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Abstract. Let G be a finite group and suppose that the set of conjugacy class sizes of G is
f1;m;mng, where m; n > 1 are coprime. We prove that m ¼ p for some prime p dividing
n� 1. We also show that G has an abelian normal p-complement and that if P is a Sylow
p-subgroup of G, then jP 0j ¼ p and jP=ZðGÞpj ¼ p2. We obtain other properties and deter-
mine completely the structure of G.

1 Introduction

Some results on the structure of finite groups with three conjugacy class sizes are
known. The most important one is due to Itô, who showed in [12] that such groups
are always solvable, appealing to the Feit–Thompson theorem and deep classification
theorems of Suzuki. This result was simplified by Rebmann [15] in the case when G is
an F -group (that is, G contains no pair of non-central elements x and y such that the
centralizer of x contains that of y properly). He determined the structure of F -groups
using results of Baer and Suzuki. Later, Camina proved in [6], using the description
of finite groups with dihedral Sylow 2-subgroups given by Gorenstein and Walter [7],
that if G does not possess the property F and has three class sizes, then G is a direct
product of an abelian subgroup and a subgroup whose order involves no more than
two primes. On the other hand, several structure theorems have been obtained with-
out using solvability. For instance, it was first proved in [13] that if the conjugacy
class sizes of G are f1;m; ng with m; n > 1 coprime, then G=ZðGÞ is a Frobenius
group and the inverse image in G of the kernel and a complement are abelian. Also,
Camina determined in [4] the structure of a group whose class sizes are f1; pa; paqbg
for distinct primes p and q (in this case solvability is immediate).

In this paper we analyze a new case of groups having three class sizes and generalize
the result of Camina. Our main theorem determines the structure of those groups
whose class sizes are f1;m;mng, where m and n are coprime. In the proof we have
not used the solvability result obtained by Itô. We have preferred to avoid it by using
more elementary techniques at the cost of making the proof longer. These alternative
techniques concern local information of the group given the class sizes of p-elements
for distinct sets p of primes. For instance, we will use the main theorem of [2] on con-



jugacy classes of p 0-elements as well as develop new results related to arithmetical
properties on conjugacy classes of p-elements.

Theorem A. Let G be a finite group with no abelian direct factors and suppose that

its conjugacy class sizes are f1;m;mng, where m; n > 1 are coprime. Then G is an

F-group, m ¼ p for some prime p and G contains an abelian normal subgroup

M ¼ H � P0 of index p, where P0 is a Sylow p-subgroup of M, and neither H nor

P0 is central in G. Furthermore, M is the set of all elements of G of index 1 or p, and
if P is a Sylow p-subgroup of G then P=P0 acts fixed-point-freely on H=ZðGÞp 0 and

n ¼ jH=ZðGÞp 0 j. Also jP 0j ¼ p and jP=ZðGÞpj ¼ p2.

We remark that n� 1 must be divisible by p as a consequence of the fixed-point-
free action appearing in the structure of the group. For any prime p the situation de-
scribed in Theorem A does exist. For instance, let

P ¼ hx; y j xp2 ¼ yp ¼ 1; xy ¼ xpþ1i

be a non-abelian p-group of order p3 and exponent p2 and take P0 ¼ hxi. Let n be
any integer such that p divides q� 1 for any prime factor q dividing n (accordingly p

divides n� 1) and let H be a cyclic group of order n. We consider the action of P on
H defined in the following way: x acts trivially on H and y acts as a fixed-point-free
automorphism of order p on each direct factor of prime-power order of H. Then
G ¼ HP is an example of group with class sizes f1; p; png.

If p is any set of primes, we denote by Gp the set of p-elements of a group G. For any
x A G, the conjugacy class will be denoted by xG and its size will be called the index
of x in G. All groups considered are finite and the rest of the notation is standard.

2 Preliminary results

We will need some classical results relating arithmetical conditions on conjugacy
class sizes and group structure.

Lemma 1. Let G be a group. A prime p does not divide any conjugacy class size of G if

and only if G has a central Sylow p-subgroup.

Proof. See for instance [8, Theorem 33.4]. r

Lemma 2. Let G be a group such that pa is the highest power of the prime p which

divides the index of an element of G. Assume that there is a p-element in G whose index

is pa. Then G has normal p-complement.

Proof. This is [4, Theorem 1]. r

Lemma 3. Let G be a group and let x be an element of G whose index is pa where p is a

prime and a is a natural number. Then ½xG; xG�JOpðGÞ.
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Proof. See [5, Lemma 1]. r

This has an immediate consequence.

Corollary 4. Let G a group and let x be an element of G of index pa. Then

x A Op;p 0 ðGÞ.

Proof. By Lemma 3 we have that hxGiOpðGÞ=OpðGÞ is an abelian normal subgroup.
It is also p 0-group, so in particular x A Op;p 0 ðGÞ. r

The following was originally obtained by Itô in [11].

Theorem 5. Suppose that 1 and m > 1 are the only lengths of conjugacy classes of a

group G. Then G ¼ P� A, where P A SylpðGÞ and A is abelian. In particular, m is a

power of p.

Proof. See [8, Theorem 33.6]. r

Therefore, the structure of groups with class sizes f1;mg reduces to p-groups with
class sizes f1; pag. In [11], the following is proved in a more lengthy way; see also [10,
Corollary 2.2].

Corollary 6. Let P be a p-group whose class sizes are f1; pag. Then P=ZðPÞ has expo-
nent p.

Proof. In the proof of Theorem 5 above, in Step 8 it is asserted that every element of
G=ZðGÞ has prime order when the class sizes of G are f1;mg, so in particular P=ZðPÞ
has exponent p. r

We also need some results on conjugacy classes of p 0-elements. The first is exactly
[4, Lemma 1], but we present an easier proof.

Lemma 7. Suppose that G is a group and let p be a prime such that every conjugacy

class size of an element in Gp 0 is a p 0-number. Then G ¼ P�H where P is a Sylow

p-subgroup and H is a p-complement of G.

Proof. Let g A G and let g ¼ gpgp 0 be its fp; p 0g-decomposition. Suppose that gp 0 is
non-central. As the class size of gp 0 is a p 0-number, if we fix a Sylow p-subgroup P

of G, then there exists some t A G such that gp A Pt JCGðgp 0 Þ. Therefore,

G ¼ 6
t AG

PtCGðPtÞ:

Then G ¼ PCGðPÞ and so G ¼ P�H, where H is a p-complement of G. r

Lemma 8. Suppose that G is a group and p a prime. Then all conjugacy class sizes of

elements in Gp 0 are powers of p if and only if G has an abelian p-complement.
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Proof. This is for instance [2, Lemma 2]. r

Theorem 9. Suppose that G is a p-solvable group and that f1;mg are the conjugacy

class sizes of elements in Gp 0 . Then m ¼ paqb, with q a prime distinct from p

and a; bd 0. If b ¼ 0 then G has an abelian p-complement. If b0 0, then

G ¼ PQ� A, with P A SylpðGÞ, Q A SylqðGÞ and AJZðGÞ. Furthermore, if a ¼ 0
then G ¼ P�Q� A.

Proof. This is [2, Theorem A]. r

Remark. The p-solvability hypothesis in the above theorem could be eliminated using
[6, Corollary of Theorem 1], but it is based on results of Gorenstein and Walter, as
we said in the introduction. This corollary will not be necessary in order to prove
Theorem A. The proof of Theorem 9 is divided into two cases: when all centralizers
of non-central p 0-elements are G-conjugate and when they are not. In the second
case, the p-solvability of G is not needed, so it can be replaced by the fact that the
centralizers of non-central p 0-elements are not all G-conjugate. We stress that when
p does not divide the order of G, that is, for ordinary conjugacy classes, the event
that all centralizers of non-central elements are G-conjugate cannot happen. The fol-
lowing example shows that in general the centralizers of non-central p 0-elements can
be G-conjugate. Let us consider an automorphism a of order 3 acting non-trivially on
the quaternion group H of order 8. Then the centralizers of all non-central 2-elements
in the split extension G ¼ Hhai are conjugate in G.

We need to introduce for an arbitrary set of primes p some new properties general-
izing the ones given by Itô in [12] for ordinary conjugacy classes. We will say that G
has the property Fp, or that it is an Fp-group, if every non-central x A Gp satisfies

(i) if CGðxÞJCGðaÞ for some a A Gp, then a A ZðGÞ or CGðxÞ ¼ CGðaÞ, and

(ii) if CGðaÞJCGðxÞ for some a A Gp, then CGðxÞ ¼ CGðaÞ.

This means that the centralizer of each non-central p-element is maximal and mini-
mal among the centralizers of all non-central p-elements.

On the other hand, we will say that G has the property Ap if for all non-central
x A Gp the centralizer factorizes as CGðxÞ ¼ CGðxÞp � CGðxÞp 0 , with CGðxÞp an abe-
lian p-subgroup and CGðxÞp 0 a p 0-subgroup. It is easy to see that every group having
the property Ap is an Fp-group. When p is the set of all primes, an Fp-group is trivi-
ally an F -group and if G has the property Ap we will say that G has the property A.

The following theorem is one of the key results used in the proof of our main the-
orem and it extends Theorems 5 and 9 and Corollary 6.

Theorem 10. Let G be a group and p a set of primes. Suppose that G satisfies the prop-

erty Ap and suppose that jxGjp ¼ m for any non-central x A Gp, where m > 1 is a fixed

number. Suppose further that the centralizers of non-central p-elements are not all con-

jugate. Then m ¼ pa for some prime p A p and P=ZðGÞp has exponent p for any Sylow

p-subgroup P of G.
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Proof. The proof is based on the one which we have cited for Theorem 5. We proceed
in several steps.

Step 1. Let x and y be two non-central p-elements. If CGðxÞ0CGðyÞ, then

ðCGðxÞVCGðyÞÞp ¼ ZðGÞp.

Suppose that there exists a non-central element a A ðCGðxÞVCGðyÞÞp. Since G

satisfies Ap, we have CGðxÞJCGðaÞ and CGðyÞJCGðaÞ. Now, as G has the
property Ap, it also has the property Fp, and since CGðaÞ0G, we conclude
CGðxÞ ¼ CGðaÞ ¼ CGðyÞ, a contradiction.

In the following steps, we set G ¼ G=ZðGÞp and use bars to work in the factor
group.

Step 2. Let x; y0 1 be two p-elements in G such that xy ¼ yx and CGðxÞ0CGðyÞ.
Then oðxÞ ¼ oðyÞ is a prime.

Notice that x and y are p-elements. Moreover, since x and y commute, then
xy ¼ xy is a p-element and consequently, so is xy. Suppose first that oðxÞ < oðyÞ;
then ðxyÞoðxÞ ¼ yoðxÞ 0 1. Furthermore,

10 ðxyÞoðxÞ ¼ xyoðxÞ A CGðxyÞVCGðyÞ:

By applying Step 1, we deduce that CGðyÞ ¼ CGðxyÞ, so in particular x A CGðyÞ. As
G satisfies Ap then CGðxÞJCGðyÞ, and since y is not central and G is an Fp-group
we have equality, contradicting the hypothesis of this step. Therefore, oðxÞ ¼ oðyÞ.

On the other hand, if s is a prime divisor of oðxÞ and xs 0 1, then we have
CGðxÞJCGðxsÞ < G, whence we obtain CGðxÞ ¼ CGðxsÞ. Moreover, xsy ¼ yxs. By
the above paragraph it follows that oðxsÞ ¼ oðyÞ ¼ oðxÞ, a contradiction.

Step 3. Let g be a non-central element in Gp and consider the conjugacy class of g in G,
gG: Then there exists some non-central x A Gp such that gG VCGðxÞ ¼ q.

Suppose that this is false. Then for every non-central x A Gp we have that CGðxÞ
must contain some conjugate of g, say gn for some n A G. Thus, gn ¼ gn A CGðxÞ,
and consequently gn A CGðxÞp. As G satisfies Ap we deduce that CGðxÞJCGðgnÞ,
and hence equality holds because G is an Fp-group. It follows that the centralizers
of any two non-central p-elements of G are conjugate in G, contradicting the hypoth-
eses of the theorem.

Step 4. The order of every non-trivial p-element in G is a prime.

Suppose that oðgÞ is composite for some p-element g. Notice that g is a p-element

too. By Step 3, there exists a non-central element x A Gp such that gG VCGðxÞ ¼ q.
Write Cp :¼ CGðxÞp and observe that Cp operates on gG by conjugation. Further-
more, by Step 2 no element in Cp distinct from 1 centralizes any element in gG, and
hence all orbits of Cp on gG have the same size, jCpj, which implies that jCpj divides
jgGj.
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On the other hand, again by applying Step 2, we deduce that CGðgÞp operates with-

out fixed points on gG � gG VCGðgÞ. As a result, jCGðgÞpj divides jgGj � jgG VCGðgÞj.
As jCGðgÞpj = jCpj, we conclude that jCGðgÞpj also divides jgG VCGðgÞj, which is a
contradiction because

0 < jgG VCGðgÞj < jCGðgÞpj:

Step 5. Conclusion.

As the subgroups CGðxÞp for non-central x A Gp are abelian and have the same
order, each jCGðxÞpj is a power of some prime p A p by Step 4. Hence G is a
ðp 0 U fpgÞ-group and thus m ¼ pa.

Moreover, by Step 4, if P A SylpðGÞ then every element of P has prime order, and
thus PGP=ZðGÞp has exponent p. r

Finally, we will make use of two classical results on automorphism groups. The
first is Thompson’s A� B-lemma and the second is due to Isaacs and Passman.

Theorem 11. Let AB be a finite group represented as a group of automorphisms

of a p-group G with ½A;B� ¼ 1 ¼ ½A;CGðBÞ�, B a p-group and A ¼ OpðAÞ. Then

½A;G� ¼ 1.

Proof. See for instance [1, (24.2)]. r

We recall that a permutation representation is half-transitive if all orbits have the
same size.

Theorem 12. Let A be a group of automorphisms of G which acts half-transitively as a

permutation group on G � f1g. If jAj > 1, then either A acts fixed-point-freely on G or

G is elementary abelian q-group for some prime q and A acts irreducibly.

Proof. See [9, Theorem 1]. r

3 Proof of Theorem A

Proof of Theorem A. We denote by p the set of primes dividing m. We can assume
without loss that p 0 is the set of primes dividing n, since any prime that divides nei-
ther n nor m provides by Lemma 1 a Sylow subgroup which is a central direct factor
of G and we are assuming that such factors do not exist. The proof splits into two
cases, depending on whether there are p-elements of index m in G or not. The first
case provides the structure described in the theorem and the second will lead to a con-
tradiction.

Case 1. We assume that there exist p-elements of index m. Suppose that x is such an
element and observe that the maximality of CGðxÞ and the primary decomposition of
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x allow us to assume that x is a p-element for some p A p. Now, if y is a p 0-element
of CGðxÞ, then CGðxyÞ ¼ CGðxÞVCGðyÞJCGðxÞ, and thus the hypotheses on class
sizes imply that y may have index 1 or n in CGðxÞ. Since n is a p 0-number, by Lemma
7 we can write CGðxÞ ¼ CGðxÞp � CGðxÞp 0 . We will distinguish the cases when CGðxÞp 0

is abelian and when it is not. We will see first that the second case is not possible.

Case 1.1. Assume that CGðxÞp 0 is not abelian, which means that the class sizes of
p 0-elements in CGðxÞ are exactly f1; ng. As CGðxÞ is a p-solvable group, we may
apply Theorem 9 to obtain that n ¼ parb for some prime r A p 0. But since p does
not divide n, we get n ¼ rb and

CGðxÞ ¼ Px � Rx � Ax;

where Px and Rx are Sylow p and r-subgroups of CGðxÞ and Ax is abelian. Note that
in fact Rx is a Sylow r-subgroup of G. We distinguish two cases and prove that both
lead to a contradiction.

Case 1.1.a. Suppose that there are no r-elements of index m. Since a Sylow r-subgroup
of G cannot be central in G, there must exist r-elements of index mn. Consider an ele-
ment w A G of index mn and its decomposition w ¼ wrwr 0 . If wr is central in G, then
CGðwÞ ¼ CGðwr 0 Þ and it follows that every r-element of CGðwÞ must be central in
CGðwÞ by its minimality. Therefore, we can write CGðwÞ ¼ Rw � Tw, with Rw an
abelian Sylow r-subgroup of CGðwÞ. Moreover, Rw cannot be central in G, other-
wise Rw ¼ ZðGÞr, so jG : ZðGÞjr ¼ n and this certainly contradicts the existence of
r-elements of index mn. Consequently, we can take some non-central b A Rw, so
CGðwÞJCGðbÞ and as no r-element has index m, we get CGðwÞ ¼ CGðbÞ. If wr is
not central in G, then clearly CGðwrÞ ¼ CGðwÞ. Therefore, in any case we have
CGðwÞ ¼ CGðbÞ for some b in some Sylow r-subgroup Rw of CGðwÞ. Notice also
that Rw JRg

x for some g A G. Then b A Rg
x and as CGðxgÞ ¼ Pg

x � Ag
x � Rg

x , we de-
duce that Pg

x � Ag
x JCGðbÞ, and this is a Hall r 0-subgroup of CGðbÞ. On the

other hand, any r 0-element of CGðbÞ is central in CGðbÞ by its minimality, so
CGðwÞ ¼ CGðbÞ ¼ Rw � Pg

x � Ag
x . So we have shown that wr A Rg

x and that
wr 0 A Pg

x � Ag
x JCGðRg

xÞ. Then for any w A G of index mn we conclude that
w A Rg

xCGðRg
xÞ for some g A G.

Finally, if w A G has index m, then CGðwÞ contains some conjugate of Rx, say Rg
x

for some g A G, so w A CGðRg
xÞ. We conclude that

G ¼ 6
g AG

Rg
xCGðRg

xÞ;

and as a result, G ¼ RxCGðRxÞ, that is, Rx is a direct factor of G. But this cannot
happen since the class sizes of G do not allow this situation.

Case 1.1.b. There are r-elements of index m. Let us fix some r-element y of index
m, which up to conjugacy can be assumed to centralize Rx, so y A ZðRxÞ and thus
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CGðxÞJCGðyÞ. As these subgroups have the same order then CGðxÞ ¼ CGðyÞ,
whence every r 0-element of CGðxÞ must have index 1 or rb in CGðxÞ. Lemma 8 asserts
that the r-complement of CGðxÞ, that is, Px � Ax, is abelian. Now we observe that
there must exist r 0-elements of index mn since if every r 0-element of G has index 1 or
m, then Lemma 7 implies that the Sylow r-subgroup of G is a direct factor of G,
which is a contradiction. Therefore, we may take an r 0-element w of index mn and
assert that every r-element in CGðwÞ is central by the minimality of CGðwÞ, so we
write CGðwÞ ¼ Rw � Tw with Rw an abelian Sylow r-subgroup of CGðwÞ. We distin-
guish two cases: Rw central or non-central in G. We prove that both provide a con-
tradiction.

Suppose first that Rw UZðGÞ and take some non-central b A Rw. It is clear
that CGðwÞJCGðbÞ. Assume that b has index m. Then CGðbÞ must contain some
Sylow r-subgroup of G, say Rg

x for some g A G. So in particular b A ZðRg
xÞ and

thus

CGðxgÞ ¼ ðPx � Ax � RxÞg JCGðbÞ:

Since they have the same order these subgroups are equal. Hence ðPx � AxÞg is
the only Hall r 0-subgroup of CGðbÞ, so it coincides with Tw. As w A ðPx � AxÞg then
Rg

x JCGðwÞ, which is a contradiction. Thus, any non-central element b of Rw has
index mn and accordingly, CGðwÞ ¼ CGðbÞ. From this we easily obtain that Tw is
abelian and therefore CGðwÞ is abelian. But Rw JRg

x for some g A G, and since
y A ZðRxÞ, we get yg A CGðbÞ ¼ CGðwÞ. This cannot happen as we have proved that
there are no r-elements of index m in CGðwÞ.

Suppose finally that Rw JZðGÞ. This implies that jGjr=jZðGÞjr ¼ rb and hence
there are no r-elements of index mn in G, so all r-elements have index 1 or m. Now
if we take b A Rx of index m then b A ZðRg

xÞ for some g A G. Hence

CGðxgÞ ¼ Pg
x � Ag

x � Rg
x JCGðbÞ

and these subgroups coincide because they have the same order. On the other hand,
since b A Rx then Px � Ax � Rg

x JCGðbÞ, so Rg
x JCGðPxÞJCGðxÞ and Rx ¼ Rg

x .
Consequently, b A ZðRxÞ and Rx is abelian. But this shows that CGðxÞ is abelian,
which contradicts the assumption of this case.

Case 1.2. Assume that CGðxÞp 0 is abelian. In this case, we can write

CGðxÞ ¼ Px � Sx �Hx

where Px is a p-subgroup, Sx is an abelian ðp� fpgÞ-subgroup and Hx is an abe-
lian Hall p 0-subgroup of G. We will prove that Px, and hence CGðxÞ, is abelian.
Observe that Hall p 0-subgroups exist and they are all conjugate in G by a
well-known theorem of Wielandt. Also, notice that Hx cannot be central in G.
So, if we take some non-central b A Hx, then we have CGðxÞJCGðbÞ and by
maximality we get CGðxÞ ¼ CGðbÞ. Now for any p-element w A Px we have
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CGðwbÞ ¼ CGðwÞVCGðbÞJCGðbÞ. Then the index of w in CGðbÞ may be 1 or n and
necessarily must be 1 because Hx JCGðwÞ. So Px is central in CGðxÞ, and hence
CGðxÞ is abelian, as wanted.

We claim that the centralizers of all elements of index m are abelian. If w A G has
index m, then there exists a Hall p 0-subgroup, say Hg

x for some g A G, such that
Hg

x JCGðwÞ, and if we choose some non-central b A Hg
x , then

CGðxgÞ ¼ Pg
x � Sg

x �Hg
x JCGðbgÞ:

By maximality, CGðxgÞ ¼ CGðbgÞ, and then w A CGðxgÞ. As this is abelian, we have
CGðxgÞJCGðwÞ. Since these subgroups have the same order they are equal, and in
particular CGðwÞ is abelian as claimed.

We prove now that G is an F -group. Suppose first that w A G has index m. Clearly
CGðwÞ is maximal among the centralizers. On the other hand, if CGðgÞJCGðwÞ then
equality also holds since CGðwÞ is abelian. Suppose then that w has index mn. It is
obvious that CGðwÞ is minimal among the centralizers and if CGðwÞJCGðgÞ for
some g A G, then necessarily CGðwÞ ¼ CGðgÞ. Otherwise g would have index m

and by the above paragraph CGðgÞ would be abelian, which would imply that
CGðgÞJCGðwÞ, a contradiction.

We show now that m is a power of p. We assume that m is not a prime power and
we will prove first that the centralizers of elements of index mn are abelian. First of
all, notice that if g has index mn and write g ¼ gpgp 0 ; then CGðgÞJCGðgp 0 Þ. How-
ever, gp 0 has index 1 or m because the Hall p 0-subgroups are abelian, so since G is an
F -group gp 0 is central and g can be assumed to be a p-element. Furthermore, by using
the primary decomposition, we can also assume g to be an s-element for some prime
s A p and by the minimality of the centralizer we can write CGðgÞ ¼ CGðgÞs � CGðgÞs 0
with CGðgÞs 0 abelian. As m is not a prime power, let us take another prime l A p dis-
tinct from s. Observe that l must divide jCGðgÞj because a Sylow l-subgroup cannot
be central in G, and if t is a non-central l-element, then l divides jCGðtÞjl ¼ jCGðgÞjl .
Also, for such t we have CGðgÞJCGðtÞ. If t has index m we know then that CGðtÞ
is abelian and CGðgÞ is abelian too, as we wanted to prove. If t has index mn then
CGðgÞ ¼ CGðtÞ and by arguing with t as with g, it follows that CGðgÞ is also abelian.
In particular, we have shown that G has the property A. Moreover, the centralizers
of non-central p-elements are clearly not all conjugate because of the existence of
p-elements of index m and index mn. So we can apply Theorem 10 to get that m is a
prime power, which is a contradiction.

Therefore, for the rest of this case we have m ¼ pa. As we have assumed the exis-
tence of p-elements of index pa throughout Case 1, we may apply Lemma 2 to obtain
that G has an (abelian) normal p-complement H. We are ready to show that G has
the structure described in the statement of the theorem.

Let M be the set of elements in G whose index is 1 or pa. Note that such elements
are exactly those elements whose centralizer contains H, so M ¼ CGðHÞ, whence
M is a normal subgroup of G. Also if we take some non-central h A H, then
CGðHÞJCGðhÞ, and as CGðhÞ and H are abelian we deduce that CGðhÞ ¼ CGðHÞ.
As a consequence, M is abelian and we can write M ¼ H � P0, with P0 a p-subgroup
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(the set of p-elements in G of index pa or 1), which is trivially normal in G. Also, P0

is non-central in G by the assumption of Case 1.
Let P be a Sylow p-subgroup of G and consider the coprime action of P=P0 on

H defined by hg ¼ hg for all h A H and all g A P. As H is abelian, we can write
H ¼ ½H;P=P0� � CHðP=P0Þ. Moreover, if h A CHðP=P0Þ then hg ¼ h for all g A P,
so h A ZðGÞ and this shows that CHðP=P0Þ ¼ ZðGÞp 0 . We assert that P=P0

acts fixed-point-freely on ½H;P=P0�. To see this it is enough to notice that any
h A ½H;P=P0� � f1g is non-central and we know that CGðhÞ ¼ M ¼ H � P0 by the
above paragraph, so h cannot be centralized by any element of P� P0. Then, by [8,
Theorem 16.12], P=P0 must be cyclic or generalized quaternion. On the other hand,
we prove that the class sizes of P are f1; pag. As G ¼ HP with H normal in G, it is
easy to see that CGðgÞ ¼ CHðgÞCPðgÞ for each g A P. This implies that

jG : CGðgÞj ¼ jH : CHðgÞj jP : CPðgÞj;

and this index may be 1, pa or pan. This forces jP : CPðgÞj to be 1 or pa, as claimed.
Then we can apply Corollary 6 and P=ZðPÞ has exponent p. But note that the class
sizes of G imply that ZðPÞ ¼ ZðGÞp JP0 and then, by the results obtained above,
the only possibility for P=P0 is to be cyclic of order p, and thus a ¼ 1 and M has
index p in G. Finally, observe that if g A P� P0 then

pan ¼ jG : CGðgÞj ¼ jH : CHðgÞj jP : CPðgÞj;

so n ¼ jH : CHðgÞj ¼ jH=ZðGÞp 0 j.
Finally the structure stated in the theorem will be completely established when we

prove that jP 0j ¼ p and jP=ZðGÞpj ¼ p2. The first claim follows easily from the fact
that the class sizes of P are f1; pg (see [14], for instance). On the other hand, P0 is an
abelian normal subgroup of P of index p, so we have P ¼ P0hyi ¼ P0CGðyÞ for any
y A P� P0. It follows that CP0

ðyÞ ¼ ZðPÞ and then

jP : ZðPÞj ¼ jP : P0j jP0 : ZðPÞj ¼ pjP : CPðyÞj ¼ p2:

We have shown above that ZðGÞp ¼ ZðPÞ, and thus G has all properties stated in the
theorem.

Case 2. Suppose that every p-element of G has class size 1 or mn. We will prove that
this case is impossible.

For the rest of the proof, let us fix a q-element x of index m for some prime q A p 0.
By the existence of p-elements of index mn, we have jCGðxÞjp > jZðGÞjp, so we can
choose then a p-element g A CGðxÞ of index mn. The minimality of CGðgÞ yields that
CGðgÞ ¼ CGðgÞp � CGðgÞp 0 , where CGðgÞp 0 is abelian. Hence x A CGðgÞp 0 and thus
CGðgÞJCGðxÞ. We will distinguish two subcases depending on whether n is a prime
power or not.

Case 2.1. Suppose that n ¼ qb and thus p 0 ¼ fqg. We are going to prove first
that CGðzÞ is abelian for any non-central z A Gp. For such z, the minimality of
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CGðzÞ implies that any q-element of CGðzÞ is central in CGðzÞ, that is, we have
CGðzÞ ¼ CGðzÞp � CGðzÞq with CGðzÞq abelian. Since jCGðzÞjq ¼ jCGðxÞjq > jZðGÞjq
we can choose some non-central w A CGðzÞq and get that either CGðzÞ is equal to or
is strictly contained in CGðwÞ. In the first case, CGðzÞ ¼ CGðwÞ must be abelian.
In the second case, w is a q-element of index m and every q 0-element of CGðwÞ has
index 1 or qb in CGðwÞ, so that by Lemma 2, the q-complement of CGðwÞ is abelian,
and consequently CGðzÞ is abelian too. In particular, G has property Ap and so has
property Fp. We consider the following subcases in order to apply Theorem 10 in the
second one.

Case 2.1.a. Suppose that the centralizers of non-central elements in Gp are all conju-
gate. We will prove that every element w A G lies in a conjugate of CGðVÞ where
V ¼ CGðgÞp. This will imply that V JZðGÞ, which is a contradiction because g is
not central in G.

If w has index m, then as jCGðwÞj > jZðGÞjp, there is some non-central p-element
z A CGðwÞ, so CGðzÞJCGðwÞ. By hypothesis, CGðzÞ ¼ CGðghÞ, with h A G, whence
w A CGðVÞh. Now, if w has index mqb, again as jCGðwÞjp > jZðGÞjp, there exists
some non-central p-element t A CGðwÞ. Since CGðtÞ is abelian we have CGðtÞJCGðwÞ
and by orders, CGðwÞ ¼ CGðtÞ. However, we are assuming that CGðtÞ ¼ CGðgÞh for
some h A G, so w belongs to CGðVÞh, as wanted.

Case 2.1.b. Suppose that the centralizers of non-central elements in Gp are not all
conjugate. Since jzGjp ¼ m for all z A Gp � ZðGÞ, we can apply Theorem 10 and ob-
tain that m ¼ pa for some prime p and that P=ZðGÞp has exponent p for a Sylow
p-subgroup P of G. In particular, G is a fp; qg-group.

Now we show that OpðGÞ is central in G. Assume first that w is a q-element of
index m ¼ pa. By the assumption of Case 2, there exists a p-element t such that
CGðtÞJCGðwÞ. By applying Theorem 11, we obtain that w A CGðOpðGÞÞ. Assume
now that w is a q-element of index paqb. Notice that CGðwÞ must be equal to the cen-
tralizer of some p-element. By Theorem 11 again, we have w A CGðOpðGÞÞ. So any
z A OpðGÞ is centralized by any q-element of G and since the index of z is 1 or paqb,
we conclude that z must be central in G. Therefore OpðGÞ ¼ ZðGÞp, and thus
Op;qðGÞ ¼ ZðGÞp �OqðGÞ.

We prove now that G has a normal abelian Sylow q-subgroup. Suppose that G

has a q-element w of index paqb. Then G will have a p-element t such that
CGðtÞ ¼ CGðwÞ and this centralizer is abelian. Moreover, by Theorem 11, we have
OqðGÞJCGðtÞ ¼ CGðwÞ, so OqðGÞ is also abelian. Hence

w A CGðOqðGÞÞ ¼ CGðOp;qðGÞÞJOp;qðGÞ

and so w A OqðGÞ. On the other hand, if w is a q-element of index pa, by Corollary
6 we have w A Op;qðGÞ, so w A OqðGÞ too. We conclude that Q :¼ OqðGÞ is a Sylow
q-subgroup of G. Furthermore, if there is a q-element of index paqb we have proved
that Q is abelian, and if every q-element has index 1 or pa, by Lemma 2 we get that Q
is abelian too.
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Let M be the set of elements in G whose index is 1 or pa. It follows that
M ¼ CGðQÞ, whence M is a normal subgroup of G. Moreover, by the assumption
of Case 2, if z is a p-element of M then z A ZðGÞ, so M ¼ Q� ZðGÞp. Let P be
a Sylow p-subgroup of G. Observe that ZðGÞp ¼ ZðPÞ. Write P0 :¼ ZðPÞ and
P :¼ P=P0 (which we know has exponent p).

The group P acts coprimely on the abelian group Q, so we can write
Q¼ ½Q;P� �CQðPÞ. Also, observe that CQðPÞ ¼ CQðPÞ ¼ ZðGÞq and ½Q;P� ¼ ½Q;P�.
We claim that the action of P on ½Q;P� � f1g is half-transitive, that is, all the orbits
have the same size. Indeed, if x A ½Q;P� � f1g then its class size is pa and the size of
its orbit is

jP : CPðxÞj ¼ jP : CPðxÞj ¼ jG : CGðxÞj ¼ pa

where the first equality holds since P0 ¼ ZðGÞp and the second follows from the
fact that G ¼ PCGðxÞ. By applying Theorem 12, either P acts fixed-point-freely
on ½Q;P� or P acts irreducibly. We will see that this second possibility also yields
to a fix-point-free action. Suppose that P acts irreducibly on ½Q;P� and take
z A ZðPÞ. Then C½Q;P�ðzÞ is certainly a P-invariant subgroup, so either C½Q;P�ðzÞ ¼ 1
or C½Q;P�ðzÞ ¼ ½Q;P�. In the latter case, as Q ¼ ZðGÞq � ½Q;P�, it follows that z lies
in CPðQÞ ¼ P0, so z ¼ 1. Therefore, we conclude that ZðPÞ acts fixed-point-freely
on ½Q;P�. On the other hand, as G ¼ QP with Q normal in G, it is easy to see that
CGðgÞ ¼ CQðgÞCPðgÞ for each g A P. In particular, if z A ZðPÞ � f1g, then

paqb ¼ jG : CGðzÞj ¼ jQ : CQðzÞj jP : CPðzÞj:

So jQ : CQðzÞj ¼ qb. But notice that

CQðzÞ ¼ CQðzÞ ¼ ZðGÞq � C½Q;P�ðzÞ ¼ ZðGÞq;

so jQ : ZðGÞqj ¼ qb. This implies that P acts fixed-point-freely. If t A P� f1g then

paqb ¼ jG : CGðtÞj ¼ jQ : CQðtÞj jP : CPðtÞj:

Thus jQ : CQðtÞj ¼ qb and consequently we have CQðtÞ ¼ ZðGÞq. This proves that
C½Q;P�ðtÞ ¼ 1, as we wanted to show. Now we can apply [8, Theorem 16.12] again.
So P must be cyclic or generalized quaternion; but as P has exponent p it is cyclic
of order p. This forces P to be abelian, which leads to a contradiction.

Case 2.2. We assume that n is not a prime power and distinguish two cases depending
on whether there are q 0-elements of index m or not.

Case 2.2.a. Suppose that every q 0-element of G has index 1 or mn. Fix a
prime r A p 0 � fqg. For every r-element w of index mn we can certainly write
CGðwÞ ¼ CGðwÞp � CGðwÞp 0 with CGðwÞp an abelian p-subgroup. Since

jCGðwÞjp ¼ jCGðgÞjp > jZðGÞjp;
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there exists a non-central p-element t A CGðwÞ. As t has index mn too, we have
CGðwÞ ¼ CGðtÞ and hence this subgroup is abelian. In general, if z is a non-central
q 0-element of G then r divides jCGðzÞj, and so CGðzÞ must coincide with the central-
izer of some non-central r-element. However, we have seen that such centralizers are
abelian, so all the centralizers of non-central q 0-elements of G are abelian. Now, if all
centralizers of non-central elements in Gq 0 are conjugate, using the argument of Case
2.1.a, we arrive at a contradiction. If the centralizers of the non-central elements in
Gq 0 are not all conjugate, by the remark made after Theorem 9, we can apply Theo-
rem 9 although G is not q-solvable, to get mn ¼ paqb, for some prime p. This contra-
dicts the hypothesis of Case 2.2.

Case 2.2.b. Suppose now that G has q 0-elements of index m. We will prove that every
element of G lies in a conjugate of CGðVÞ where V ¼ CGðgÞp, which is the Hall
p-subgroup of CGðgÞ and a Hall p-subgroup of CGðxÞ, and where g and x are the
elements fixed at the beginning of Case 2. Then V JZðGÞ and this is a contradiction
because g is not central in G. We study separately the elements of index m and the
elements of index mn in order to see this.

Let w be an element of index m. By considering the primary decomposition of w
and by the assumption of Case 2, we can replace w so that its order is a power of
some prime in p 0.

Suppose first that w is an r-element where r0 q, and let Q be a Sylow q-subgroup
of G such that QJCGðxÞ. There exists h A G such that xh A Qh JCGðwÞ, so
CGðwxhÞ ¼ CGðwÞVCGðxhÞJCGðwÞ. We have two possibilities according to
whether these centralizers are equal or not. Suppose first that CGðwxhÞ ¼ CGðwÞ,
which implies that CGðwxhÞ ¼ CGðwÞ ¼ CGðxhÞ. We deduce in this situation that
every element of CGðwÞ has index 1 or n in CGðwÞ, so by Theorem 5 we get that n is
a prime power, which is a contradiction. Since the centralizer of the q 0-element w co-
incides with the centralizer of the q-element xh, it easily follows that any q-element
and any q 0-element of CGðwÞ must have index 1 or n in CGðwÞ. Now take an arbitrary
element z of CGðwÞ and consider its decomposition z ¼ zqzq 0 . If zq or zq 0 has index mn

in G, then CGðzÞ is equal to CGðzqÞ or CGðzq 0 Þ and thus z has again index 1 or n in
CGðwÞ. So we can assume that zq and zq 0 have index m and that z has index mn in G.
Also it can be assumed without loss that z is a p 0-element, by the assumption of Case
2. The existence of p-elements of index mn implies that jCGðzÞjp > jZðGÞjp. There-
fore, there is a non-central p-element k A CGðzÞ; but since k has index mn in G, we
have CGðzÞ ¼ CGðkÞ and this subgroup is abelian. Thus CGðzÞJCGðwÞ and z also
has index n in CGðwÞ, so this case is finished. We assume now the second possibility,
that is, CGðwxhÞHCGðwÞ. Again the existence of p-elements of index mn implies that
jCGðwxhÞjp > jZðGÞjp, and arguing similarly we get that CGðxhwÞ coincides with the
centralizer of some p-element. In particular, this centralizer is abelian, whence
CGðxhwÞp is an abelian Hall p-subgroup of CGðxhÞ which, by Wielandt’s theorem, is
conjugate to V h. We conclude that w belongs to some conjugate of CGðVÞ, as
wanted, and also that V is abelian.

Suppose now that w is a q-element. We are assuming that there are r-elements of
index m for some r A p� fqg, so we can take without loss such an element v A CGðwÞ.
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Let Q be a Sylow q-subgroup of G such that QJCGðxÞ. Then there exists h A G such
that Qh JCGðvÞ. Since xh and w are q-elements of CGðvÞ, we can replace w by a con-
jugate in CGðvÞ and assume that w A Qh and thus w A CGðvxhÞ. Arguing as in the
above paragraph for the r-element v, we have that CGðvxhÞ is strictly contained in
CGðvÞ. It follows that CGðvxhÞ is an abelian subgroup strictly contained in CGðxhÞ.
Hence the Hall p-subgroup of CGðvxhÞ is conjugate to V h and also this subgroup is
abelian. As w A CGðvxhÞ we conclude that w centralizes the Hall p-subgroup of
CGðvxhÞ, and consequently w centralizes some conjugate of V , as wanted.

Finally, assume that w has index mn and write w ¼ wpwp 0 . We observe that
jCGðwÞjp 0 ¼ jCGðgÞjp 0 > jZðGÞjp 0 because x is a p 0-element in CGðgÞ. If wp is non-
central, it follows that CGðwÞ ¼ CGðwpÞ ¼ CGðwpÞp � CGðwpÞp 0 , and CGðwpÞp 0 is abe-
lian. Then there exists k A CGðwÞp 0 , which may be assumed of order r with r A p 0,
such that CGðwÞJCGðkÞ. If wp is central, then CGðwÞ ¼ CGðwp 0 Þ and by the primary
composition of wp 0 we can choose again an r-element k A CGðwÞ, with r A p 0, such
that CGðwÞJCGðkÞ. In both cases we study two possibilities for the index of k in
G. If k has index m, the above paragraphs show that k centralizes V h for some
h A G, and V h is an abelian Hall p-subgroup of CGðkÞ. Hence CGðwÞp ¼ V t for
some t A G, and w belongs to CGðVÞ t. On the other hand, if k has index mn, then
CGðkÞ ¼ CGðwÞ. As jCGðkÞjp > jZðGÞjp by the existence of p-elements of index mn,
then CGðkÞ coincides with the centralizer of a p-element and therefore it is abelian.
As CGðxÞ contains a Sylow r-subgroup we can take an element h A G such that
kJCGðxhÞ. It follows that CGðkÞJCGðxhÞ. Therefore the Hall p-subgroups of
CGðkÞ are abelian Hall p-subgroups of CGðxhÞ and so are conjugate to V h. We con-
clude that w also lies in a conjugate of CGðVÞ, as wanted. r
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1A2006-06.

References

[1] M. Aschbacher. Finite group theory (Cambridge University Press, 1986).
[2] A. Beltrán and M. J. Felipe. Finite groups with two p-regular conjugacy class lengths.

Bull. Austral. Math. Soc. 67 (2003), 163–169.
[3] A. Beltrán and M. J. Felipe. Prime powers as conjugacy class lengths of p-elements. Bull.

Austral. Math. Soc. 69 (2004), 317–325.
[4] A. R. Camina. Arithmetical conditions on the conjugacy class numbers of a finite group.

J. London Math. Soc. (2) 5 (1972), 127–132.
[5] A. R. Camina and R. D. Camina. Implications of conjugacy class size. J. Group Theory 1

(1998), 257–269.
[6] A. R. Camina. Finite groups of conjugate rank 2. Nagoya Math. J. 53 (1974), 47–57.
[7] D. Gorenstein and J. H. Walter. On finite groups with dihedral Sylow 2-subgroups. Illi-

nois J. Math. 6 (1962), 553–593.
[8] B. Huppert. Character theory of finite groups (Walter de Gruyter & Co, 1998).

552 A. Beltrán and M. J. Felipe



[9] I. M. Isaacs and D. S. Passman. Half transitive automorphisms group. Canad. J. Math. 18

(1966), 1243–1250.
[10] K. Ishikawa. On finite p-groups which have only two conjugacy lengths. Israel J. Math.

129 (2002), 119–123.
[11] N. Itô. On finite groups with given conjugate types. I. Nagoya Math. J. 6 (1953), 17–28.
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