priori) schedule produced by the simulator
is not applicable in practice as even tiny variations during task execution may render it
useless. However, it serves as a demonstrator of the benefits that a technique like DVFS
can yield for the execution of dense linear algebra kernels.

In the following, we describe the possibilities and properties of the simulator in
more detail.

4.1 Input parameters
The input parameters for the simulator include:

— A DAG capturing tasks and dependencies implicit in the blocked algorithm as well
as the frequencies recommended by the SRA to execute tasks (corresponding to the
output of this procedure).

— A simple description of the target architecture that specifies the number of sock-
ets (or physical processors) and the number of cores per socket. To mimic current
technology from Intel (Enhanced Intel® SpeedStep Technology®), the simulator
can only change the frequency at socket level, but not for individual cores. Further-
more, the socket frequency cannot be changed if there is a task running on it at the
moment.

— A discrete range of processor frequencies, F'RR, and associated voltages.

— The cost (overhead) required to perform frequency changes.

4.2 Scheduler

As starting point, we have chosen a static priority list scheduler [32,33]. The reason
for this is twofold. First, the approximate duration of the tasks (that is, their theoretical
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cost) is known in advance (as, in general, is the case for dense linear algebra). Second,
the execution of tasks that lie on the critical path must be prioritized. In particular,
tasks with higher recommended execution frequency are given raised priority. Among
the tasks which have to be run at the same frequency, those which belong to a critical
subpath (C P;) with smaller index (¢) are sorted first.

Consider the execution of a task T; with recommended frequency f; (by the SRA).
The scheduling algorithm maps execution of T to the first idle core that satisfies one of
the following conditions, checking them in the order they appear next:

1. The core socket is operating at frequency f;.

2. The core socket is varying its operation frequency to f, = f;. (The task will com-

mence execution when the change is completed.)

The core socket is operating at a frequency f, > fi.

The core socket is varying its operation frequency to f, > f;.

5. All cores in the same socket are idle. If the socket is operating at a frequency f, #
fi, a change of frequency to f; is requested. The socket is reserved so that T; will
be the first task that will run on it when the change is completed.

Ll

If none of the above conditions is satisfied, the task remains in the pending queue,
waiting for variations in system. This strategy will ensure that the execution time of a
task does not require longer than recommended by the SRA. For that purpose, the task
is run in a core running at the desired frequency or, if not possible, a higher one.

5 Results

In this section, we evaluate the performance of the SRA combined with the energy-
aware scheduler using state-of-the-art blocked algorithms for two important dense lin-
ear algebra operations. In the experiments we consider two scenarios: one with strict
execution time (excess ratio=1.0) and an alternative one where the user can accept up
to a 50% increase in the time-to-solution (excess ratio=1.5) for more aggressive power
reduction.

5.1 Benchmark algorithms

In our experiments, we analyze the traditional right-looking blocked algorithmic variant
for the Cholesky factorization (see Algorithm 1) and the incremental QR factorization
introduced in [34]. These two algorithms represent the state-of-the-art to attain high
performance on current multi-core processors [31]. Each of these operations is evalu-
ated for a variety of (square) matrix dimensions (n) and block sizes (b). Specifically, in
our experiments n varies from 576 to 2,112, with b = 192. (Although we carried out
the evaluation for other problems sizes, we do not report the results here. The chosen
block size is known to be close to optimal for most kernels from many current imple-
mentations of BLAS.) For simplicity, we assume that the execution time of the tasks
as well as that of the whole algorithm are proportional to their theoretical cost. The
usual flop counts of n3/3 and 4n3 /3 are considered, respectively, for the Cholesky and
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QR factorizations (though the incremental QR factorization performs a slightly higher
number of flops).

The scheme of the incremental QR factorization of a matrix A consisting of s X s
blocks, of dimension b x b each is shown in Algorithm 2.

Algorithm 2 Algorithm-by-blocks for the incremental QR factorization.
1: fork=1,2,...,sdo

3 forj=k+1,k+2,...,sdo
A Ak QA | APPLY TRANSFORMS 26 flops
5 end for
6: fori=k+1,k+2,...,sdo
A

7o (An)= (&) R 2 1 QRimeroRizATion
8: forj=k+1,k+2,...,sdo

Akj Qi 0\7T [ Aj

Aij T\ I Aij ops
10 end for
11 end for
12: end for

Figure 5 illustrates the tasks and dependencies obtained for the QR factorization of
a blocked 3 x 3 matrix using Algorithm 2. There, “Q” denotes the QR factorization,
“0” the application of (orthogonal) transforms, “Q2” the 2 x 1 QR factorization, and
“02” the 2 x 1 application of (orthogonal) transforms.

Figure 5. (Task-node) DAG capturing the data dependencies in the computation of the QR fac-
torization of a matrix consisting of 3 x 3 blocks using Algorithm 2.

5.2 Environment setup
The following architectural considerations are assumed:

— Frequency change latency: Varying the frequency of a socket between any two
values incurs an overhead of 0.1 u.t.
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— Target architecture: The simulated platform consists of four quad-core sockets (a
total of 16 cores) with a discrete range of frequencies F'R = {2.27,2.13,2.00, 1.87,
1.73,1.60} GHz. Associated voltages vary from 0.75 to 1.35 V, with a linear rela-
tion between these and the frequency. These values are representative featured, e.g.,
by Intel Xeon E5520 processors [35].

5.3 Metrics

In order to assess the benefits of the proposed solution we will employ the following
metrics:

Execution time stands for the estimated total execution time (in u.t.). This parameter
is in general higher than the execution time (length) of the critical path as, in a real
setup, the number of computational resources (cores) is bounded and, therefore, the
execution time of the algorithm will obviously increase.

Impact of the SRA on time (T'sz4) measures the ratio between the algorithm execu-
tion times using the frequencies determined by the SRA and the maximum fre-
quency. Ideally, this ratio should be 1.0.

Consumption is the energy usage, in consumption units (u.c.), for the execution of the
algorithm. We assume that power is proportional to the square of the voltage times
the frequency. We estimate the usage of energy as a function of the aggregated time
during which the processor cores have been operating at the different frequencies.

Impact of the SRA on consumption (C'sr4) measures the ratio between the algo-
rithm power consumption using the frequencies recommended by the SRA and the
maximum frequency. Ideally, this ratio should be close to 0.

Results for the Cholesky factorization Figure 6 reports the results for the Cholesky
factorization. Let us comment on the results with excess ratio=1.0 first (red and blue
bars respectively for energy and time, in %). The plot shows that, for small matrices,
the energy required to execute the algorithm at the frequencies dictated by the SRA
is only 25% of that required by an execution at the original (maximum) frequency.
The plot also shows that this ratio raises up to 70% for the largest problem sizes. The
reason underlying this growth is that, due to limitations of the algorithm to adjust the
slack, and the limited number of frequencies, the length of alternative subpaths does
not always conform perfectly to the reference critical subpaths. Nevertheless, this is
all attained with an increase in the execution time that is below 10% in all cases. The
results when the excess ratio is set to 1.5 (green and magenta bars for energy and time,
respectively) clearly show the trade-off between execution time and energy: The lowest
energy savings are around 60%, for the largest problem sizes, but they come at the
expense of an increase in the execution time of up to 20% in one of the cases.

A closer inspection of the dependency tree reveals the strong impact of the degree
of parallelism of the algorithm. In particular, when the number of task that can be run
in parallel is large compared with the number of cores, savings become practically
negligible. On the other hand, in a situation where the number of tasks that can be run
in parallel is limited, energy savings will grow, with basically no (negative) effect on
the total execution time.
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Cholesky factorization
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Figure 6. Impact of the SRA on energy and time for the Cholesky factorization.

Results for the QR factorization Figure 7 shows a similar behaviour for the QR fac-
torization: when an excess in the execution times is not desirable, the energy required
by the SRA requires between 25% (smallest problem dimension) and 76% of that con-
sumed by the original frequency (largest problem dimension), and the time grows at
most by 10%. The excess ratio allows to increase energy savings, but at the expense of
longer execution time.

QR factorization
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Figure 7. Impact of the SRA on energy and time for the QR factorization.
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6 Conclusions and Future Work

In this paper, we provide evidence that, in theory, it is possible to improve energy
consumption in the execution of dense linear algebra algorithms while delivering high
performance. Following the current trend for multi-core parallelization (adopted, e.g.,
in libraries 1ibflame and PLASMA), our algorithms exploit task-level parallelism,
considering that dense linear algebra operations are partitioned into a number of tasks
with dependencies among them. Our efforts towards power conservation start from the
DAG representing the operation and are based on two key observations. First, if all the
tasks run at full speed, idle times appear during their execution. Second, present pro-
cessors include efficient mechanisms to dynamically adjust frequency/voltage (DVFS)
and hence the energy consumed.

Our approach to the problem is inspired by concepts and methods of project plan-
ning theory. Specifically, we first apply CPM to determine the total slack of tasks, and
then employ the SRA to conveniently adjust the frequency at which tasks must run.
The results from this process are then fed to a simulator, which is used to further tune
the frequencies of the tasks to a particular target architecture and assess the theoretical
benefits that can be obtained for a given operation.

We have evaluated these tools using two representative algorithms of dense linear
algebra, namely, the Cholesky and QR factorizations. The results of this experimental
analysis under realistic conditions show a significant reduction in power consumption in
both cases and some interesting insights. In particular, we observed that a higher ratio
between the number of computational resources and number of tasks yields a more
reduced power consumption. Second, even a small stretch of the total time may result
in significant energy savings. Although not reported, the results for the LU factorization
(with incremental pivoting), the third key algorithm in the numerical solution of linear
systems, show similar behaviour to that of the incremental QR factorization.

We plan to address several open questions as part of future work. First, scheduling
heterogeneous tasks (with dependencies among them) in environments with limited
number of resources is known to be an NP problem; therefore, efficient new heuristics,
tuned for the particular conditions of our problem, can have a considerable impact on the
results. Second, our frequency variation strategy is static, deciding the task frequencies
in advance; this should be changed into a dynamic policy, which operates at run-time,
dynamically adapting to variations on the conditions. Third, our ultimate goal is to
integrate the results from this research with a practical run-time scheduler for dense
linear algebra operations.
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