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CHARACTERIZING GROUP C∗-ALGEBRAS THROUGH THEIRUNITARY GROUPS: THE ABELIAN CASEJORGE GALINDO AND ANA MARÍA RÓDENASAbstra
t. We study to what extent group C∗-algebras are 
hara
terized bytheir unitary groups. A 
omplete 
hara
terization of whi
h Abelian group
C∗-algebras have isomorphi
 unitary groups is obtained. We 
ompare theseresults with other unitary-related invariants of C∗(Γ), su
h as the K-theoreti

K1(C∗(Γ)) and �nd that C∗-algebras of nonisomorphi
 torsion-free Abeliangroups may have isomorphi
 K1-groups, in sharp 
ontrast with the well-knownfa
t that C∗(Γ) (even Γ) is 
hara
terized by the topologi
al group stru
tureof its unitary group when Γ is torsion-free and Abelian.1. Introdu
tionThe index theorem states that every 
ontinuous f : T → T is homotopi
 tothe fun
tion t 7→ tn for some n ∈ Z (its winding number). As a 
onsequen
e thequotient of the unitary group of C∗(Z) by its 
onne
ted 
omponent is isomorphi
 to

Z. This identi�
ation 
an be extended in a fun
torial fashion to �nitely generatedAbelian groups and their indu
tive limits. Sin
e every torsion-free Abelian groupis an indu
tive limit of �nitely generated groups, the following theorem, that wetake as the departing point of our paper, follows.Theorem 1.1 (see Theorem 8.57 of [10℄). If Γ is a torsion-free Abelian groupthe quotient U/U0 of the unitary group U = U(C∗(Γ)) by its 
onne
ted 
omponent
U0 is isomorphi
 to Γ. Hen
e, two torsion-free Abelian groups Γ1 and Γ2 withtopologi
ally isomorphi
 unitary groups U(C∗(Γ1)) and U(C∗(Γ2)) must already beisomorphi
.Theorem 1.1 suggests the usage of U(C∗(Γ)) as an invariant for C∗(Γ). Todetermine its strength it is ne
essary to know to what extent the topologi
al groupstru
ture of U(C∗(Γ)) determines C∗(Γ). As a �rst step in this dire
tion, we devoteSe
tion 4 to 
hara
terize when two Abelian groups Γ1 and Γ2 have isomorphi
unitary groups. The groups U(C∗(Γ1)) and U(C∗(Γ2)) are shown to be topologi
allyisomorphi
 if and only if |Γ1/t(Γ1)| = |Γ2/t(Γ2)| =: α and ⊕αΓ1/t(Γ1) is group-isomorphi
 to ⊕αΓ2/t(Γ2), where t(Γi) stands for the torsion subgroup of Γi.Another unitary-related invariant of C∗(Γ) of great importan
e is the K1-group,
K1(C

∗(Γ)). Sin
e K1(C
∗(Zm)) = Z2m−1 , two torsion-free �nitely generated Abeliangroups are isomorphi
 whenever their K1-groups are. The way this fa
t is proveddoes not however allow a fun
torial extension to indu
tive limits and, indeed, weDate: February 1, 2008.2000 Mathemati
s Subje
t Classi�
ation. 19L99, 22D15, 22D25, 43A40, 46L05, 46L80.Key words and phrases. group C∗-algebra, unitary group, topologi
al group, K1-group, exte-rior produ
t.Resear
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http://arXiv.org/abs/0704.3687v2


2 JORGE GALINDO AND ANA MARÍA RÓDENAS
onstru
t in Se
tion 3 two nonisomorphi
 torsion-free Abelian groups Γ1 and Γ2with isomorphi
 K1-groups, thereby showing that Theorem 1.1 is not valid for K1-groups instead of unitary groups. We �nd therefore that U(C∗(Γ)) is a stronger in-variant than K1(C
∗(Γ)), for torsion-free Abelian groups. For general (even Abelian)groups this is no longer true, K1(C

∗(Γ)) distinguishes between groups with di�er-ent �nitely generated torsion-free quotients, while U(C∗(Γ)) need not, see Se
tion5. 2. Ba
kgroundThis paper is 
on
erned with group C∗-algebras. The C∗-algebra C∗(Γ) of agroup Γ is de�ned as the enveloping C∗-algebra of the 
onvolution algebra L1(Γ)and, as su
h, en
odes the representation theory of Γ, see [4, Paragraph 13℄.We analyze in this paper to what extent a group Γ, or rather the C∗-algebrastru
ture of C∗(Γ), is determined by the topologi
al group stru
ture of U(C∗(Γ) ).The unitary groups U(C∗(Γ)) are obviously related to another invariant of C∗(Γ)of greater importan
e, the K1-group of K-theory. K-theory for C∗-algebras is basedon two fun
tors, namely, K0 and K1, whi
h asso
iate to every C∗-algebra A, twoAbelian groups K0(A) and K1(A). The group K1(A) is in parti
ular de�ned byidentifying unitary elements of matrix algebras over A. It is allowing matri
es over
A (instead of elements of A) that makes K1-groups Abelian. If Γ is a dis
retegroup, there is a natural embedding of Γ in U(C∗(Γ)), this may be 
omposedwith the 
anoni
al map ω : U(C∗(Γ)) → K1(C

∗(Γ)). K1(C
∗(Γ)) being Abelian,the resulting homomorphism fa
tors through the Abelianization of Γ, yielding ahomomorphism κΓ : Γ/Γ′ → K1(C

∗(Γ)). κΓ was shown to be rationally inje
tive in[7℄, see also [1℄.Now and for the rest of the paper we restri
t our attention to dis
rete Abeliangroups. When Γ is a dis
rete Abelian group, C∗(Γ) is a 
ommutative C∗-algebrawith spe
trum homeomorphi
 to the 
ompa
t group Γ̂, the group of 
hara
ters of
Γ. We may thus identify C∗(Γ) with the algebra of 
ontinuous fun
tions C(Γ̂, C)and the Gelfand transform 
oin
ides with the Fourier transform. The unitary group
U(C∗(Γ)) 
an therefore be identi�ed with the topologi
al group of T -valued fun
-tions C(Γ̂, T ). Hen
e relating U(C∗(Γ)) to Γ amounts in this 
ase to relating Γ to
C(Γ̂, T ).Also, for 
ommutative A (as is the 
ase with C∗(Γ), with Γ Abelian), the de-terminant map ∆: K1(A) → U(A)/U(A)0 is a right inverse of the 
anoni
al map
ω : U(A)/U(A)0 → K1(A) (see [14, Se
tion 8.3℄) and the link between K1(A) and
U(A) is stronger.The 
ommonly used notation K∗(A) = K1(A) ⊕ K0(A) will also be adopted inthis paper.A
knowledgement: We would like to thank Pierre de la Harpe for some sug-gestions and referen
es that helped us to improve the exposition of this paper.3. A torsion-free Abelian group Γ not determined by K1(C

∗(Γ))As stated in the introdu
tion, there is a group isomorphism In: C(T , T )/C(T , T )0 →
Z assigning to every f ∈ C(T , T ) its winding number. In other words, every ele-ment of C(T , T ) is homotopi
 to exa
tly one 
hara
ter of T . This point of view
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an be 
arried over to T n and then, taking proje
tive limits, to every 
ompa
t 
on-ne
ted Abelian group, ultimately leading to Theorem 1.1, after identifying C(Γ̂, T )with U(C∗(Γ)).Despite the strong relation between U(C∗(Γ)) and K1(C
∗(Γ)) we 
onstru
tin this se
tion two nonisomorphi
 torsion-free Abelian groups Γ1 and Γ2 with

K1(U(C∗(Γ1))) isomorphi
 to K1(U(C∗(Γ2))).3.1. The stru
ture of K1(C
∗(Γ)) for torsion-free Abelian Γ. A 
ountabletorsion-free Abelian group Γ 
an always be obtained as the indu
tive limit of torsion-free �nitely generated Abelian groups. Simply enumerate Γ = {γn : n < ω}, de�ne

Γn = 〈γj : 1 ≤ j ≤ n〉 and let φn : Γn → Γn+1 de�ne the in
lusion mapping, then
Γ = lim

−→
(Γn, φn). Ea
h homomorphism φn then indu
es a morphism of C∗-algebras

φ∗
n : C∗(Γn) → C∗(Γn+1), and C∗(Γ) = lim

−→
(C∗(Γn), φ∗

n)The fun
torK1 
ommutes with indu
tive limits, see for instan
e [14℄. IfK1(φn) : K1(C
∗(Γn)) →

K1(C
∗(Γn+1)) denotes the homomorphism indu
ed by the morphism φ∗

n , we have
K1(C

∗(Γ)) = lim
−→

(K1(C
∗(Γn)), K1(φn)).The groups Γn in the above dis
ussion are all isomorphi
 to Zk(n), for suitable

k(n), and it is well-known that K∗(C
∗(Zk)) is isomorphi
 to the exterior produ
t

∧Zk. Sin
e this realization of K1(C
∗(Γ)) through exterior produ
ts will be essentialin determining our examples, we next re
all some basi
 fa
ts about them.The k-th exterior, or wedge, produ
t ∧k(Zn) of a �nitely generated group Znwith free generators e1, . . . , en is isomorphi
 to the free Abelian group generated by{

ei1∧ · · ·∧eik
: {i1, . . . , ik} ⊂ {1, . . . , n}

}. A group homomorphism φ : Zn → Zmindu
es a group homomorphism ∧k(φ) : ∧k(Zn) → ∧k(Zm) in the obvious way
∧k(φ)(ei1∧ · · ·∧eik

) = φ(ei1 )∧ · · ·∧φ(eik
). If Γ = lim

−→
(Γi, hi) is a dire
t limit,

∧k(Γ) 
an be obtained as ∧k(Γ) = lim
−→

(∧k(Γi),∧k(hi)). Other elementary prop-erties of exterior produ
ts are best understood taking into a

ount that ∧Γ isisomorphi
 to the quotient of ⊗
Γ by the two-sided ideal N spanned by tensors ofthe form g ⊗ g. The referen
e [2℄ is a 
lassi
al one 
on
erning exterior produ
ts.The following result is well-known ([3, 6℄), we supply a proof for the reader's
onvenien
e.Lemma 3.1 ([6℄, Paragraph 2.1). Let Γ be a torsion-free dis
rete Abelian group.Then

K1(C
∗(Γ)) ∼= ∧odd Γ :=

∞⊕

j=0

∧2j+1Γ.Proof. Re
all in �rst pla
e that there is a unique ring isomorphism R : ∧Zn →
K∗(C

∗(Zn)) respe
ting the 
anoni
al embeddings of Zn in both K∗(C
∗(Zn)) and

∧Zn. Sin
e K∗(C
∗(Zn)) = K0(C

∗(Zn)) ⊕ K1(C
∗(Zn)) and the ring stru
ture

K∗(C
∗(Zn)) is Z2-graded (whi
h means that x ∈ Ki(C

∗(Zn)), y ∈ Kj(C
∗(Zn))implies that xy ∈ Ki+j(C

∗(Zn)) with i, j ∈ Z2), we have that the isomorphism Rmaps ∧oddZn onto K1(C
∗(Zn)).Now put Γ = lim

−→
(Γn, φn) with Γn

∼= Zjn . The uniqueness of the above mentionedring-isomorphism, together with the fa
t that wedge produ
ts 
ommute with dire
tlimits implies that K1(C
∗(Γ)) is isomorphi
 to ∧oddΓ. �
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e the groups Γn are always isomorphi
 to Zk(n) a 
omparison between Γand K1(C
∗(Γ)) turns into a 
omparison of two indu
tive limits, lim

−→
(Zk(n), φn) and

lim
−→

(Z2k(n)−1

, K1(φn)). When Γ has �nite rank m it may be assumed without lossof generality that k(n) = m for all n. If in addition m ≤ 2, it is easy to see (
f.Lemma 3.5) that K1(φn) = φn. We have thus:Corollary 3.2. If Γ is a torsion-free Abelian group of rank ≤ 2, then K1(C
∗(Γ))is isomorphi
 to Γ.Corollary 3.2 shows that two nonisomorphi
 torsion-free Abelian groups Γi with

K1(C
∗(Γ1)) isomorphi
 to K1(C

∗(Γ2)) must have rank larger than 2. For our
ounterexample we will deal with two groups of rank 4. If Γ is su
h a group,then K1(C
∗(Γ)) is isomorphi
 to ∧1(Γ) ⊕∧3(Γ). Our sele
tion of the examples isdetermined by the following theorem of Fu
hs and Loonstra.Theorem 3.3 (Parti
ular 
ase of Theorem 90.3 of [8℄). There are two nonisomor-phi
 groups Γ1 and Γ2, both of rank 2, su
h that

Γ1 ⊕ Γ1
∼= Γ2 ⊕ Γ2.We then have:Theorem 3.4. Let Γ1, Γ2 be the groups of Theorem 3.3 and de�ne the 4-rankgroups, ∆i = Z ⊕ Z ⊕ Γi. Then K1(C
∗(∆1)) and K1(C

∗(∆2)) are isomorphi
,while ∆1 and ∆2 are not.We shall split the proof of Theorem 3.4 in several Lemmas. We begin by observ-ing how Lemma 3.1 makes the groups K1(C
∗(∆i)) easily realizable.Lemma 3.5. If Γ is a torsion-free Abelian group of rank 2 and ∆ = Z ⊕ Z ⊕ Γ,then

K1(C
∗(∆)) ∼= Z ⊕ Z ⊕ Γ ⊕ Γ ⊕∧2Γ ⊕∧2Γ.Proof. As ∆ has rank 4,(1) ∧odd∆ = ∧1∆ ⊕∧3∆ ∼= ∆ ⊕∧3∆.Put Γ = lim

−→
(Γn, φn), with Γn

∼= Z2. Then, de�ning id⊕ id⊕φn : Z ⊕ Z ⊕ Γn →

Z ⊕ Z ⊕ Γn+1 in the obvious way, we have that ∆ = lim
−→

(Z ⊕ Z ⊕ Γn, id⊕ id⊕φn)and ∧3∆ = lim
−→

(∧3(Z ⊕ Z ⊕ Γn),∧3(id⊕ id⊕φn)).If en
j , j = 1, 2 are the generators of Z ⊕ Z and fn

j , j = 1, 2 are the generatorsof Γn, ∧3(Z ⊕ Z ⊕ Γn) = 〈en
1∧en

2∧fn
1 , en

1∧en
2∧fn

2 , en
1∧fn

1 ∧fn
2 , en

2∧fn
1 ∧fn

2 〉. Theimages of ea
h of these generators under the homomorphism ∧3(id⊕ id⊕φn) are:
∧3(id⊕ id⊕φn)

(
en
1∧en

2∧fn
j

)
= en+1

1 ∧en+1
2 ∧φn(fn

j ), j = 1, 2

∧3(id⊕ id⊕φn)

(
en

j ∧fn
1 ∧fn

2

)
= en+1

j ∧
(
∧2(φn)(fn

1 ∧fn
2 )

)
, j = 1, 2.In the limit, the thread formed by the �rst two generators will yield a 
opy of Γwhile the one formed by ea
h of the other two will yield a 
opy of ∧2Γ. This and(1) give the Lemma. �
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are of ∧2(Γ). This is a rank one group. Abelian groups of rankone are 
ompletely 
lassi�ed by their so-
alled type.The type of an Abelian group A is de�ned in terms of p-heights. Given a prime
p, the largest integer k su
h that pk | a is 
alled the p-height hp(a) of a. Thesequen
e of p-heights χ(a) = (hp1(a), . . . , hpn

(a), . . .), where p1, . . . , pn, . . . is anenumeration of the primes, is then 
alled the 
hara
teristi
 or the height-sequen
e of
a. Two 
hara
teristi
s (k1, . . . , kn, . . .) and (l1 . . . , ln, . . .) are 
onsidered equivalentif kn = ln for all but a �nite number of �nite indi
es. An equivalen
e 
lass of
hara
teristi
s is 
alled a type. If χ(a) belongs to a type t, then we say that a is oftype t. In a torsion-free group of rank one all elements are of the same type (su
hgroups are 
alled homogeneous). For more details about p-heights and types, see[8℄. The only fa
t we need here is that two groups of rank 1 are isomorphi
 if andonly if they have nontrivial elements with the same type, Theorem 85.1 of [8℄.We now study the type of groups Γ∧Γ with Γ of rank 2.Lemma 3.6. Let Γ be a torsion-free group of rank 2 and let x1, x2 ∈ Γ. Theelement x1∧x2 ∈ Γ∧Γ is divisible by the integer m if and only if there is someelement k1x1 + k2x2 ∈ Γ divisible by m with either k1 or k2 
oprime with m.Proof. We 
an without loss of generality assume that the subgroup generated by
x1, x2 is isomorphi
 to Z2 and that Γ is an additive subgroup of the ve
tor spa
espanned over Q by x1, x2. Now x∧y will be divisible by m if and only if thereare elements u1, u2 in Γ su
h that ui = αi1x1 + αi2x2 with det(αij) = 1/m (notethat u1∧u2 = det(αij)x1∧x2). To get that determinant we 
learly need somedenominator m and we 
an assume (by 
onveniently modifying the αij 's) that
α11 = k1/m and α12 = k2/m with either k1 or k2 
oprime with m. The element of
Γ we were seeking is then k1x1 + k2x2. �Lemma 3.7. Let Γ1 and Γ2 be two rank 2, torsion-free Abelian groups. If Γ1⊕Γ1

∼=
Γ2 ⊕ Γ2, then ∧2(Γ1) ∼= ∧2(Γ2).Proof. Let {v1, w1} and {v2, w2} be maximal independent sets in Γ1 and Γ2, re-spe
tively and denote by φ : Γ1 ⊕ Γ1 → Γ2 ⊕ Γ2 the hypothesized isomorphism.By 
onveniently re-de�ning the elements vi and wi it may be assumed that

φ(v1, 0) = (α11v2 + α12w2, β11v2 + β12w2)

φ(w1, 0) = (α21v2 + α22w2, β21v2 + β22w2),with αij , βi,j ∈ Z, i, j ∈ {1, 2}.We will now �nd a �nite set of primes F su
h that v2∧w2 is divisible by pkwhenever v1∧w1 is divisible by pk, for every prime p /∈ F . Sin
e the whole pro
ess
an be repeated for φ−1, this will show that v1∧w1 and v2∧w2 have the same type.Sin
e φ is an isomorphism, the matrix
M =




α11 α21

α12 α22

β11 β21

β12 β22


has rank two. At least one of the following submatri
es must then have rank 2 aswell:

M1 =

(
α11 α21

α12 α22

)
, M2 =

(
β11 β21

β12 β22

) or M3 =

(
α11 α21

β11 β21

)
.



6 JORGE GALINDO AND ANA MARÍA RÓDENASLet p be any prime not dividing det(M1), det(M2) or det(M3) and suppose pkdivides v1∧w1. By Lemma 3.6 there is an element A = k1v1 + k2w1 ∈ Γ1 divisibleby pk with either k1 or k2 
oprime with p. Then
φ(A, 0) = k1φ(v1, 0) + k2φ(w1, 0) =

(2)
(
(k1α11 + k2α21)v2 + (k1α12 + k2α22)w2 , (k1β11 + k2β21)v2 + (k1β12 + k2β22)w2

)
∈ Γ2 × Γ2Suppose for instan
e that M1 has rank 2. The only solution modulo p to thesystem {

α11x + α21y = 0
α12x + α22y = 0is then the trivial one. The integers k1 and k2 
annot therefore be a solution tothe system (they are not both 
oprime with p). It follows that one of the integers

k1α11 + k2α21 or α12k1 + α22k2 is not a multiple of p.If M2 or M3 have rank two we argue exa
tly in the same way. At the end we�nd that at least one of the k1α1i + k2α2i or k1β1i + k2β2i is not a multiple of p .We know by (2) that both (k1α11 + k2α21)v2 + (k1α12 + k2α22)w2 and (k1β11 +
k2β21)v2 + (k1β12 + k2β22)w2 are divisible by pk and we 
on
lude with Lemma 3.6that v2∧w2 is divisible by pk. �Proof of Theorem 3.4 To see that K1(C

∗(∆1)) ∼= K1(C
∗(∆2)), simply puttogether Lemma 3.7 and Lemma 3.5.Sin
e Γ1 and Γ2 are not isomorphi
 and �nitely generated Abelian groups havethe 
an
ellation property, ∆1 and ∆2 
annot be isomorphi
, either.Remark 3.8. The argument of Lemma 3.5 shows that K0(C

∗(∆)) is (again) isomor-phi
 to Z⊕Z⊕Γ⊕Γ⊕∧2(Γ)⊕∧2(Γ) (this time K0(C
∗(∆)) ∼= ∧0∆⊕∧2∆⊕∧4∆with ∧2∆ ∼= Z ⊕ Γ ⊕ Γ ⊕∧2Γ and ∧4∆ ∼= ∧2Γ).The group C∗-algebras C∗(∆1) and C∗(∆2) of Theorem 3.4 have therefore thesame K-theory. 4. Relating U(C∗(Γ)) and ΓThis Se
tion is devoted to eviden
e what is the relation between two C∗-algebras

C∗(Γ1) and C∗(Γ2) with topologi
ally isomorphi
 unitary groups. A result likeTheorem 1.1 
annot be expe
ted for general Abelian groups, as for instan
e all
ountably in�nite torsion groups have isometri
 C∗-algebras. The right question toask is obviously whether group C∗-algebras are determined by their unitary groups.Even if this question also has a negative answer, two group C∗-algebras C∗(Γ1)and C∗(Γ2) are strongly related when U(C∗(Γ1)) and U(C∗(Γ2)) are topologi
allyisomorphi
 as the 
ontents of this Se
tion show. Our main tools here will be oftopologi
al nature and we shall regard U(C∗(Γ)) as C(Γ̂, T ).We begin with a well-known observation. Denote by C0(X, T ) the subgroupof C(X, T ) 
onsisting of all nullhomotopi
 maps, that is, C0(X, T ) is the 
on-ne
ted 
omponent of the identity of C(X, T ). Let also π1(X) denote the quotient
C(X, T )/C0(X, T ), also known as the �rst 
ohomotopy group of X and often de-noted as [X, T ]. It is well known that C0(X, T ) 
oin
ides with the group of fun
-tions that fa
tor through R, that is, C0(X, T ) is the range of the exponential map
exp : C(X, R) → C(X, T ).



CHARACTERIZING GROUP C∗-ALGEBRAS THROUGH THEIR UNITARY GROUPS 7Lemma 4.1 (Se
tion 3 of [13℄, see page 405 of [9℄ for this form). If X is a 
om-pa
t Hausdor� spa
e, the stru
ture of C(X, T ) is des
ribed by the following exa
tsequen
e
0 → C(X, Z) → C(X, R) → C0(X, T ) → C(X, T ) → π1(X).In addition C0(X, T ) is open and splits, i.e., C(X, T ) ∼= C0(X, T ) ⊕ π1(X).Our se
ond observation is that, as far as group C∗-algebras are 
on
erned, alldis
rete Abelian groups have a splitting torsion subgroup.Theorem 4.2 (Corollary 10.38 [10℄). The 
onne
ted 
omponent G0 of a 
ompa
tgroup G, splits topologi
ally, i.e, G is homeomorphi
 to G0 × G/G0.The 
hara
ter group of a 
ountable dis
rete group Γ is a 
ompa
t metrizablegroup Γ̂ and the set of 
hara
ters that vanish on its torsion group, tΓ, 
oin
ides withthe 
onne
ted 
omponent of Γ̂, in symbols tΓ⊥ = Γ̂0. Further, the duality betweendis
rete Abelian and 
ompa
t Abelian groups identi�es t̂Γ with the quotient Γ̂/Γ̂0.It follows therefore from Theorem 4.2 that(3) Γ̂ ∼ t̂Γ × (tΓ)⊥and, hen
e, that C∗(Γ) is isometri
 to C∗(tΓ ⊕ Γ/tΓ).We now turn our attention to groups with splitting 
onne
ted 
omponent.4.1. The stru
ture of unitary groups of 
ertain 
ommutative C∗-algebras.We begin by noting that the additive stru
ture of a 
ommutative C∗-algebra 
on-tains very little information on the algebra. This fa
t will be useful in 
lassifyingunitary groups.Theorem 4.3 (Milutin, see for instan
e Theorem III.D.18 of [15℄). If K1 and

K2 are un
ountable, 
ompa
t metri
 spa
es, then the Bana
h spa
es C(K1, C) and
C(K2, C) are topologi
ally isomorphi
.Lemma 4.4. Let K and D be 
ompa
t topologi
al spa
es, K 
onne
ted and Dtotally dis
onne
ted. The following topologi
al isomorphism then holds:(4) C(K × D, T ) ∼= C(K × D, R) × C(D, T ) ×⊕w(D)π

1(K),where w(D) denotes the topologi
al weight of D 1Proof. We �rst observe that C(K×D, T ) is topologi
ally isomorphi
 to C(D, C(K, T )).From Lemma 4.1 we dedu
e that(5) C(K × D, T ) ∼= C(D, C0(K, T )) × C(D, π1(K)).There is a topologi
al isomorphism from the Bana
h spa
e C(K, R) onto the Bana
hspa
e C•(K, R) of fun
tions sending 0 to 0. It is now easy to 
he
k that the mapping
(f, t) 7→ t · exp(f) identi�es C•(K, R) × T with C0(K, T ) and hen
e

C0(K, T ) ∼= C(K, R) × T .Along with (5) we obtain
C(K×D, T ) ∼= C(D, C(K, R)×T )×C(D, π1(K)) = C(D×K, R)×C(D, T )×C(D, π1(K)).1By the topologi
al weight of a topologi
al spa
e X we mean, as usual, the least 
ardinalnumber of a basis of open sets of X.
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rete group and ea
h element of C(D, π1(K)) determines anopen and 
losed subset of D. An analysis identi
al to that of [5℄ for C(X, Z) thenyields
C(D, π1(K)) ∼= ⊕w(D)π

1(K),and the proof follows. �The following lemma 
an be found as Exer
ise E.8.14 in [10℄.Lemma 4.5. If D is a totally dis
onne
ted 
ompa
t spa
e, C(D, T ) = C0(D, T )and C(D, T ) is 
onne
ted.Theorem 4.6. Let Ki, i = 1, 2, be two 
ompa
t 
onne
ted metrizable spa
es andlet Di, i = 1, 2, be two 
ompa
t totally dis
onne
ted metrizable spa
es. De�ning
X = K1 × D1 and Y = K2 × D2,the following assertions are equivalent.(1) C(X, T ) ∼= C(Y, T ).(2) (a) ⊕

w(D1)
π1(K1) ∼=

⊕
w(D2)

π1(K2), where w(D1) and w(D2) are thetopologi
al weights of D1 and D2, respe
tively, and(b) C(D1, T ) ∼= C(D2, T ).Proof. It is obvious from Theorem 4.3 (observe that Ki×Di is un
ountable as soonas Ki is nontrivial) and Lemma 4.4 that (2) implies (1).We now use the de
omposition of Lemma 4.4 to dedu
e (2) from (1). Assertion(a) follows from fa
toring out 
onne
ted 
omponents in (4) (note that C(Ki ×
Di, R) × C(Di, T ) is 
onne
ted, use Lemma 4.5 for C(Di, T )). The 
onne
ted
omponents C(K1 × D1, R) × C(D1, T ) and C(K2 × D2, R) × C(D2, T ) will betopologi
ally isomorphi
 as well. Let H : C(K1 × D1, R) × C(D1, T ) → C(K2 ×
D2, R) × C(D2, T ) denote this isomorphism.Consider now the homomorphism Ĥ : C(K2 ×D2, R)b ×C(D2, T )b → C(K1 ×
D1, R)b × C(D1, T )b that results from dualizing H .When D is a totally dis
onne
ted 
ompa
t group, the only 
ontinuous 
hara
tersof C(D, T ) are linear 
ombinations with 
oe�
ients in Z of evaluations of elementsof D, i.e., the group C(D, T )b is isomorphi
 to the free Abelian group A(D) on D[13℄ (see [9℄ for more on the duality between C(X, T ) and A(X) based on the exa
tsequen
e in Lemma 4.1)).There is on the other hand a well-known isomorphism between C(K1 ×D1, R)band the additive group of the ve
tor spa
e of all 
ontinuous linear fun
tionals on
C(K1 × D1, R). The group C(K1 × D1, R)b is therefore a divisible.Sin
e free Abelian groups, su
h as A(Di), do not 
ontain any divisible subgroup,
Ĥ(C(K1×D1, R)b must equal C(K2×D1, R)b . We dedu
e thus, taking quotients,that C(D1, T ) and C(D2, T ) are topologi
ally isomorphi
. �4.2. The group 
ase. We now spe
ialize the results in the previous paragraphsfor the 
ase of a 
ompa
t Abelian group.When T is a torsion dis
rete Abelian group, T̂ is a 
ompa
t totally dis
onne
tedgroup and hen
e homeomorphi
 to the Cantor set. The group C∗-algebras of all
ountably in�nite torsion Abelian groups will therefore be isometri
. These fa
tsare summarized in the following lemma.Lemma 4.7. Let T1 and T2 be 
ountable torsion dis
rete Abelian groups. Then thefollowing assertions are equivalent:(1) The group C∗-algebras C∗(T1) and C∗(T2) are isomorphi
 as C∗-algebras.



CHARACTERIZING GROUP C∗-ALGEBRAS THROUGH THEIR UNITARY GROUPS 9(2) The unitary groups of C∗(T1) and C∗(T2) are topologi
ally isomorphi
.(3) The 
ompa
t groups T̂1 and T̂2 are homeomorphi
.(4) The groups T1 and T2 have the same 
ardinal.Hen
e, the main result asserts:Theorem 4.8. Let Γ1 and Γ2 be 
ountable dis
rete Abelian groups. The followingare equivalent:(1) The unitary groups of C∗(Γ1) and C∗(Γ2) are topologi
ally isomorphi
.(2) |tΓ1| = |tΓ2| = α and
⊕

α

Γ1

tΓ1

∼=
⊕

α

Γ2

tΓ2
.Proof. Using the homeomorphi
 identi�
ation in (3), page 7, and Lemma 4.4 wehave:(6)

U(C∗(Γi)) ∼= C(t̂Γi×(tΓi)
⊥, T

)
∼= C(t̂Γi×(tΓi)

⊥, R)×C(t̂Γi, T )×
⊕

w( ctΓi)

π1((tΓi)
⊥),where (tΓi)

⊥ are 
ompa
t 
onne
ted and t̂Γi are 
ompa
t totally dis
onne
tedAbelian groups.Suppose �rst that U(C∗(Γ1)) and U(C∗(Γ2)) are topologi
ally isomorphi
. ByTheorem 4.6, C(t̂Γ1, T ) is topologi
ally isomorphi
 to C(t̂Γ2, T ). It follows fromLemma 4.7 that t̂Γ1 and t̂Γ2 are homeomorphi
. Let α = w(t̂Γ1). By statement(a) of Theorem 4.6, ⊕

α

π1((tΓ1)
⊥) ∼=

⊕

α

π1((tΓ2)
⊥),Now π1(tΓ⊥

i ) is isomorphi
 by Theorem 1.1 to the torsion-free group Γi/t(Γi). Theabove isomorphism thus be
omes(7) ⊕

α

(
Γ1

tΓ1

)
∼=

⊕

α

(
Γ2

tΓ2

)and we are done.Suppose 
onversely that assertion (2) holds. We have then from Lemma 4.7 that
C(t̂Γ1, T ) and C(t̂Γ1, T ) are topologi
ally isomorphi
.On the other hand, the isomorphism ⊕

α
Γ1

tΓ1

∼=
⊕

α
Γ2

tΓ2
implies, by way of The-orem 1.1, that ⊕απ1((tΓ1)

⊥) is isomorphi
 to ⊕απ1((tΓ2)
⊥).It follows then from Theorem 4.6 that C(Γ̂1, T ) and C(Γ̂2, T ), that is U(C∗(Γ1))and U(C∗(Γ2)), are topologi
ally isomorphi
. �5. Con
luding remarksTheorem 1.1 shows how strongly the topologi
al group stru
ture of U(A) mayhappen to determine a C∗-algebra A. Theorem 4.8 then pre
ises the amount ofinformation on A that is en
oded in U(A), for the 
ase of a 
ommutative group

C∗-algebra. This reveals some limitations on the strength of U(A) as an invariantof A that will be made 
on
rete in this Se
tion.



10 JORGE GALINDO AND ANA MARÍA RÓDENASFrom Theorem 1.1 and Lemma 4.7 we have that C∗(Γ) is 
ompletely determinedby its unitary group when Γ is either torsion-free or a torsion group. This is notthe 
ase if Γ is a mixed group.Example 5.1. Two nonisometri
 Abelian group C∗-algebras with topologi
ally iso-morphi
 unitary groups.Proof. Let Γ1 and Γ2 be the groups in Theorem 3.3. De�ne ∆i = Γi ⊕ Z2. Identi-fying as usual C(∆i, T ) with U(C∗(∆i)) and applying Lemma 4.4, we have that
U(C∗(∆i)) ∼= C(∆i, R) × T 2 × (Γi ⊕ Γi).The ele
tion of Γi and Milutin's theorem show that U(C∗(∆1)) is topologi
allyisomorphi
 to U(C∗(∆2)).The algebras C∗(∆1) and C∗(∆2) are not isometri
, sin
e their spe
tra, Γ̂1 ×Z2and Γ̂2 × Z2, are not homeomorphi
 (their 
onne
ted 
omponents are not homeo-morphi
). �This example also shows that simple "dupli
ations" of torsion-free groups arenot determined by the unitary groups of their C∗-algebras:Example 5.2. Two nonisomorphi
 torsion-free Abelian groups Γ1 and Γ2 su
h that

U(C∗(Γ1 ⊕ Z2)) and U(C∗(Γ2 ⊕ Z2)) are topologi
ally isomorphi
.Finally,Example 5.3. Two Abelian groups Γ1 and Γ2 of di�erent torsion-free rank with
U(C∗(Γ1)) topologi
ally isomorphi
 to U(C∗(Γ2)).Proof. Let Γ1 = Z ⊕ (⊕ωZ2) and Γ2 = (Z ⊕ Z) ⊕ (⊕ωZ2). The argument now is asin Example 5.1. �In the above example one 
an obviously repla
e Γ2 by (⊕ωZ) ⊕ (⊕ωZ2) andhave an example of two Abelian groups with U(C∗(Γ1)) topologi
ally isomorphi
to U(C∗(Γ2)) while the torsion-free rank of one of them is �nite and the torsion-freerank of the other is in�nite.5.1. Invariants. The unitary group U(C∗(Γ)) is an invariant of the group C∗(Γ),and as su
h 
an be 
ompared with other well known unitary-related invariants, likefor instan
e K1(C

∗(Γ)). We 
an also mention here related work of Hofmann andMorris on free 
ompa
t Abelian groups [11℄. This is part of a more general proje
tof atta
hing a 
ompa
t topologi
al group FC(X) to every 
ompa
t Hausdor� spa
e
X . The free 
ompa
t Abelian group on X is 
onstru
ted as the 
hara
ter groupof the dis
rete group C(X, T )d. For an Abelian group Γ, this pro
ess produ
esan invariant of C∗(Γ), namely the group U(C∗(Γ))d equipped with the dis
retetopology. The 
hara
ter group of U(C∗(Γ))d is pre
isely the free 
ompa
t Abeliangroup on Γ̂. Being the same obje
t but with no topology, this invariant is weakerthan U(C∗(Γ)). It is easy to see that it is indeed stri
tly weaker, simply take Γ1 = Qand Γ2 = ⊕ωQ. In general there is a 
opy of the free Abelian group generated by
X , densely embedded in FC(X), FC(X) is, a
tually (a realization of) the Bohr
ompa
ti�
ation of the free Abelian topologi
al group on X (see [9℄ for detailedreferen
es on free Abelian topologi
al groups and their duality properties). Sin
etwo topologi
al spa
es with topologi
al isomorphi
 free Abelian topologi
al groupsmust have the same 
overing dimension [12℄, Example 5.2 is somewhat unexpe
ted.
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omparison with K1(U(C∗(Γ))) is ri
her. As we saw in Se
tion 3, the groupalgebras C∗(Γ1) and C∗(Γ2) of two nonisomorphi
 torsion-free Abelian groups Γ1and Γ2 
an have isomorphi
 K1-groups, while their unitary groups must be topo-logi
ally isomorphi
 by Theorem 1.1. The opposite dire
tion does not work either.We �nd next two dis
rete groups whose group C∗-algebras have isomorphi
 unitarygroups while their K1-groups fail to be so. We �rst see that from Theorem 4.2and with a simple appli
ation of the Künneth theorem, the K1-group of a group
C∗-algebra depends ex
lusively on its torsion-free 
omponent.Lemma 5.4. Let Γ be an Abelian dis
rete group. Then

K1(C
∗(Γ)) ∼= K1(C

∗(Γ/tΓ))Proof. From Theorem 4.2, Γ̂ is homeomorphi
 to Γ̂/Γ̂0 × Γ̂0, where Γ̂/Γ̂0
∼= t̂Γ and

Γ̂0
∼= tΓ⊥ ∼= Γ̂/tΓ. Therefore,(8) C∗(Γ) ∼= C∗(tΓ) ⊗ C∗(Γ/tΓ).Applying the Künneth formula to (8), we obtain,
K1(C

∗(Γ)) ∼= K1(C
∗(tΓ) ⊗ C∗(Γ/tΓ))

∼= K0(C
∗(tΓ)) ⊗ K1(C

∗(Γ/tΓ)) ⊕ K1(C
∗(tΓ)) ⊗ K0(C

∗(Γ/tΓ))
∼= Z ⊗ K1(C

∗(Γ/tΓ)) ∼= K1(C
∗(Γ/tΓ)),sin
e K0(C(D)) = Z and K1(C(D)) = 0 for a in�nite totally dis
onne
ted 
ompa
tgroup D. �Example 5.5. Two Abelian groups Γ1 and Γ2 whose group C∗-algebras have topo-logi
ally isomorphi
 unitary groups, whereas their K1-groups are nonisomorphi
.Proof. Take Γ1 and Γ2 from Example 5.3. Applying Lemma 5.4 and Lemma 3.1,we have that

K1(C
∗(Γ1)) ∼= K1(C

∗(Z)) ∼= Z and K1(C
∗(Γ2)) ∼= K1(C

∗(Z ⊕ Z)) ∼= Z ⊕ Z.The topologi
al groups U(C∗(Γ1)) and U(C∗(Γ2)) are topologi
ally isomorphi
 aswas proved in Example 5.3. �As a 
onsequen
e, we see that none of the invariants U(C∗(Γ)) and K1(C
∗(Γ)),of a group algebra C∗(Γ) is stronger than the other. The groups in Theorem3.4 also show that two nonisometri
 (Abelian) C∗-algebras 
an have topologi
allyisomorphi
 unitary groups and isomorphi
 K1-groups. Take Φi = ∆i × Z2 with

∆i de�ned as in Theorem 3.4. The same argument of Example 5.1 shows that
U(C∗(∆i)) ∼= C(Φi, R)×T 2×∆i×∆i and, hen
e, that U(C∗(Φ1)) ∼= U(C∗(Φ2)). Tosee that K1(C

∗(Φ1)) ∼= K1(C
∗(Φ2)) simply note that, by Lemma 5.4, K1(C

∗(Φi)) ∼=
K1(C

∗(∆i)) and that K1(C
∗(∆1)) ∼= K1(C

∗(∆2)) by Theorem 3.4.Referen
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