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Abstract. Let G be a finite group and suppose that the set of conjugacy class sizes of G is
{1,m,mn}, where m,n > 1 are coprime. We prove that m = p for some prime p dividing
n — 1. We also show that G has an abelian normal p-complement and that if P is a Sylow
p-subgroup of G, then |P'| = p and |P/Z(G),| = p%. We obtain other properties and deter-
mine completely the structure of G.

1 Introduction

Some results on the structure of finite groups with three conjugacy class sizes are
known. The most important one is due to It6, who showed in [12] that such groups
are always solvable, appealing to the Feit—Thompson theorem and deep classification
theorems of Suzuki. This result was simplified by Rebmann [15] in the case when G is
an F-group (that is, G contains no pair of non-central elements x and y such that the
centralizer of x contains that of y properly). He determined the structure of F-groups
using results of Baer and Suzuki. Later, Camina proved in [6], using the description
of finite groups with dihedral Sylow 2-subgroups given by Gorenstein and Walter [7],
that if G does not possess the property F' and has three class sizes, then G is a direct
product of an abelian subgroup and a subgroup whose order involves no more than
two primes. On the other hand, several structure theorems have been obtained with-
out using solvability. For instance, it was first proved in [13] that if the conjugacy
class sizes of G are {l,m,n} with m,n > 1 coprime, then G/Z(G) is a Frobenius
group and the inverse image in G of the kernel and a complement are abelian. Also,
Camina determined in [4] the structure of a group whose class sizes are {1, p%, p“q”}
for distinct primes p and ¢ (in this case solvability is immediate).

In this paper we analyze a new case of groups having three class sizes and generalize
the result of Camina. Our main theorem determines the structure of those groups
whose class sizes are {1, m,mn}, where m and n are coprime. In the proof we have
not used the solvability result obtained by It6. We have preferred to avoid it by using
more elementary techniques at the cost of making the proof longer. These alternative
techniques concern local information of the group given the class sizes of z-elements
for distinct sets 7z of primes. For instance, we will use the main theorem of [2] on con-
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jugacy classes of p’-elements as well as develop new results related to arithmetical
properties on conjugacy classes of z-elements.

Theorem A. Let G be a finite group with no abelian direct factors and suppose that
its conjugacy class sizes are {1,m,mn}, where m,n > 1 are coprime. Then G is an
F-group, m = p for some prime p and G contains an abelian normal subgroup
M = H x Py of index p, where Py is a Sylow p-subgroup of M, and neither H nor
Py is central in G. Furthermore, M is the set of all elements of G of index 1 or p, and
if P is a Sylow p-subgroup of G then P/Pq acts fixed-point-freely on H/Z(G), and
n=|H/Z(G),| Also |P'| = p and |P/Z(G),| = .

We remark that » — 1 must be divisible by p as a consequence of the fixed-point-
free action appearing in the structure of the group. For any prime p the situation de-
scribed in Theorem A does exist. For instance, let

P=(xp| ¥ =y = 13" =Xy

be a non-abelian p-group of order p? and exponent p? and take Py = {x). Let n be
any integer such that p divides ¢ — 1 for any prime factor ¢ dividing n (accordingly p
divides n — 1) and let H be a cyclic group of order n. We consider the action of P on
H defined in the following way: x acts trivially on H and y acts as a fixed-point-free
automorphism of order p on each direct factor of prime-power order of H. Then
G = HP is an example of group with class sizes {1, p, pn}.

If 7 is any set of primes, we denote by G; the set of z-elements of a group G. For any
x € G, the conjugacy class will be denoted by x¢ and its size will be called the index
of x in G. All groups considered are finite and the rest of the notation is standard.

2 Preliminary results

We will need some classical results relating arithmetical conditions on conjugacy
class sizes and group structure.

Lemma 1. Let G be a group. A prime p does not divide any conjugacy class size of G if
and only if G has a central Sylow p-subgroup.

Proof. See for instance [8, Theorem 33.4]. [J

Lemma 2. Let G be a group such that p® is the highest power of the prime p which
divides the index of an element of G. Assume that there is a p-element in G whose index
is p®. Then G has normal p-complement.

Proof. This is [4, Theorem 1]. [

Lemma 3. Let G be a group and let x be an element of G whose index is p® where p is a
prime and a is a natural number. Then [x%,x%) < 0,(G).
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Proof. See [5, Lemma 1]. [
This has an immediate consequence.

Corollary 4. Let G a group and let x be an element of G of index p®. Then
x€0,,(G).

Proof. By Lemma 3 we have that {(x¢>0,(G)/0,(G) is an abelian normal subgroup.
It is also p’-group, so in particular x € O, ,(G). [

The following was originally obtained by It6 in [11].

Theorem 5. Suppose that 1 and m > 1 are the only lengths of conjugacy classes of a
group G. Then G = P x A, where P € Syl (G) and A is abelian. In particular, m is a

power of p.

Proof. See [8, Theorem 33.6]. [

Therefore, the structure of groups with class sizes {1, m} reduces to p-groups with
class sizes {1, p“}. In [11], the following is proved in a more lengthy way; see also [10,
Corollary 2.2].

Corollary 6. Let P be a p-group whose class sizes are {1, p®}. Then P/Z(P) has expo-
nent p.

Proof. In the proof of Theorem 5 above, in Step 8 it is asserted that every element of
G/Z(G) has prime order when the class sizes of G are {1, m}, so in particular P/Z(P)
has exponent p. []

We also need some results on conjugacy classes of p’-elements. The first is exactly
[4, Lemma 1], but we present an easier proof.

Lemma 7. Suppose that G is a group and let p be a prime such that every conjugacy
class size of an element in G, is a p’-number. Then G = P x H where P is a Sylow
p-subgroup and H is a p-complement of G.

Proof. Let g € G and let g = g¢,g, be its {p, p’}-decomposition. Suppose that g, is
non-central. As the class size of g,/ is a p’-number, if we fix a Sylow p-subgroup P
of G, then there exists some ¢ € G such that g, € P' = Cg(g,). Therefore,

G =) P'Ce(P).
teG

Then G = PCg(P) and so G = P x H, where H is a p-complement of G. [J

Lemma 8. Suppose that G is a group and p a prime. Then all conjugacy class sizes of
elements in G, are powers of p if and only if G has an abelian p-complement.
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Proof. This is for instance [2, Lemma 2]. [

Theorem 9. Suppose that G is a p-solvable group and that {1,m} are the conjugacy
class sizes of elements in G,. Then m= p°q®, with q a prime distinct from p
and a,b>=0. If b=0 then G has an abelian p-complement. If b # 0, then
G = PQ x A, with PeSyl,(G), Q€Syl,(G) and A = Z(G). Furthermore, if a =0
then G =P x Q x A.

Proof. This is [2, Theorem A]. []

Remark. The p-solvability hypothesis in the above theorem could be eliminated using
[6, Corollary of Theorem 1], but it is based on results of Gorenstein and Walter, as
we said in the introduction. This corollary will not be necessary in order to prove
Theorem A. The proof of Theorem 9 is divided into two cases: when all centralizers
of non-central p’-elements are G-conjugate and when they are not. In the second
case, the p-solvability of G is not needed, so it can be replaced by the fact that the
centralizers of non-central p’-elements are not all G-conjugate. We stress that when
p does not divide the order of G, that is, for ordinary conjugacy classes, the event
that all centralizers of non-central elements are G-conjugate cannot happen. The fol-
lowing example shows that in general the centralizers of non-central p’-elements can
be G-conjugate. Let us consider an automorphism o of order 3 acting non-trivially on
the quaternion group H of order 8. Then the centralizers of all non-central 2-elements
in the split extension G = H{a) are conjugate in G.

We need to introduce for an arbitrary set of primes 7 some new properties general-
izing the ones given by It6 in [12] for ordinary conjugacy classes. We will say that G
has the property F, or that it is an F,-group, if every non-central x € G, satisfies

(i) if Cg(x) = Cg(a) for some a € G, then a € Z(G) or Cg(x) = Cg(a), and
(i) if Cg(a) = Cg(x) for some a € Gy, then Cg(x) = Cg(a).

This means that the centralizer of each non-central z-element is maximal and mini-
mal among the centralizers of all non-central zn-elements.

On the other hand, we will say that G has the property A4, if for all non-central
x € G, the centralizer factorizes as Cg(x) = Cg(x), x Cg(x),,, with Cg(x), an abe-
lian z-subgroup and Cg(x),, a n’-subgroup. It is easy to see that every group having
the property A, is an Fy-group. When 7 is the set of all primes, an Fy-group is trivi-
ally an F-group and if G has the property 4, we will say that G has the property A.

The following theorem is one of the key results used in the proof of our main the-
orem and it extends Theorems 5 and 9 and Corollary 6.

Theorem 10. Let G be a group and 7 a set of primes. Suppose that G satisfies the prop-
erty A, and suppose that |x®| = m for any non-central x € G,, where m > 1 is a fixed
number. Suppose further that the centralizers of non-central n-elements are not all con-
Jjugate. Then m = p° for some prime p € w and P/ Z(G) , has exponent p for any Sylow
p-subgroup P of G.
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Proof. The proof is based on the one which we have cited for Theorem 5. We proceed
in several steps.

Step 1. Let x and y be two non-central m-elements. If Cg(x) # Cg(y), then
(Ce(x)NCq(¥)), = Z(G),.

Suppose that there exists a non-central element a € (Cg(x) N Cg(y)),. Since G
satisfies 4,, we have Cg(x) < Cg(a) and Cg(y) < Cg(a). Now, as G has the
property A,, it also has the property F,, and since Cg(a) # G, we conclude
Cg(x) = Cg(a) = Cg(y), a contradiction.

In the following steps, we set G = G/Z(G), and use bars to work in the factor
group.

Step 2. Let X, 7 # | be two n-elements in G such that Xy = yx and Cg(x) # Cs(y).
Then o(X) = o(p) is a prime.

Notice that x and y are n-elements. Moreover, since X and y commute, then
Xy=Xyisa n-element and consequently, so is xy. Suppose first that o(X) < o(¥);
then (x7)°™ = 7°% £ 1. Furthermore,

1 # (37)°Y = 353°9 e Cg(xy) N Ca(y).

By applying Step 1, we deduce that Cg(y) = Cg(xy), so in particular x € Cg(y). As
G satisfies A, then Cg(x) = Cg(y), and since y is not central and G is an Fy-group
we have equality, contradicting the hypothesis of this step. Therefore, o(X) = o(y).

On the other hand, if s is a prime divisor of o(X) and X* # 1, then we have
Cg(x) € Cg(x*) < G, whence we obtain Cg(x) = Cg(x*). Moreover, ¥°y = yx*. By
the above paragraph it follows that o(X*) = o(y) = 0(X), a contradiction.

Step 3. Let g be a non-central element in G, and consider the conjugacy class of § in G,
g°. Then there exists some non-central x € Gy such that §° N Cg(x) = &.

Suppose that this is false. Then for every non-central x € G, we have that Cg(x)
must contain some conjugate of g, say g for some 71 € G. Thus, g" = §" € Cs(x),
and consequently g” € Cg(x),. As G satisfies 4, we deduce that Cg(x) = Cg(g9"),
and hence equality holds because G is an Fy-group. It follows that the centralizers
of any two non-central n-elements of G are conjugate in G, contradicting the hypoth-
eses of the theorem.

Step 4. The order of every non-trivial n-element in G is a prime.

Suppose that o(g) is composite for some n-element g. Notice that g is a 7-element
too. By Step 3, there exists a non-central element x € G, such that gG N Co(x) = &.
Write C, := CG( x), and observe that C, operates on gG by conjugation. Further-
more, by Step 2 no element in C, distinct from 1 centralizes any element in g, and
hence all orbits of C, on g have the same size, |C,|, which implies that |Cy| divides

7.
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On the other hand, again by applying Step 2, we deduce that CG(g_)7Z operates with-
out fixed points on §¢ — §° N Cg(g). As a result, |Cg(g),| divides [g°| — |g° N Cs(g)|.

As |C6(9),| = |Cal, we conclude that |Cs(g),| also divides |g% N Cg(g)|, which is a
contradiction because

0 < 19°N Cs(9)| < |Cs(9),-

Step 5. Conclusion.

As the subgroups Cg(x), for non-central x € G, are abelian and have the same
order, each |Cg(x),| is a power of some prime pen by Step 4. Hence G is a
(' U{p})-group and thus m = p“.

Moreover, by Step 4, if P € Syl,(G) then every element of P has prime order, and
thus P = P/Z(G), has exponent p. [

Finally, we will make use of two classical results on automorphism groups. The
first is Thompson’s A x B-lemma and the second is due to Isaacs and Passman.

Theorem 11. Let AB be a finite group represented as a group of automorphisms
of a p-group G with [A,B]=1=1[A4,Cs(B)], B a p-group and A = OF(A). Then
[4,G] =1

Proof. See for instance [1, (24.2)]. O

We recall that a permutation representation is half-transitive if all orbits have the
same size.

Theorem 12. Let A be a group of automorphisms of G which acts half-transitively as a
permutation group on G — {1}. If |A| > 1, then either A acts fixed-point-freely on G or
G is elementary abelian q-group for some prime q and A acts irreducibly.

Proof. See [9, Theorem 1]. [

3 Proof of Theorem A

Proof of Theorem A. We denote by 7 the set of primes dividing m. We can assume
without loss that #’ is the set of primes dividing n, since any prime that divides nei-
ther n nor m provides by Lemma 1 a Sylow subgroup which is a central direct factor
of G and we are assuming that such factors do not exist. The proof splits into two
cases, depending on whether there are n-elements of index m in G or not. The first
case provides the structure described in the theorem and the second will lead to a con-
tradiction.

Case 1. We assume that there exist z-eclements of index m. Suppose that x is such an
element and observe that the maximality of C(x) and the primary decomposition of
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x allow us to assume that x is a p-element for some p € 7. Now, if y is a p’-element
of Cg(x), then Cg(xy) = Cg(x) N Cg(y) = Cg(x), and thus the hypotheses on class
sizes imply that y may have index 1 or n in Cg(x). Since n is a p’-number, by Lemma
7 we can write Cg(x) = Cg(x), x Cg(x),. We will distinguish the cases when Cg(x),,
is abelian and when it is not. We will see first that the second case is not possible.

Case 1.1. Assume that Cg(x),, is not abelian, which means that the class sizes of
p'-elements in Cg(x) are exactly {1,n}. As Cg(x) is a p-solvable group, we may
apply Theorem 9 to obtain that n = p%?® for some prime r € n’. But since p does
not divide n, we get n = r® and

Ce(x) = Py X R, x Ay,

where P, and R, are Sylow p and r-subgroups of C¢(x) and A is abelian. Note that
in fact R, is a Sylow r-subgroup of G. We distinguish two cases and prove that both
lead to a contradiction.

Case 1.1.a. Suppose that there are no r-elements of index m. Since a Sylow r-subgroup
of G cannot be central in G, there must exist r-elements of index mn. Consider an ele-
ment w € G of index mn and its decomposition w = w,w,.. If w, is central in G, then
Cg(w) = Cg(w,+) and it follows that every r-element of Cg(w) must be central in
Cg(w) by its minimality. Therefore, we can write Cg(w) = R,, X T,,, with R,, an
abelian Sylow r-subgroup of Cg(w). Moreover, R, cannot be central in G, other-
wise R, = Z(G),, so |G : Z(G)|, = n and this certainly contradicts the existence of
r-elements of index mmn. Consequently, we can take some non-central b € R,,, so
Cg(w) € Cg(b) and as no r-element has index m, we get Cg(w) = Cg(b). If w, is
not central in G, then clearly Cg(w,) = Cg(w). Therefore, in any case we have
Cg(w) = Cg(b) for some b in some Sylow r-subgroup R, of Cg(w). Notice also
that R,, = RY for some g € G. Then b € RY and as Cg(x?) = P9 x A9 x RY, we de-
duce that P9 x A9 = Cg(b), and this is a Hall r’-subgroup of Cg(b). On the
other hand, any r’-element of Cg(b) is central in Cg(b) by its minimality, so
Co(w) = Cg(b) = R, x P x A9. So we have shown that w,e R? and that
wy € PIx A7 = Cg(R?). Then for any we G of index mm we conclude that
w e RICG(RY) for some g € G.

Finally, if w € G has index m, then Cg(w) contains some conjugate of Ry, say RY
for some g € G, so w e Cg(RY). We conclude that

G = R{CG(RY),
geG

and as a result, G = R, Cg(R,), that is, R, is a direct factor of G. But this cannot
happen since the class sizes of G do not allow this situation.

Case 1.1.b. There are r-elements of index m. Let us fix some r-element y of index
m, which up to conjugacy can be assumed to centralize Ry, so y € Z(R,) and thus
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Cg(x) = Cg(y). As these subgroups have the same order then Cg(x) = Cq(y),
whence every r’-element of Cg(x) must have index 1 or ? in Cg(x). Lemma 8 asserts
that the r-complement of Cg(x), that is, P, X A,, is abelian. Now we observe that
there must exist r’-elements of index mmn since if every r’-element of G has index 1 or
m, then Lemma 7 implies that the Sylow r-subgroup of G is a direct factor of G,
which is a contradiction. Therefore, we may take an r’-element w of index mn and
assert that every r-element in Cg(w) is central by the minimality of Cg(w), so we
write Cg(w) = R, x T,, with R,, an abelian Sylow r-subgroup of Cg(w). We distin-
guish two cases: R,, central or non-central in G. We prove that both provide a con-
tradiction.

Suppose first that R, & Z(G) and take some non-central b e R,,. It is clear
that Cg(w) = Cg(b). Assume that b has index m. Then Cg(b) must contain some
Sylow r-subgroup of G, say R? for some g€ G. So in particular b € Z(RY) and
thus

Co(x9) = (Py x Ax x Ry)? < Cg(b).

Since they have the same order these subgroups are equal. Hence (P, x A,)? is
the only Hall r’-subgroup of Cg(b), so it coincides with T,,. As w € (P, x 4,)? then
RY = Cg(w), which is a contradiction. Thus, any non-central element b of R,, has
index mn and accordingly, Cg(w) = Cg(b). From this we easily obtain that 7T, is
abelian and therefore Cg(w) is abelian. But R, = RY for some g € G, and since
y € Z(Ry), we get y9 € Cq(h) = Cg(w). This cannot happen as we have proved that
there are no r-elements of index m in Cg(w).

Suppose finally that R, < Z(G). This implies that |G|,/|Z(G)|, = r* and hence
there are no r-elements of index mn in G, so all r-elements have index 1 or m. Now
if we take b € R, of index m then b € Z(RY) for some g € G. Hence

Co(x?) = P! x A% x RY = Cg(b)

and these subgroups coincide because they have the same order. On the other hand,
since b € R, then P, x A, x RY = Cg(b), so R! = Cg(Py) = Cg(x) and R, = RY.
Consequently, b € Z(R,) and R, is abelian. But this shows that Cg(x) is abelian,
which contradicts the assumption of this case.

Case 1.2. Assume that Cg(x),, is abelian. In this case, we can write
Ce(x) = Py x Sy x H,

where P, is a p-subgroup, Sy is an abelian (z — {p})-subgroup and H, is an abe-
lian Hall #’-subgroup of G. We will prove that P, and hence Cg(x), is abelian.
Observe that Hall n’-subgroups exist and they are all conjugate in G by a
well-known theorem of Wielandt. Also, notice that H, cannot be central in G.
So, if we take some non-central b€ H,, then we have Cg(x) < Cg(b) and by
maximality we get Cg(x) = C(h). Now for any p-element we P, we have
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Cg(wb) = Cg(w) N Cg(b) = Cg(b). Then the index of w in Cg(b) may be 1 or n and
necessarily must be 1 because H, = Cg(w). So P, is central in Cg(x), and hence
Cg(x) is abelian, as wanted.

We claim that the centralizers of all elements of index m are abelian. If w € G has
index m, then there exists a Hall n’-subgroup, say H? for some g € G, such that
HY = Cg(w), and if we choose some non-central b € HY, then

Co(x9) = PY x S9 x HI < Cg(bY).

By maximality, Cg(x9) = Cg(hY), and then w € Cg(x?). As this is abelian, we have
Cg(x9) = Cg(w). Since these subgroups have the same order they are equal, and in
particular Cg(w) is abelian as claimed.

We prove now that G is an F-group. Suppose first that w € G has index m. Clearly
Cg(w) is maximal among the centralizers. On the other hand, if Cs(g) = Cg(w) then
equality also holds since Cg(w) is abelian. Suppose then that w has index mmn. It is
obvious that Cg(w) is minimal among the centralizers and if Cg(w) = Cg(g) for
some g € G, then necessarily Cg(w) = Cg(g). Otherwise g would have index m
and by the above paragraph Cg(g) would be abelian, which would imply that
Ce(g) = Cg(w), a contradiction.

We show now that m is a power of p. We assume that m is not a prime power and
we will prove first that the centralizers of elements of index mn are abelian. First of
all, notice that if g has index mn and write g = g,g,; then Cg(g) < Cg(gn). How-
ever, g, has index 1 or m because the Hall z’-subgroups are abelian, so since G is an
F-group g, is central and g can be assumed to be a n-element. Furthermore, by using
the primary decomposition, we can also assume ¢ to be an s-element for some prime
s € n and by the minimality of the centralizer we can write Cg(g) = Cg(9), X Cs(9),
with Cg(g),, abelian. As m is not a prime power, let us take another prime / € 7 dis-
tinct from s. Observe that / must divide |Cg(g)| because a Sylow /-subgroup cannot
be central in G, and if ¢ is a non-central /-element, then / divides |C¢(?)|; = |Ca(g)];-
Also, for such ¢t we have Cg(g) < Cq(1). If ¢ has index m we know then that Cg(7)
is abelian and Cg(g) is abelian too, as we wanted to prove. If ¢ has index mn then
Cis(g) = Cg(t) and by arguing with ¢ as with g, it follows that Cg(g) is also abelian.
In particular, we have shown that G has the property A. Moreover, the centralizers
of non-central n-elements are clearly not all conjugate because of the existence of
n-elements of index m and index mn. So we can apply Theorem 10 to get that m is a
prime power, which is a contradiction.

Therefore, for the rest of this case we have m = p?. As we have assumed the exis-
tence of p-elements of index p“ throughout Case 1, we may apply Lemma 2 to obtain
that G has an (abelian) normal p-complement H. We are ready to show that G has
the structure described in the statement of the theorem.

Let M be the set of elements in G whose index is 1 or p“. Note that such elements
are exactly those elements whose centralizer contains H, so M = Cg(H), whence
M is a normal subgroup of G. Also if we take some non-central & € H, then
Co(H) = Cg(h), and as Cg(h) and H are abelian we deduce that Cg(h) = Co(H).
As a consequence, M is abelian and we can write M = H x Py, with Py a p-subgroup
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(the set of p-elements in G of index p* or 1), which is trivially normal in G. Also, Py
is non-central in G by the assumption of Case 1.

Let P be a Sylow p-subgroup of G and consider the coprime action of P/Py on
H defined by h9 = h9 for all he H and all ge P. As H is abelian, we can write
H = [H,P/Py] x Cy(P/Py). Moreover, if he Cy(P/Py) then hY =h for all g e P,
so heZ(G) and this shows that Cy(P/Py) = Z(G),. We assert that P/Py
acts fixed-point-freely on [H,P/Py]. To see this it is enough to notice that any
he[H,P/Py — {1} is non-central and we know that Cg(h) = M = H x P, by the
above paragraph, so /& cannot be centralized by any element of P — Py. Then, by [8,
Theorem 16.12], P/ Py must be cyclic or generalized quaternion. On the other hand,
we prove that the class sizes of P are {1, p“}. As G = HP with H normal in G, it is
easy to see that Cg(g) = Cy(g)Cp(g) for each g € P. This implies that

|G : Co(g)| = [H : Cu(g)||P: Cp(g)l,

and this index may be 1, p“ or p“n. This forces |P : Cp(g)| to be 1 or p?, as claimed.
Then we can apply Corollary 6 and P/Z(P) has exponent p. But note that the class
sizes of G imply that Z(P) = Z(G), = Py and then, by the results obtained above,
the only possibility for P/Py is to be cyclic of order p, and thus ¢ =1 and M has
index p in G. Finally, observe that if g € P — P then

p'n=1G: Ce(9)| = [H : Cu(g)| [P Cr(g)l,

son=|H: Culg)| = |H/Z(G),.

Finally the structure stated in the theorem will be completely established when we
prove that [P'| = p and |P/Z(G),| = p?. The first claim follows easily from the fact
that the class sizes of P are {1, p} (see [14], for instance). On the other hand, Py is an
abelian normal subgroup of P of index p, so we have P = Py(y) = PyCq(y) for any
y € P— Py. It follows that Cp,(y) = Z(P) and then

|P: Z(P)| = |P: Po| [Py : Z(P)| = p|P: Cp(y)| = p*.

We have shown above that Z(G), = Z(P), and thus G has all properties stated in the
theorem.

Case 2. Suppose that every n-element of G has class size 1 or mn. We will prove that
this case is impossible.

For the rest of the proof, let us fix a g-element x of index m for some prime ¢ € 7’.
By the existence of n-elements of index mn, we have |Cg(x)|, > |Z(G)|,, so we can
choose then a n-element g € C(x) of index mn. The minimality of Cg(g) yields that
Cs(9) = Cg(9), x Cs(g),,, where Cg(g), is abelian. Hence x € Cg(g), and thus
Ci(g) = Cg(x). We will distinguish two subcases depending on whether 7 is a prime
power or not.

Case 2.1. Suppose that n=¢” and thus n’ = {¢}. We are going to prove first
that Cg(z) is abelian for any non-central z € G,. For such z, the minimality of
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Cg(z) implies that any g-element of Cg(z) is central in Cg(z), that is, we have
Ca(z) = Cq(2), x Cg(z), with Cg(z), abelian. Since |Cs(2), = [Ca(x)|, > [Z(G)],
we can choose some non-central w € Cg(z), and get that either Cg(z) is equal to or
is strictly contained in Cg(w). In the first case, Cg(z) = Cg(w) must be abelian.
In the second case, w is a g-element of index m and every ¢’-element of Cg(w) has
index 1 or ¢” in Cg(w), so that by Lemma 2, the g-complement of Cg(w) is abelian,
and consequently Cg(z) is abelian too. In particular, G has property 4, and so has
property F,. We consider the following subcases in order to apply Theorem 10 in the
second one.

Case 2.1.a. Suppose that the centralizers of non-central elements in G, are all conju-
gate. We will prove that every element w € G lies in a conjugate of Cs(V) where
V = Cg(g),. This will imply that ¥ = Z(G), which is a contradiction because ¢ is
not central in G.

If w has index m, then as |Cg(w)| > |Z(G)|,, there is some non-central z-element
ze Cg(w), so Cg(z) = Cg(w). By hypothesis, Cg(z) = Cs(g"), with € G, whence
we Cg(V)". Now, if w has index mg’, again as |Ceo(w)|, > |Z(G)|,, there exists
some non-central z-element ¢ € Cg(w). Since Cg(7) is abelian we have Cg (1) = Cg(w)
and by orders, Cg(w) = Cq(f). However, we are assuming that Cq(1) = Cg(g)" for
some & € G, so w belongs to Cg(V)", as wanted.

Case 2.1.b. Suppose that the centralizers of non-central elements in G, are not all
conjugate. Since |z¢|_ = m for all z € G, — Z(G), we can apply Theorem 10 and ob-
tain that m = p“ for some prime p and that P/Z(G), has exponent p for a Sylow
p-subgroup P of G. In particular, G is a {p, ¢}-group.

Now we show that O,(G) is central in G. Assume first that w is a g-element of
index m = p“. By the assumption of Case 2, there exists a p-element ¢ such that
Cq(t) = Cg(w). By applying Theorem 11, we obtain that w € C5(0,(G)). Assume
now that w is a g-element of index p“g®. Notice that Cg(w) must be equal to the cen-
tralizer of some p-element. By Theorem 11 again, we have w € C5(0,(G)). So any
z € 0,(G) is centralized by any g-element of G and since the index of z is 1 or p9q®,
we conclude that z must be central in G. Therefore O,(G) = Z(G),, and thus
0,,4(G) = Z(G), x 04(G).

We prove now that G has a normal abelian Sylow ¢-subgroup. Suppose that G
has a g-element w of index p?g’. Then G will have a p-element ¢ such that
Cq(t) = Cg(w) and this centralizer is abelian. Moreover, by Theorem 11, we have
0,(G) = Cs(t) = Cg(w), so Oy4(G) is also abelian. Hence

W€ Co(04(G)) = C6(0,,4(G)) € 0,,4(G)

and so w € O4(G). On the other hand, if w is a g-element of index p“, by Corollary
6 we have w € O, ,(G), so w € O,4(G) too. We conclude that Q := O,(G) is a Sylow
g-subgroup of G. Furthermore, if there is a ¢g-element of index p“g” we have proved
that Q is abelian, and if every g-element has index 1 or p“, by Lemma 2 we get that Q
is abelian too.
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Let M be the set of elements in G whose index is 1 or p? It follows that
M = Cg(Q), whence M is a normal subgroup of G. Moreover, by the assumption
of Case 2, if z is a p-element of M then z € Z(G), so M = Q x Z(G),. Let P be
a Sylow p-subgroup of G. Observe that Z(G), = Z(P). Write Py := Z(P) and
P := P/Py (which we know has exponent p).

The group P acts coprimely on the abelian group O, so we can write
0= [0, P] x Co(P). Also, observe that Co(P) = Co(P) = Z(G), and [Q, P] = [0, P].
We claim that the action of P on [Q, P] — {1} is half-transitive, that is, all the orbits
have the same size. Indeed, if x € [Q, P] — {1} then its class size is p® and the size of
its orbit is

|P: Cp(x)| = |P: Cp(x)| = |G : Cs(x)| = p*

where the first equality holds since Py = Z(G), and the second follows from the
fact that G = PCg(x). By applying Theorem 12, either P acts fixed-point-freely
on [Q, P] or P acts irreducibly. We will see that this second possibility also yields
to a fix-point-free action. Suppose that P acts irreducibly on [Q,P] and take
z € Z(P). Then Cjg p(Z) is certainly a P-invariant subgroup, so either Cjp p/(2) = 1
or Cg p(2) = [0, P]. In the latter case, as 0 = Z(G), x [Q, P], it follows that = lies
in Cp(Q) = Py, so z = 1. Therefore, we conclude that Z(P) acts fixed-point-freely
on [Q, P]. On the other hand, as G = QP with Q normal in G, it is easy to see that

Cs(9) = Co(g)Cp(g) for each g € P. In particular, if Z e Z(P) — {1}, then
p'q" =1G: Cg(z)| = |Q: Co(2)| [P+ Cp(2)].

So |Q: Cp(z)| = ¢". But notice that
Co(2) = Co(2) = Z(G), x Cio.p(2) = Z(G),,

so0 |0:Z(G),| = q". This implies that P acts fixed-point-freely. If 7€ P — {1} then
p'q" =1G: Ca(t)] = Q: Co(1)] |P: Cp(1)].

Thus |Q: Co(1)| = ¢° and consequently we have Cy(7) = Z(G) ;- This proves that
Clo.p(7) = 1, as we wanted to show. Now we can apply [8, Theorem 16.12] again.
So P must be cyclic or generalized quaternion; but as P has exponent p it is cyclic
of order p. This forces P to be abelian, which leads to a contradiction.

Case 2.2. We assume that # is not a prime power and distinguish two cases depending
on whether there are ¢’-elements of index m or not.

Case 2.2.a. Suppose that every ¢’-element of G has index 1 or mn. Fix a
prime ren’ — {¢q}. For every r-element w of index mn we can certainly write
Co(w) = Cg(w), x Cg(w),, with Cg(w), an abelian n-subgroup. Since

|Ce(W)l, = 1C6(9)l; > 1Z(G)l,
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there exists a non-central n-element ¢ e Cg(w). As ¢ has index mn too, we have
Cg(w) = Cg(¢) and hence this subgroup is abelian. In general, if z is a non-central
q'-element of G then r divides |Cg(z)|, and so Cg(z) must coincide with the central-
izer of some non-central r-element. However, we have seen that such centralizers are
abelian, so all the centralizers of non-central ¢’-elements of G are abelian. Now, if all
centralizers of non-central elements in G, are conjugate, using the argument of Case
2.1.a, we arrive at a contradiction. If the centralizers of the non-central elements in
G, are not all conjugate, by the remark made after Theorem 9, we can apply Theo-
rem 9 although G is not g-solvable, to get mn = p“q®, for some prime p. This contra-
dicts the hypothesis of Case 2.2.

Case 2.2.b. Suppose now that G has ¢’-elements of index m. We will prove that every
element of G lies in a conjugate of Cg(V) where V = Cg(g),, which is the Hall
n-subgroup of Cg(g) and a Hall z-subgroup of Cg(x), and where g and x are the
elements fixed at the beginning of Case 2. Then V' = Z(G) and this is a contradiction
because g is not central in G. We study separately the elements of index m and the
elements of index mmn in order to see this.

Let w be an element of index m. By considering the primary decomposition of w
and by the assumption of Case 2, we can replace w so that its order is a power of
some prime in 7’

Suppose first that w is an r-element where r # ¢, and let Q be a Sylow g-subgroup
of G such that Q = Cg(x). There exists he G such that x" e Q" = Cg(w), so
Ce(wx") = Cg(w) N Cg(x") = Cg(w). We have two possibilities according to
whether these centralizers are equal or not. Suppose first that Cg(wx”) = Cg(w),
which implies that Cg(wx") = Cg(w) = Cs(x"). We deduce in this situation that
every element of Cg(w) has index 1 or n in Cg(w), so by Theorem 5 we get that n is
a prime power, which is a contradiction. Since the centralizer of the ¢’-element w co-
incides with the centralizer of the g-element x”, it easily follows that any g-element
and any ¢’-element of C(w) must have index 1 or nin Cg(w). Now take an arbitrary
element z of C(w) and consider its decomposition z = z,z,. If z, or z, has index mn
in G, then Cg(z) is equal to Cg(z,) or Cg(zy) and thus z has again index 1 or n in
Cg(w). So we can assume that z, and z, have index m and that z has index mn in G.
Also it can be assumed without loss that z is a 7’-element, by the assumption of Case
2. The existence of n-elements of index mn implies that |Cg(z)|, > |Z(G)|,. There-
fore, there is a non-central z-element k € Cg(z); but since k has index mn in G, we
have Cg(z) = Cg(k) and this subgroup is abelian. Thus Cg(z) = Cg(w) and z also
has index n in Cg(w), so this case is finished. We assume now the second possibility,
that is, Cg(wx") = Cg(w). Again the existence of n-elements of index mn implies that
|Co(wx")| . > |Z(G)|,, and arguing similarly we get that Cg(x"w) coincides with the
centralizer of some n-element. In particular, this centralizer is abelian, whence
Cg(x"w), is an abelian Hall z-subgroup of Cg(x") which, by Wielandt’s theorem, is
conjugate to ¥". We conclude that w belongs to some conjugate of Cg(V), as
wanted, and also that V" is abelian.

Suppose now that w is a g-element. We are assuming that there are r-elements of
index m for some r € = — {g}, so we can take without loss such an element v € Cg(w).
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Let Q be a Sylow g-subgroup of G such that Q = Cg(x). Then there exists # € G such
that Q" = Cg(v). Since x” and w are g-elements of Cg(v), we can replace w by a con-
jugate in Cg(v) and assume that w e Q" and thus w e Cg(vx"). Arguing as in the
above paragraph for the r-element v, we have that Cg(vx") is strictly contained in
Cg(v). It follows that Cg(vx”) is an abelian subgroup strictly contained in Cg(x").
Hence the Hall n-subgroup of Cg(vx") is conjugate to " and also this subgroup is
abelian. As w e Cg(vx") we conclude that w centralizes the Hall n-subgroup of
Cg(vx™), and consequently w centralizes some conjugate of ¥, as wanted.

Finally, assume that w has index mn and write w = w,w,. We observe that
|Ce(W)|, =1Cs(9)| > |Z(G)]|,, because x is a n’-element in Cg(g). If w, is non-
central, it follows that Cq(w) = Cg(wr) = Cg(Wx), X C6(Wx),:, and Cg(wy),, is abe-
lian. Then there exists k € Cg(w),,, which may be assumed of order r with r e z/,
such that Cg(w) = Cg(k). If w,, is central, then Cg(w) = Cg(w,) and by the primary
composition of w, we can choose again an r-element k € Cg(w), with r e n/, such
that Cg(w) = Cg(k). In both cases we study two possibilities for the index of k in
G. If k has index m, the above paragraphs show that k centralizes V" for some
heG, and V" is an abelian Hall n-subgroup of Cg(k). Hence Cg(w), = V' for
some ¢ € G, and w belongs to Cg(V)'. On the other hand, if k& has index mmn, then
Cg(k) = Cg(w). As |Cg(k)|, > |Z(G)|, by the existence of n-elements of index mmn,
then Cg(k) coincides with the centralizer of a zn-element and therefore it is abelian.
As Cg(x) contains a Sylow r-subgroup we can take an element /€ G such that
k = Cg(x"). Tt follows that Cg(k) = Cg(x"). Therefore the Hall m-subgroups of
Cg(k) are abelian Hall n-subgroups of Cg(x") and so are conjugate to V. We con-
clude that w also lies in a conjugate of Cg(V), as wanted. [
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