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ABSTRACT 8 

A new sensitive and selective method based on on-line solid-phase extraction (SPE) coupled 9 

to LC(ESI)MS/MS using a triple quadrupole analyzer has been developed for the determination of 10 

epichlorohydrin (ECH) in different types of water samples. The great difficulties for ECH direct 11 

determination resulting from its low molecular size, high polarity and non-easily ionizable molecule 12 

make necessary a previous derivatization step. This previous reaction was optimized employing 3,5-13 

difluorobenzylamine as derivative agent adding Fe(III) to catalyze the derivatization process. In 14 

order to achieve accurate quantification and for correction of matrix effects, losses in the 15 

derivatization process and instrumental deviations, ECH isotope labelled (ECH-d5) was added as 16 

internal standard (IS) to water samples. The method was validated based on European SANCO 17 

guidelines using drinking and other types of treated water spiked at two concentration levels (0.1 18 

and 1.0 µg/L), the lowest having been established as the limit of quantification (LOQ) objective of 19 

the method. Satisfactory accuracy (recoveries between 70 and 103 %), precision (RSD < 20 %) and 20 

linearity (from 0.05 to 50 µg/L, r > 0.99) were obtained. The limit of detection (LOD) was set-up at 21 

0.03 µg/L. The method was applied to different water samples (drinking water and water samples 22 

collected from a municipal treatment water plant). In order to enhance confidence, five SRM 23 

transitions were acquired obtaining in this way a simultaneous reliable quantification and 24 

identification of ECH in water, even at sub-ppb levels.  25 
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INTRODUCTION 31 

Epichlorohydrin (1-chloro-2,3epoxy-propane, ECH) is an aliphatic epoxide commonly 32 

employed as starting material in the production of synthetic glycerol, plastics, polymers and epoxy 33 

resins. ECH residues can enter in drinking-water supplies through different ways, as it is widely 34 

employed in the fabrication of drinking-water pipes as well as in the synthesis of cationic 35 

polyelectrolytes, which are used in surface and wastewater clarification, and in several flocculating 36 

agents
1
. 37 

ECH is toxic by inhalation, dermal and oral absorption, and it is defined as probably 38 

carcinogenic to humans (group 2A) by the International Agency for Research on Cancer (IARC)
2
. 39 

Due to its toxicity, ECH has been listed among compounds dangerous to the water environment by 40 

both EU and USA
3,4

. According to European Council Directive 98/83/EC on the quality of waters 41 

intended for human consumption, the acceptable limit for ECH in drinking water is 0.1 µg/L
3
. 42 

Stricter is the maximum level contaminant (MLC) goal established by US Environmental Protection 43 

Agency, which has been set at zero
4
. Therefore, it is necessary the development of highly sensitive 44 

analytical methodology able to determine ECH at sub-ppb levels in water. 45 

Nowadays, no practical routine and confident analytical methods are available to determine 46 

ECH at such low concentrations. Chemical characteristics of ECH, like high solubility in water, 47 

volatility and polar character make very difficult its analysis. Furthermore, the hydrolytic behavior 48 

of this substance has to be taken into account since its presents a half life in water at pH 7 and 20 ºC 49 

of only 6.2 days
5
, which is lower at other pH values. Moreover, ECH hydrolysis increases 7-fold 50 

when the temperature exceeds 40 ºC
1
. 51 

ECH similarly to other volatile organic compounds has been determined in water by gas 52 

chromatography (GC), which requires multi-stage and time-consuming procedures previous to the 53 

chromatographic analysis. Methods described are most often based on isolation and/or enrichment 54 

techniques as dynamic headspace purge and trap
6,7

, static headspace
7,8

, LLE
8
, SPE

5,8
, or SPME

8-10
. 55 
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GC determination has been carried out by using detection systems as ECD
5,7,9,12

, FID
9,10,12

 and 56 

MS
10-13

. 57 

In general, the sensitivity of the reported methods is insufficient for regulatory purposes and 58 

in most of cases, the reliable identification of ECH is not ensured (e.g. when using ECD, FID). 59 

Lucentini et al.
7
 reported a purge and trap method for drinking water, which was validated at 0.1 60 

µg/L, although the detection was based on GC/ECD. 61 

Gaca and Wejnerowska
12

 compared different GC methods for ECH determination in water. 62 

Direct aqueous injection and different extraction methods (headspace, striping with adsorption on 63 

solid phase, LLE, SPE and SPME) and detectors (FID, ECD, MS) were compared regarding 64 

sensitivity, using aqueous standards. They concluded that SPME followed by GC/ECD led to the 65 

lowest LODs. The calibration was plotted at the range of concentrations from 4.8 to 400 µg/L. 66 

Khan et al.
13

 have performed a detailed study of the potential of aqueous-phase aminolysis 67 

for the determination of epoxides, considering also the identification performance when using GC 68 

with quadrupole mass selective detector. A method was proposed for the determination of ECH in 69 

water based on a previous aminolysis reaction with 3,5-difluorobenzylamine (DFBA), solid phase 70 

extraction of the DFBA-derivatized samples, followed by silylation of the extract before GC/MS 71 

analysis in mode selected ion monitoring (SIM). This was a laborious procedure that required the 72 

use of a surrogate standard in order to obtain a reliable method. For this purpose, a chemical 73 

analogous compound as epifluorhydrin was selected allowing to reach a LOD of 10 ng/L. 74 

Recently, ECH has been determined by GC-MS in food contact surface of epoxy-coated 75 

cans by Sung et al
14

, after previous extraction with dioxane and derivatization with cyclopentanone 76 

and borontrifluorodiethyletherate. 77 

Considering the high solubility in water and polar character of ECH, it seems more 78 

advisable the use of liquid chromatography (LC) instead of GC for its determination in water. Thus, 79 

Sarzanini et al.
15

 performed a derivatization reaction with sulfur (IV) (added as anhydrous sodium 80 

sulfite) to obtain a product with a terminal sulfonate group, which was suitable to be retained in 81 
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suppressed anion-exchange chromatography. Despite the previous SPE pre-concentration step using 82 

polystyrene-divinylbenzene cartridges, the use of a low selective and sensitive detection technique 83 

such as conductivity, did not allow to reach a satisfactory sensitivity, and detection limit was 84 

established at 0.6 µg/L. Later, the method selectivity was improved by applying the same reaction, 85 

but pre-concentrating with C18 SPE cartridges and using ion chromatography with MS detection
16

. 86 

Five different reaction products were identified, and the LOD was estimated to be 2 µg/L for the 87 

most stable specie, due to the presence of interferences.  88 

Tandem mass spectrometry (MS/MS) coupled to LC has became the most appropriate and 89 

sensitive technique to analyse many medium-high polar organic pollutants in water, leading to 90 

satisfactory results from both quantification and confirmation purposes
17,18

. The high sensitivity and 91 

selectivity of LC/MS/MS can even allow direct injection of water samples, reaching low LODs for 92 

many compounds
19,20

. However, a pre-concentration step, normally by solid-phase extraction (SPE), 93 

is usually required for the satisfactory determination of sub-ppb levels in multi-residue analysis 94 

where a variety of water pollutants like pharmaceuticals
21-24

,
 
drugs

24-26 
and pesticides

17,23,24,27
 have 95 

to be determined. The SPE preconcentration can be easily performed in on-line mode facilitating 96 

automation in SPE/LC/MS/MS methods
17

.  97 

In spite of analytical advantages offered by LC/MS/MS, there are still several highly polar 98 

compounds, whose determination requires special effort. Thus, large volume injection together with 99 

a detailed ionization process optimization was required to quantify and confirm acrylamide residues 100 

in water at sub-ppb levels
28

. In other cases, ion-pairing reagents have been required to favour 101 

retention in reverse-phase chromatography, thus allowing direct injection of sample and avoiding 102 

laborious sample treatments
29

. Other polar compounds, like glyphosate and gluphosinate, required a 103 

previous derivatization reaction for their determination in water
30

.  104 

The purpose of this paper was to develop a new selective and sensitive method based on on-105 

line SPE/LC/MS/MS for ECH determination in water at sub-ppb levels, previous derivatization by 106 

an aqueous-phase aminolysis.  The method was validated to ensure the accurate quantification and 107 
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identification of ECH at the low levels required by the EU drinking water legislation
3
. A special 108 

emphasis was made to obtain reliable and safe analyte identification by acquiring several selected 109 

reaction monitoring (SRM) transitions to reach an adequate number of identification points (IPs)
 31

. 110 

111 
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EXPERIMENTAL 112 

Reagents and Chemicals 113 

ECH reference standard (99.5%) was purchased from Dr. Ehrenstorfer (Augsburg, 114 

Germany) through Scharlab (Barcelona, Spain) and ECH-d5 (≥98%) was supplied by Cambridge 115 

Isotope Laboratories, Inc. (Andover, MA, USA). Terbuthylamine (99.5%) (tBA), 3,5-116 

difluorobenzylamine (96%) (DFBA) and ferric chloride hexahydrate (99%) (FeCl3·6H2O) were 117 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Acetic acid (>99%) (HAc), formic acid 118 

(>98%) (HCOOH), ammonium acetate (98%) (NH4Ac), acetone for residue analysis, HPLC-grade 119 

acetonitrile (ACN) and methanol (MeOH) were purchased from Scharlab. HPLC-grade water was 120 

obtained by purifying demineralised water in a Milli-Q Gradient A10 (Millipore, Bedford, MA, 121 

USA). 122 

Stock standard solutions of ECH and ECH-d5 were prepared by dissolving the pure 123 

compound in acetone obtaining a final concentration of 10000 mg/L. Intermediate standard 124 

solutions at concentration down to 10 mg/L
 
were prepared from stock solutions by dilution with 125 

acetone and stored in a freezer at < -18 ºC. Working solutions were prepared daily at various 126 

concentrations by diluting with HPLC-grade water the intermediate standard solutions. 127 

 128 

Instrumentation 129 

A Quattro Micro triple quadrupole mass spectrometer (Waters, Milford, MA, USA) was 130 

interfaced using an orthogonal Z-spray-electrospray ion source to an HPLC system based on a 131 

Waters Alliance 2695 (Waters) quaternary pump used for the chromatographic separation, a 233XL 132 

autosampler with a loop of 2.5 mL (Gilson, Villiers-le-Bel, France) and a Varian 9012 (Varian, Palo 133 

Alto, USA) binary pump used to condition and wash the SPE cartridge.  134 

Nitrogen generated from a pressurized air in a high-purity nitrogen generator (NM30LA 135 

230Vac Gas Station from Peak Scientific, Inchinnan, UK) was employed as drying and nebulising 136 

gas. The cone gas and the desolvation gas flows were set to approximately 60 L/h and 600 L/h, 137 
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respectively. For operation in MS/MS mode, collision gas was Argon 99.995% (Praxair, Valencia, 138 

Spain) with a pressure of approximately 3×10
−3

 mbar in the collision cell. Electrospray needle 139 

capillary voltage of 3.5 kV was selected in positive ionization mode. The desolvation temperature 140 

was set to 350 ºC and the source temperature to 120 ºC. Infusion experiments were performed using 141 

the built-in syringe pump directly connected to the ion source at a flow rate of 10 L/min. Dwell 142 

times of 200 ms and scan ranges between 50 and 300 m/z were chosen. A solvent delay of 9 min 143 

was selected to give an additional clean-up using the built-in divert valve controlled by the 144 

Masslynx NT v 4.0 software (Waters). 145 

Cartridges used for off-line SPE experiments were Oasis HLB (0.2 g) from Waters. For on-146 

line experiments, C18 and polymeric phase Hamilton (PRP), both 10 x 2 mm, 10 µm (Teknokroma, 147 

Barcelona, Spain), and Oasis HLB 20 x 2.1 mm, 25 µm (Waters) cartridges were tested. 148 

LC columns tested for chromatographic separation were: Discovery 50 x 2.1 mm, 5 µm 149 

(Sigma); Sunfire 50 x 2.1 mm, 3.5 µm and 5 µm (Waters); Sunfire 100 x 2.1 mm, 3.5 µm (Waters); 150 

Atlantis 50 x 2.1 mm and 100 x 2.1 mm, both 5 µm (Waters). 151 

Masslynx NT v 4.0 (Waters) software was used to process the quantitative data obtained 152 

from calibration standards and from water samples. 153 

 154 

Recommended procedure 155 

The derivatization procedure was performed by adding 20 μL of DFBA, 20 μL of 156 

FeCl3·6H2O aqueous solution (6 g/L) and 80 µL of ECH-d5 (500 µg/L) to 20 mL of water sample, 157 

in amber glass vials, leaving them overnight at room temperature. Then, the derivatized samples 158 

were filtered through 0.45 μm nylon filters before chromatographic analysis to remove undesirable 159 

water particles and iron traces. A 2.5 mL aliquot of derivatized sample was directly injected into the 160 

SPE/LC(ESI)MS/MS system using a C18 cartridge, 10 x 2 mm, 10 µm (Teknokroma) for 161 

preconcentration, and a Sunfire C18 column, 50 x 2.1 mm i.d., 5µm particle size (Waters) for 162 

chromatographic separation. 163 
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On-line SPE/LC was performed as follows: firstly, the SPE cartridge was conditioned with 164 

acetonitrile at a flow rate of 1 mL/min for 1 min, following by 1 min of water. An aliquot of 2.5 mL 165 

of derivatized sample was pre-concentrated into the cartridge and it washed with water at 1 mL/min 166 

for 3 min. Then, the sample was transferred in backflush mode to the analytical column, starting the 167 

LC gradient. A binary water / methanol (both 0.1 mM NH4Ac) gradient elution was applied 168 

changing linearly the percentage of methanol as follows: 0 min, 5%; 2 min 5%; 5 min, 45%; 7 min, 169 

90%; 8 min, 90%; 8.10 min, 5%. The flow rate was kept at 0.2 mL/min and the chromatographic 170 

run time was 15 min.  171 

Quantification was performed by using the internal standard (IS) procedure, and calibration 172 

was carried out with standards prepared in water subjected to the same on-line preconcentration 173 

applied to the samples. ECH-d5 was used as IS added to the water samples before the derivatization 174 

step. It was crucial to prepare all aqueous standard solutions daily due to the quickly degradation of 175 

this analyte in water. 176 

 177 

Validation study 178 

Method validation was performed following European SANCO guidelines 179 

recommendations
32

. Linearity was studied by injecting aqueous standards in triplicate at eight 180 

different concentrations, in the range from 0.05 to 50 µg/L. Satisfactory linearity was assumed 181 

when the correlation coefficient (r) was higher than 0.99, based on analyte peak areas measurement, 182 

and the residuals lower than 30 %. 183 

Accuracy (expressed as recovery, in %) and precision (expressed as relative standard 184 

deviation, in %) were estimated by analyzing three types of water samples (drinking water 185 

treatment plant, DWTP; distribution system water, DSW; drinking water, DW) spiked at two 186 

concentration levels each: 0.1 µg/L
 
and 1.0 µg/L.

 
All recovery experiments were performed in 187 

triplicate for each type of water samples. Quantification was performed by internal calibration with 188 

standards in the range 0.05 – 2.5 µg/L
 
for the low level and 0.05 - 10 µg/L

 
for the high level. The 189 
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limit of quantification (LOQ) objective was established as the lowest concentration level that was 190 

validated with satisfactory results. The limit of detection (LOD) was estimated as the lowest 191 

concentration that the analytical procedure can reliably differentiate from background levels, and it 192 

was calculated for a signal-to-noise ratio of three from the chromatograms of samples spiked at the 193 

lowest analyte concentration tested. 194 

The safe identification of ECH was carried out by quantification of the analyte using the 195 

quantification (m/z 236 > 92) and confirmation transitions (m/z 236 > 127, 236 > 218, 238 > 127, 196 

238 > 94) and calculating the ratio between all calculated concentrations. Detection was considered 197 

as positive when these ratios fall in the range 0.8 to 1.2 (i.e. maximum concentration ratio deviation 198 

of ± 20%).  199 

200 



 11 

RESULTS AND DISCUSSION 201 

In our first experiments, it was considered the use of two primary amines (tBA and DFBA) 202 

as aminolysis derivatizing agents for the determination of ECH in water samples. The epoxides ring 203 

opening is usually carried out by aminolysis at high temperatures or at room/low temperatures in 204 

the presence of a catalyst. Preliminary experiments indicated that tBA led to an unstable 205 

derivatization product, which was thermally degraded at room temperatures and even when the 206 

derivative was kept in the fridge. When DFBA was used as derivatizing agent, results were more 207 

satisfactory. In consequence, DFBA was selected and aqueous-phase aminolysis was carried out in 208 

presence of Fe
3+

 according to Khan et al
13

. Figure 1 shows the aminolysis of ECH with DFBA and 209 

Fe
3+

 as catalyst. 210 

 211 

MS and MS/MS optimization 212 

The positive electrospray spectrum of a DFBA-derivatized ECH reference standard of 2.5 213 

µg/mL in ACN:water (50:50 v/v) is shown in Figure 2a. Only the m/z range around the protonated 214 

derivatized molecule is depicted; otherwise the excess of derivatizing agent would dominate the 215 

mass spectrum.  Two relevant peaks, at m/z 236 and m/z  238, which corresponded to the [M+H]
+ 

216 

ions with 
35

Cl and 
37

Cl respectively, were obtained, both optimized at a cone voltage 25 V. When 217 

m/z 236 was used as precursor, three product ions were observed in the MS/MS spectrum. The most 218 

abundant fragment (m/z 127) was optimized at 20 eV collision energy (Figure 2b) and 219 

corresponded to difluorobenzyl ion. Two less abundant fragments were optimized at 15 eV and 220 

corresponded to m/z 218 and m/z 92 (Figure 2c). The proposed fragmentation pathway is shown in 221 

Figure 3, which is in agreement with the fragments observed in the MS/MS spectra. Taking 222 

advantage of the one chlorine atom presence in the ECH molecule, m/z 238 was also used as 223 

precursor ion obtaining the three product ions expected according to the fragmentation pathway 224 

proposed (m/z 127, 220 and 94). In this way, more SRM transitions could be monitored increasing 225 

the reliability in the identification process. Full-acquisition and MS/MS spectra for ECH-d5 were 226 
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consistent with the fragmentation pathway proposed in this work, because losses observed for ECH-227 

d5 (precursor ion m/z 241) confirmed the presence of the five deuterium atoms in the less abundant 228 

fragments (m/z 223 and 97), whereas no deuterium was present in the m/z 127 fragment. 229 

The experimental MS conditions and relative abundances of the product ions are 230 

summarized in Table 1. In spite of its lower abundance, the transition m/z 236>92 was selected for 231 

quantification instead of m/z 236>127 due to the greater background noise of the later (Figure 4). 232 

The notable difference in the transitions chemical noise (see relative S/N ratios in Table 1) seems to 233 

be a consequence of the higher specificity of the m/z 92 fragment in comparison to m/z 127, which 234 

was originated from the derivatizing agent used.  235 

 236 

Derivatization optimization 237 

The derivatization procedure applied was based on Khan et al
13

. Initially, a sample volume 238 

of 20 mL of water and 20 µL of DFBA were fixed. Then, variables as content of catalyst, reaction 239 

time and reaction temperature were optimized using an aqueous reference standard of 1.0 µg/L. 240 

Fe
3+

, added as FeCl3·6H2O, was used to catalyze the ECH aminolysis. Different catalyst amounts 241 

were tested, selecting a final concentration of 0.02 mM (20 µL of 6 g/L FeCl3·6H2O added to 20 242 

mL of water sample). Reaction time and temperature influence were studied carrying out 243 

experiments (n=7) for ECH at 1.0 µg/L
 
(kept in dark for 2, 3, 4, 6, 8 hours and overnight, and at 244 

room temperature, 35 and 45 ºC). The best results in terms of sensitivity corresponded to 245 

derivatization at room temperature overnight, at 35 ºC for 6 hours, and at 45 ºC for 3 hours. 246 

However, repeatability was worse when heating at 35 ºC and 45 ºC (RSD>30%), possibly due to the 247 

faster degradation of the derivatization product. Therefore, the optimum conditions chosen for 248 

derivatization reaction were overnight and room temperature. Despite the better precision reached 249 

in this case (RSD always below 10%), the addition of ECH-d5 as IS was necessary for more 250 

satisfactory and reproducible results. 251 

 252 
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LC optimization 253 

Different mobile phases (mixtures of water with MeOH or ACN as organic modifiers) 254 

adding different amounts of additives (NH4Ac and HCOOH) were tested using four analytical 255 

columns with different retention mechanisms and/or particle size (Atlantis 5 µm, Discovery 5 µm, 256 

SunFire 5 µm and 3.5 µm). ECH-DFBA, similarly to other compounds determined in positive 257 

ionization mode, presented better ionization yield when methanol was used as organic modifier due 258 

to its protic character. Besides, more intense and narrow peaks were obtained using MeOH instead 259 

of ACN. Regarding additives, small amounts of NH4Ac (0.1 mM) added, to both water and MeOH, 260 

resulted in better peak shape and ionization efficiency. Better peak shapes were observed for 261 

Sunfire columns, although the use of small particle size (3.5 µm) was discarded due to the pressure 262 

enhancements and worse peak shape after a few injections. Therefore, Sunfire column with a 263 

particle size of 5 µm (50 x 2.1 mm) was selected to carry out chromatographic separation. 264 

In order to increase the sensitivity of the method, direct large volume injection (LVI) using 265 

different volume sample injection loops (250, 500 and 750 µL) was tested employing larger 266 

chromatographic columns (Atlantis 5 µm and Sunfire 3.5 µm, both 100 x 2.1 mm). No satisfactory 267 

results were obtained regarding peak shape and sensitivity objective (0.1 µ/L). 268 

Then, on-line SPE pre-concentration was considered in order to reach the appropriate 269 

sensitivity. Three different stationary phases were tested for cartridges (PRP, C18 and Oasis HLB), 270 

using 50 x 2.1 mm, 5 µm Sunfire as analytical column. Better results were obtained when using C18 271 

cartridges. Different sample loops were tested (500, 750 and 2500 µL) for sample loading. 272 

Adequate sensitivity to determine and confirm the presence of ECH at the LOQ objective (0.1 273 

µg/L) was only possible when 2500 µL were injected.  274 

It was required to filter all samples and standards prior to the SPE/LC/MS/MS analysis to 275 

preserve Fe (III) traces and other particles that could negatively affect columns filling. For this 276 

purpose, different particle-size nylon filters were tested (0.45 µm from Sigma and Scharlab, and 0.2 277 
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µm from Scharlab and Albet). Sigma 0.45 µm filters were chosen due to compound losses observed 278 

with the other filters employed. 279 

 280 

Validation study 281 

Linearity of the SPE/LC/MS/MS method was satisfactory in the range 0.05 - 50 µg/L, with 282 

correlation coefficients higher than 0.999 and residuals lower than 30%. Precision (repeatability) 283 

and accuracy (expressed as recovery) were estimated by analyzing (n=3) different blank samples 284 

spiked at two concentration levels each (0.1 and 1.0 µg/L): two DWTP, two DSW and one DW. 285 

Results obtained are reported in Table 2. The method was found to have satisfactory precision and 286 

accuracy with RSD < 20 % and recoveries between 70 and 103 % for all samples at the two spiking 287 

levels. The method was also highly specific as no relevant signals were observed in the blanks at the 288 

analyte’s retention times. LOD of 0.03 µg/L was estimated from chromatograms at the 0.1 µg/L
 

289 

level. 290 

Considering absolute responses (without internal standard), we could evaluate matrix effects 291 

in the different water samples tested, with a general trend to signal enhancement being observed in 292 

some samples. Thus, a slight signal enhancement was observed in DWTP2 at 1.0 µg/L (recovery 293 

130 %). In the sample DSW2, a matrix enhancement was also found leading to recoveries of 140 294 

and 180 % for 0.1 and 1.0 µg/L
 
fortification levels, respectively. In these samples the use of IS 295 

calibration was mandatory for a correct quantification. In general, precision was also improved 296 

when ECH-d5 is used (see Table 2).  297 

Figure 5 shows the SRM chromatograms for the quantification (Q) and confirmation (q1) 298 

transitions of a HPLC-grade water blank, a reference standard and the DWTP1 sample spiked both 299 

at 0.1 µg/L. It can be seen the robustness of the analyte and IS retention times as well as the good 300 

sensitivity at LOQ level that allow to quantify and confirm ECH in water samples at sub-ppb levels.  301 

 302 

 303 
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Confirmation 304 

An advantage associated with the use of tandem mass spectrometry is the possibility to 305 

acquire different SRM transitions to confirm the presence of analytes in the sample. Following EU 306 

guidelines recommendation, in order to assure analyte identification in samples analyzed, a 307 

minimum of 3 IPs are necessary
31

. This number of IPs can be obtained in a LC-MS/MS method 308 

with the acquisition of, at least, two SRM transitions. The method developed in this paper allows 309 

acquiring up to five transitions for ECH safe identification in a single run. However, due to the 310 

great differences between transitions intensity, confirmation at low levels (≤ 0.1 µg/L) could be 311 

only carried out with two out of five transitions, concretely m/z 236>92 for quantification and m/z 312 

236>127 for confirmation, although reaching sufficient number of IPs. Anyway, these two 313 

transitions are enough to obtain the required IPs. Nevertheless, for ECH concentrations around and 314 

higher than 0.5 µg/L, confirmation of positive samples can be carried out making use of all the five 315 

transitions acquired. 316 

The method was applied to ten water samples (three drinking water treatment plant, four 317 

distribution system water and three drinking water) from the Castellón province, but no ECH was 318 

detected. Quality control samples prepared from drinking water spiked at the two levels (0.1 and 1.0 319 

µg/L) were included in each sample batch. Satisfactory recoveries (between 70-110%) were 320 

obtained, ensuring in this way the reliability of the method. In absence of positive samples, Figure 321 

6 shows SRM chromatograms for all transitions corresponding to a 1.0 µg/L
 
standard and to the 322 

sample DSW1 fortified at the same concentration. Concentration ratios, calculated from the ECH 323 

concentrations obtained for every confirmation transition and from that calculated for the 324 

quantification transition, are also shown for the DSW sample (Figure 6b). All Q/q ratios were in 325 

the range 0.85 - 1.09. So, maximum deviations were ≤ 15 %, which allows a reliable and safe 326 

confirmation of ECH in samples
31

.  327 

 328 

 329 
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CONCLUSIONS  330 

Determination of epichlorohydrin in water at sub-ppb levels is rather problematic due to its 331 

highly polar character and low molecular size. This forces to apply a derivatization step when using 332 

both liquid and gas chromatography, although GC-based methods typically require more sample 333 

manipulation to make compatible the analyte with the chromatographic requirements and to reach 334 

the sensitivity required. 335 

In this paper, we have developed sensitive, selective and accurate methodology based on a 336 

rapid on-line SPE/LC coupled to MS/MS (ESI) preceded by a simple derivatization step with 337 

DFBA, able to determine ECH in water at low concentrations. The optimized method was validated 338 

at 0.1 and 1 µg/L levels in different types of water samples, reaching limits of detection of 0.03 339 

µg/L. The use of isotope-labelled ECH-d5 as internal standard leads to a reliable quantification, 340 

minimizing potential analytical errors along the derivatization process, as well as instrumental 341 

deviations, also allowing compensating matrix effects that may negatively affect to quantification in 342 

LC/MS/MS-based methods. 343 

The acquisition of up to five specific MS/MS SRM transitions together with the evaluation 344 

of their intensity ratios, gives a high degree of reliability to the identification of ECH in water 345 

samples, minimizing the risk of reporting false positives. 346 

 347 

348 
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Table 1. MS/MS optimized conditions for the determination of epichlorohydrin. 405 

 406 

Compound 
Precursor 

ion (m/z) 

Cone 

voltage (V) 

Product ion 

(m/z) 

Collision 

energy (eV) 

Relative 

abundance  

Relative 

S/N ratios 

ECH-DFBA 236 25 92 (Q) 15 3 100 

 

 

 

127 (q1) 20 100 23 

218 (q2) 15 5 13 

238 94 (q3) 15 1 25 

 127 (q4) 20 30 20 

ECH-d5-DFBA 241 25 97 (Q) 15 3 75 

   127 (q) 20 100 100 

 407 
(Q) - Quantification transition, (q) – confirmation transition. 408 

409 
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Table 2. Average recoveries and relative standard deviations for the SPE/LC/MS/MS method 410 

applied to five different water samples spiked with ECH at two levels (n=3).  411 

 412 

 0.1 µg/L
                                    

1.0 µg/L 

Sample 
Recovery 

(%) 

RSD 

(%) 
 

Recovery 

(%) 

RSD 

(%) 

DWTP1 70 12  95 6 

DWTP2 77 9  94 5 

DSW 1 86 7  98 5 

DSW2 80 20  102 2 

DW 103 14  102 5 

 413 

DWTP, drinking water treatment plant; DSW, distribution system water; DW, drinking water. 414 

415 
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FIGURE CAPTIONS 416 

 417 

Figure 1. Aminolysis of epichlorohydrin with DFBA and Fe(III) acting as a catalyst. 418 

 419 

Figure 2. (a) Positive ESI mass spectrum of derivatized ECH-DFBA, cone voltage 25 V (b) 420 

Product ion spectrum for m/z 236 at 20 eV and (c) at 15 eV.  421 

 422 

Figure 3.  Fragmentation pathway proposed for the [M+H]
+ 

ion of ECH–DFBA. 423 

 424 

Figure 4. Background noise in SRM chromatograms for a 2500 L injection of 0.05 µg/L
 

425 

derivatized ECH reference standard. (q1): 236>127; (Q): 236>92. 426 

 427 

Figure 5. LC/MS/MS SRM chromatograms for derivatized ECH and ECH-d5 (a) HPLC-grade 428 

water blank (b) Spiked DWTP1 sample at 0.1 µg/L
 
(c) Reference standard in water at 0.1 µg/L. 429 

Top: ECH-d5 chromatograms. Bottom: ECH chromatograms. 430 

 431 

Figure 6. SRM chromatograms for all the selected transitions of (a) ECH reference standard and (b) 432 

spiked DSW1 sample, both at 1.0 µg/L.   433 

  434 
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Figure 4 445 

Time
5.00 7.50 10.00 12.50 15.00

%

0

100

5.00 7.50 10.00 12.50 15.00
%

0

100

12.55
4158.5

12.59
177.6



 27 

   
(a)  (b)  (c)  

 446 
(Q) - Quantification transition, (q) – confirmation transition. 447 

 448 

Figure 5  449 
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(a) (b) 

 450 
* Q/q Concentration ratios. 451 

(Q) - Quantification transition, (q) – confirmation transition. 452 

 453 

Figure 6 454 
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