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Abstract—The octahedral group is one of the finite subgroups
of the rotation group in three-dimensional Euclidean space and
a symmetry group of the cubic grid. Compression and filtering
of three-dimensional volumes are given as application examples
of its representation theory. We give an overview over the
finite subgroups of the three-dimensional rotation group and
their classification. We summarize properties of the octahedral
group and basic results from its representation theory. Wide-
sense stationary processes are processes with group theoretical
symmetries whose principal components are closely related to
the representation theory of their symmetry group. Linear filter
systems are defined as projection operators and symmetry-based
filter systems are generalizations of the Fourier transforms.
The algorithms are implemented in Maple/Matlab functions
and worksheets. In the experimental part we use two publicly
available MRI volumes. It is shown that the assumption of wide-
sense stationarity is realistic and the true principal components
of the correlation matrix are very well approximated by the
group theoretically predicted structure. We illustrate the nature
of the different types of filter systems, their invariance and
transformation properties. Finally we show how thresholding in
the transform domain can be used in three-dimensional signal
processing.

I. INTRODUCTION

ALL digital image processing methods ultimately operate
on discrete structures but many processing methods are

based on continuous theories. This requires that the results
obtained have to be adapted to the discrete case. Very often this
step is essentially ignored using some ad-hoc implementations.
As an example consider edge detection. Many approaches
model the gray value distribution in a window as a function
on a square or a disk. Edge detection is then defined as the
problem to measure how similar the actual distribution is to
a rotated version of an ideal function that describes an edge.
But for digital images we only have values on the sampling
points. Assuming the validity of the sampling theorem one can
take into account the effects of sampling but then one needs
extra information such as the bandwidth of the signal and
smoothness conditions (see [1] for examples on the application
of continuous groups in engineering).

In this paper we use an approach based on the application
of finite groups (see [2], [3], [4], [5] for other applications

Corresponding author: R. Lenz is with the Department of Science and
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of finite groups in image and signal processing). We assume
that the measurements are given on a geometrical structure
with a group-theoretically defined regularity. Based on this
regularity, and only on this regularity, we will then develop our
image processing tools and show how they perform for real
data. This is the approach used in [6], [7] to construct two-
dimensional filter methods. One of the main contributions of
this paper is the description of the corresponding tools for the
three-dimensional case where the discrete data is defined on
a cubic grid. We implemented the mathematical framework in
a combination of Maple and Matlab programs. Maple is used
for generating the abstract description of the group involved.
This description is then translated to a matrix-vector based
framework which is the basis of a Matlab toolbox.

We will show that the theory predicts statistical properties
that are valid for typical MRI-volumes and we will also
demonstrate that the group theoretical theory provides tools
that are useful in the construction of filter systems for three-
dimensional image processing.

The theory and, to a large extend, also the code can
be directly adapted to other similar cases, for example to
problems involving the icosahedral group.

II. FINITE SUBGROUPS OF SO (3)

MOST digital images used today are captured by cameras
built around a sensor with a square-based tiling of the

sensor array. Even those using different sensor geometries
are usually converted to digital images where every pixel
represents a square. Such square-based tilings have a high
degree of regularity: each of the squares can be rotated by
90,180 and 270 degrees and it can be mirrored along the
diagonals of the square. These operations form the dihedral
group D(4) consisting of eight elements describing all simi-
larity operations of a square. Based on this group a class of
images processing methods were developed in [6], [7]. These
methods are essentially the transforms for the square geometry
corresponding to Fourier and Fast Fourier Transforms for
signals defined on a line or a circle. The starting point for
the theory presented here is the observation that the rotations
mapping the square grid into itself are the 0, 90,180 and 270
degrees rotations and that these form a four-element subgroup
of the continuous group SO (2) of 2D-rotations.

Generalizing this approach to 3D we will first characterize
the finite subgroups of the 3D rotation group SO (3) . We will
then describe the detailed structure of one of these groups,
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the Octahedral group O and we will explain its relation to the
cubic sampling pattern in 3D space.

We now introduce some notations and basic facts about
groups in general and the three-dimensional rotation group
in particular. Rotations can be described by those n × n
matrices R with determinant equal to one that satisfy the
equation RR′ = I where R′ denotes transposition and I
is the identity matrix. These matrices form the group SO (n).
Here we are only interested in the case SO (3) . Rotations
preserve the Euclidean length of vectors and therefore the unit
sphere S = {x : ‖x‖ = 1} is preserved under rotations.

The rotations operate on the sphere and we define the
transformation group as the pair (SO (3) ,S) with the group
action (R,x) 7→ Rx. If G is a subgroup of SO (3) and x ∈ S
is a unit vector then we define the orbit of x under G as:
Gx = {Rx : R ∈ G} .

From basic geometry we know that each three-dimensional
rotation (different from the identity) has a rotation axis and that
there are exactly two points on the unit sphere that are left in-
variant under a given rotation. We consider now a subgroup G
of SO (3) that has finitely many elements and we denote the
number of group elements by n. For an element x ∈ S and
a group G we define its stabilizer Gx as the group of all
elements in G leaving x fixed: Gx = {R ∈ G : Rx = x}.

The finite subgroups of SO (3) are characterized with the
help of their orbits and stabilizers. The complete derivation can
be found in [8], see also [9]. We consider a finite subgroup G
of SO (3) with n elements. We define P as the set of points
on the sphere that are invariant under at least one element
in G : P = {x ∈ S : ∃R ∈ G : Rx = x} and the set GP =
{(R,x) : R ∈ G ,R 6= I,x ∈ P}. Every rotation in GP has
two fixed points and GP consists of 2(n − 1) point pairs.
This construction contains whole orbits and if we denote the
number of orbits in P by r and the number of group elements
in the stabilizer of a point on orbit number i by ni then we
obtain the following equation 2(n − 1) =

∑r
i=1

(
n− n

ni

)
.

This relation between n, r and the ni’s implies as only solu-
tions: r = 2 and r = 3. For r = 2 the group is a group around
one fixed axis. For r = 3 one can assume n1 ≤ n2 ≤ n3 and
finds n1 = 2, n2 = 3 and 1/n3 = 1/6+2/n = (1+(12/n))/6
and therefore n3 < 6. The three possible combinations
(n1, n2, n3) are (2, 3, 3), (2, 3, 4), (2, 3, 5) with 12, 24 and 60
elements. Here we consider the case (2, 3, 4) defining the
Octahedral group O, for the other cases (especially the icosa-
hedral group of type (2, 3, 5) with 60 elements) we refer the
reader to [9], [8] and also [10].

III. BASIC FACTS ABOUT THE OCTAHEDRAL GROUP

WE now collect a few facts about O that will be needed
later (for details see for example [11], [9], [12] or [8]).

We say that a group is generated by some group elements
if all group elements can be written as a combination of
these elements and their inverses. Such elements are the
generators of the group. The abstract group O is defined by
two generators A,D and four defining relations. In Maple
code:

OGroup := grelgroup({A, D},

{[D, D, D], [A, A, A, A],
[A, D, D, A, 1/D],
[A, D, A, 1/D, 1/A, 1/A, 1/D]});

which means that the two group elements A,D satisfy the
equations

DDD = AAAA = ADDAD−1 =
= ADAD−1A−1A−1D−1 = I

where I represents the identity element of the group. The
Maple code generates an abstract internal description of this
group.

In the case where the abstract group is represented by
3D rotation matrices, the equation DDD = I means that
the corresponding rotation matrix R1 must be a 120 degree
rotation around some axis. The second generator equation
implies that A corresponds to a 90 degree rotation. A simple
computation shows that the following two rotation matrices
satisfy these equations: the rotation R1 around the diagonal
and R2, a rotation around the z−axis.

D → R1 =

0 0 1
1 0 0
0 1 0


A→ R2 =

 0 1 0
−1 0 0
0 0 1

 (1)

Next consider a finite collection W of points x in space
and assume that it is invariant under operations of O : Rx ∈
W ,∀R ∈ O and ∀x ∈W . This is a special example of a
group G operating on a set S , defined as the existence of
a mapping (G ,S ) → S ; (g, s) 7→ gs such that (gh)s =
g(h(s)),∀g, h ∈ G ,∀s ∈ S .

In the following we make use of the smallest possible
set W = Gs0 = {gs0, g ∈ G} , the orbit of a single element.
For the Octahedral group O consider as an example a corner
point x0 of the cube with coordinate vector x0 = (1, 1, 1) . We
see immediately that both rotations R1,R2 defined in Eq.(1)
map this corner point to another corner point of the cube.
Applying all combinations of R1,R2 we can reach all corner
points of the cube. The corner points of the cube form
therefore an orbit consisting of eight points.

To get an overview over all orbits of O on the cubic
grid we consider a general point x0 with coordinate vector
x0 = (ξ, η, ζ) . We see that R1 defines a shift of the
components of the coordinate vector and that R2 permutes
them and changes the sign of one of the components. Using
combinations of the shifts and the sign change it is easy to
see that we can first generate eight variants of the coordinate
vector by switching signs of the coordinate values. Then
we can identify a unique element in the coordinate vector
and shift it with the help of R1 to the first position in the
coordinate vector. With this we have shown that on each
orbit we can find an element with coordinate vector (ξ, η, ζ)
such that 0 ≤ ξ ≤ η, ζ where the last inequality means that
both η and ζ are greater than or equal to ξ but no ordering
between η, ζ is given. Vectors (1, 2, 3) and (1, 3, 2) are thus
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two such coordinate vectors and they define different orbits.
An easy calculation shows however that two vectors (0, ζ, η)
and (0, η, ζ) lie on the same orbit. Arbitrary O-invariant
subsets of the space can thus be characterized by sets

{(ξk, ηk, ζk) : 0 ≤ ξk ≤ ηk, ζk, k = 1, . . .K} (2)

For (0, η, ζ) we require η < ζ.
We have the following theorem:

Theorem 1 O has 24 elements and can be described by the two
generators R1,R2 and four equations.

Elements in O map points on the cubic grid to other points on
the cubic grid. It has five different types of orbits: (i) The single
point orbit Oo consisting of the origin. (ii) The axis orbit Oa

of the six points on the coordinate axes. They are the centers of
the faces of the cube. (iii) The corner orbit Oc consisting of the
eight corner points of a centered cube. (iv) The vertex orbit Ov

with the twelve points on the middle of the vertices. Finally (v)
The general orbit Og with 24 points.

Consider again a finite collection W of N points in
space that is invariant under all operations of the octahedral
group O. The scalar valued functions defined on W form
an N−dimensional vector space. A function f defined on W
can be described by an N−dimensional vector that we will
also denote by f . These functions form the vector space RN .
The rotations R in the group O operate on W and therefore
also on the functions on W . We illustrate this by constructing
the matrix acting on a six-point axis orbit Oa. We denote the
six points on the x-, y- and z-axis as x,−x,y,−y, z and −z
and order them as x,−y,−x,y, z and −z. The ordering of
these points is arbitrary and we only choose it to get a simple
matrix description later. In this order we map the six points to
the six canonical basis vectors e1, . . . , e6 in a six-dimensional
vector space. Thus: x 7→ e1,−y 7→ e2, . . . ,z 7→ e6. A simple
calculation shows now that if we apply the rotation R2 to the
coordinate vectors then the matrix describing the transforma-
tion of the values on the orbit is (in this ordering) given by

0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


In this way we see that for every function f , defined on
an invariant set with N− points, and every rotation R we
get a transformed function fR : fR(x) = f(R−1x). Every
rotation R defines therefore an N × N matrix T (R) such
that fR = T (R)f. We formalize this in the definition of a
representation of a group:

Definition 1 A matrix representation of a group is a map-
ping T : g 7→ T (g) with

T (gh) = T (g)T (h)∀g, h ∈ G

where the T (g) are invertible matrices. If the matrices T (g) are
of size N ×N then we say that the degree of the representation
is N.

From these definitions it can be seen why we used the
inverse in fR(x) = f(R−1x). We have for arbitrary ele-
ments Q1, Q2:

(T (Q1Q2)f) (x) = f((Q1Q2)−1x) = f(Q2
−1Q1

−1x)
= (T (Q2)f) (Q1

−1x) = (T (Q1) (T (Q2)f)) (x)
= ((T (Q1)T (Q2)) f) (x)

For a given orbit we can now construct the representation
matrices T (R1),T (R2) and since all rotations R are products
of R1,R2 and their inverses and since T (R1)T (R2) =
T (R1R2) we see that we can generate all matrices T (R)
as products of T (R1),T (R2) or their inverses. Often the
representation matrices are permutation matrices and their
inverses are given by the transpose. Using this construction
we see that we can create for each orbit a representation of
the group O by constructing the corresponding permutation
matrices for the generating rotations R1,R2. For arbitrary
sets W of points we partition W first into disjunct subsets
consisting of orbits and then we construct the representations
of each of the orbits separately. The representation on the
whole set is the direct product of these orbit representations.
In practice we have to construct 24 matrices, one for each
element in O and for sets W with many grid points these
matrices can be quite large (an 8 × 8 × 8 cube requires
matrices T (R) of size 5122). We will therefore compute them
automatically in a series of Maple and Matlab programs. We
will consider two problems as illustrations, approximations of
Principal Component Analysis (PCA) and filtering.

IV. WIDE-SENSE STATIONARY PROCESSES AND PARTIAL
PRINCIPAL COMPONENTS

WE consider again a set W of points invariant under O
and the functions/vectors f defined on W . We assume

that the f are outcomes of a stochastic process and sometimes
we write fω where ω is the stochastic variable. By C we
denote the matrix of second order moments. We call this the
correlation matrix of the process and we have

C = E (fωf
′
ω) (3)

where E ( ) denotes the expectation operator. If we apply a
transformation T (R) to all the vectors first we get a new
matrix CR = T (R)CT (R)′ and if all the rotated versions
of f occur with the same probability in the original process
then the application of the transformations T (R)f results only
in a reordering of the vectors and we have

C = CR = T (R)CT (R)′ ∀R ∈ O (4)

A stochastic process that satisfies the conditions in Eq.( 4)
is an O-wide-sense stationary process. Correlation matrices
of O-wide-sense stationary processes are thus the solutions C
of these 24 matrix equations (see also [13], [14]).

Before we can characterize these correlation matrices we
need a number of characteristics of the transformations T (R).
The T (R) are matrices of size N × N and as such they
define linear mappings T (R) : V → V where V is an
N -dimensional vector space. If we change the basis in this
vector space V with the help of a matrix B then the new
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matrices BT (R)B−1 describe the same linear mappings of
the vector space but in this new basis. In the following we
consider mainly orthonormal matrices B for which this is
equivalent to BT (R)B′. We call T a reducible representation
if we can find a matrix B such that

BT (R)B−1 =
(

T 1(R) 0
0 T 2(R)

)
= diag(T 1(R),T 2(R))

where T k(R) is of size Nk with 0 < N1, N2, and N1 +N2 =
N . This means we can split the original vector space into
two subspaces such that the original representation defines
two new representations of lower dimensions, one on each
of these subspaces. A representation that is not reducible is
called irreducible. A key result from the theory of group
representations is the following theorem [11]:

Theorem 2 Assume T is a unitary irreducible representation
of O and C is a matrix with

C = T (R)CT (R)−1 ∀R ∈ O

then C is the zero matrix or a multiple of the identity matrix I ,
i.e. there is a constant λ such that C = λI .

We use this to describe the structure of a matrix C that satis-
fies C = T (R)CT (R)′ ∀R ∈ O and T (R) orthonormal.
It can be shown that we can find an orthonormal matrix B such
that that BT (R)B′ = diag(T 1(R),T 2(R), . . . ,T K(R))
where all representations T k are irreducible. We then find
from C = T (R)CT (R)′:

BCB′ = BT (R)CT (R)′B′ = BT (R)B′BCB′BT (R)′B′

= diag(T 1(R),T 2(R), . . . ,T K(R))
BCB′ · diag(T 1(R),T 2(R), . . . ,T K(R))′

or

C̃ = diag(T 1(R),T 2(R), . . . ,T K(R))

C̃diag(T 1(R),T 2(R), . . . ,T K(R))′ (5)

If we now split the new correlation matrix C̃ into blocks C̃mn

corresponding to the sizes of the irreducible representa-
tions T k then we find for these blocks the equations

C̃mnT n = T mC̃mn

For m,n for which the T m,T n are not equivalent we
find C̃mn = 0 from the previous theorem.

Summarizing we see that for a wide-sense stationary pro-
cess, a representation T of O and an invariant correlation
matrix C of size N × N we can construct an orthonormal
matrix B that splits the underlying space into subspaces of
dimensions N1, . . . , NK , N1 + · · · + NK = N such that the
resulting new representations T 1, . . . ,T K are irreducible and
the transformed correlation matrix C̃ = BCB′ is block-
diagonal where the structure of the blocks is only given by
the group and the size N .

We analyze wide-sense stationary processes by computing
this decomposition in two steps: in the first step the point set
on which the process is defined is divided into components
defined by the orbits. According to Theorem 1 this gives

five types of subspaces of dimensions 1, 6, 8, 12 and 24. The
subdivision of the four spaces with dimension greater than
one is then obtained using the following definitions and a
projection theorem (see [11], [15]).

There are five irreducible representations of O given
by T k, k = 1, . . . , 5. We denote the dimension of T k by nk.
These dimensions are 1, 1, 2, 3, 3. We denote the vector space
on which T k is defined by Wk. For a general representation T
we denote the vector space on which it is defined by V . The
decomposition of T into irreducible representations defines a
decomposition of this vector space

V = U1

⊕
. . .
⊕

UL

where each of the Ul is one of the Wk. We now collect all Ul

that correspond to a given Wk into the direct sum

Vk = Uk1

⊕
. . .
⊕

UkM

with Ukm equivalent to Wk. The canonical decomposition
of V is given by V = V1

⊕
. . .
⊕
V5. The canonical decom-

position of V is computed with the help of characters, which
we introduce now.

The trace tr (M) of a matrix M is the sum of its diagonal
elements. For a matrix representation T of the group O
this gives a mapping defined on the group R 7→ χ(R) =
tr (T (R)). This mapping is the character of the representation.
The complex valued functions on O define a vector space and
on this vector space we define the scalar product 〈f1, f2〉 =
1
24

∑
R∈O f1(R)f2(R) and the characters of the irreducible

representations form an orthonormal system in this vector
space. This gives:

Theorem 3 The Octahedral group O has five basic irreducible
representations T k, k = 1, . . . , 5 of dimensions 1, 1, 2, 3 and 3.
We denote their characters by χk. For a general representa-
tion T (on the vector space V ) the canonical decomposition
is unique and the projection operator

pk =
nk

24

∑
R∈O

χk(R)T (g) (6)

defines the projection from the original space V to the invariant
subspace given by Vk.

V. FILTERING

IN the last section we described how to use the representa-
tion theory of the octahedral group O to block-diagonalize

the correlation matrix of a wide-sense stationary process. This
can be used for transform coding or an approximation of
principal component analysis where the solution of one large
eigenvector problem is reduced to the solution of five smaller
eigenvector equations.

In this section we will now describe how the Octahedral
group can be used in low-level filtering. One of the basic
strategies in filtering is to use systematic variations of a given
filter. Typical examples are wavelets and Gabor analysis where
filters of different orientation, frequency and scale are applied.
Here we will use the properties of the Octahedral group to
design filter systems with similar transform properties.
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As before we use a set W of N points in space that is
invariant under all rotations of O. The functions defined on W
are described by vectors in the N -dimensional vector space V .
On V we have the representation T transforming functions f
under the rotation R as f 7→ T (R)f .

For filter design we now consider a fixed function f and its
orbit fR,R ∈ O. This defines a filter system with 24 filter
functions. Depending on the nature of f these are, however,
not necessarily all different. All functions fR lie in V and they
span an invariant subspace Vf of V . From the general theory
we know that T defines a partition of V into smallest O-
invariant subspaces of dimensions 1, 1, 2, 3, 3 given by the five
irreducible representations of O. We denote the transformation
matrix from the ordinary, voxel-based, coordinate system to
the system given by the irreducible representations by B. This
is a matrix of size N×N and we can assume that it is orthonor-
mal. Furthermore, we order the matrix B such that the trans-
formed vector Bf has the form Bf =

(
f1, f2, f3, f4, f5

)
where fk is the projection of the vector f to that part of
the vector space that transforms like the k−th irreducible
representation of O. If we denote the length of fk by Nk

then we have N = N1 + . . . N5. To simplify notations we
denote the two matrices that represent the group generators in
the representation T by A and D : A = T (R1),D = T (R2)
(see Equation (1)).

With these notations we can now describe the implemen-
tation of a filter system fR based on the transformation
properties of the octahedral group. Using this decomposition
we will see how many filter functions are actually necessary
to implement the filter system and we will also see that the
different sub-systems have transformation properties that allow
us to extract information about the underlying orientation of
the pattern.

As an illustration of the construction of a group theoretical
filter system we start with a given filter function f that defines
the orbit fR,R ∈ O. A typical example could be an edge filter
in the x-direction. We now describe one method to construct
the symmetry-adapted filter system:

1) For f use the transformation Bf and compute
Bf =

(
f1, f2, f3, f4, f5

)
2) Select that part f̂ in Bf =

(
f1, f2, f3, f4, f5

)
that has

the highest norm of these five components
3) Compute the projection on the subspace with the highest

projection norm by keeping component f̂ and replacing
the rest by zero-vectors. This gives the projected vec-
tor fp

4) Reconstruct the corresponding vector in the original
space as fp = B′fp (Note that an orthonormal B is
used)

5) For the cases f̂ = f1 and f̂ = f2 use only fp = B′fp

since the application of transformed versions of fp will
at most change sign of the filter result

6) For the case f̂ = f3 the representation space is two-
dimensional and therefore fp = B′fp and Dfp are used

7) For the case of the fourth irreducible representation f̂ =
f4 use the three filters fp = B′fp,DAfp and Dfp

8) For the remaining case f̂ = f5 use the three filters fp =

B′fp,Dfp and Afp

9) The result of the construction in the last four steps is
now a one-, two- or three-dimensional filter matrix F p

10) Finally update the filter vector f by projecting it to the
orthogonal complement of F p

11) If the resulting projected vector is not zero then repeat
the construction and compute the next filter matrix F p

Using this projection technique we can always assume that
the computed filter vectors transform like the corresponding
irreducible representation. We denote such a projection-based
filter system by F k where 0 ≤ k ≤ 5 denotes the index of the
irreducible representation. We now describe how to use the
computed filter vectors in further processing based on their
transformation properties.

The filter systems of type F 1,F 2 consist of one filter func-
tion only. The results of filtering with the first system F 1 are
independent of orientation changes of the underlying signal.
We therefore use the filter results as they are. Filter results
obtained from F 2 are also scalar-valued. Their behaviour
under rotations is described with the help of cosets defined
as follows: Given a subgroup H of a group G we define an
equivalence relation on G by defining g1, g2 as equivalent if
there is an element h ∈ H such that g2 = g1h. The filter results
for the second filter type are invariant under one subgroup
of O and change sign for the other coset of this subgroup.
Therefore we describe the filter results by their absolute values
and their signs. The sign indicates which coset of rotations
was underlying the actual pattern. Processing of the remaining,
higher-dimensional, filter vectors is more complicated.

For the two-dimensional filter systems F 3 the filter vec-
tors transform under rotations in O as the irreducible two-
dimensional representation. The 24 transformation matrices
come in classes of four identical matrices each. The six differ-
ent classes are represented by the three rotations with rotation
angles 0, 120 and 240 degrees and by the same three rotations
combined with a sign-change in the first coordinate. From
this we derive the following coding of the two-dimensional
filter result vectors: First collect the two filter results in the
vector (f1, f2) and convert them to polar coordinates (r, θ).
The value of r is independent of group transformations of the
underlying domain and is an indicator of how good the overall
fit of the value distribution and the whole filter system was. For
the θ angle we first split the unit circle into six equally long
(60 degrees) segments. The rotation part of the transformation
can be used to move a given θ−value into one of the three
adjoining (120 degrees) segments. Using a possible sign-
change we can always achieve that the final transformation
of the angle is in one of the two (60 degrees) segments. The
location of the final transform within this segment is described
by a number that we call the residue. The angle is therefore
coded into an integer label 0, . . . 5 and a residue value ρ. The
coding of θ is described in the following Matlab code:

[theta, magnit] = cart2pol(f1,f2);
thetaint = 3*(theta+pi)/pi;
filclas = floor(thetaint);
rho = thetaint-filclas;

The filter system derived from the fourth irreducible repre-
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Fig. 1: Tiling of the unit sphere based on the fourth irreducible
representation of O

sentation has been constructed by fp = B′fp and the two
rotations DAfp and Dfp. The three-dimensional rotation
matrices for the two non-trivial rotations are

T D =

0 0 1
1 0 0
0 1 0

 and T DA =

 0 1 0
−1 0 0
0 0 −1

 (7)

The three-dimensional filter result vectors are first converted
to polar coordinates given by the length of the vector and the
unit vector for the direction. Then the following operations
normalize the 3D-unit direction vector

1) First apply sequences of T D such that the third com-
ponent has the highest absolute value. There are three
different cases depending on the origin of this compo-
nent

2) Then there are two different cases, either the component
of the highest absolute value was positive or negative.
In the case of a negative value of the third component
we apply T DA after which we have a positive value in
the third component. This gives six different labels and
leaves four different cases for the first two components:
(x, y), (−y,−x), (−x,−y), (y, x)

3) If the absolute value for the first component is larger
than the absolute value for the second we exchange the
two components. Combined with the previous six classes
this results in twelve classes

4) Finally we code the sign of the second component ap-
plying the sign change (x, y) 7→ (−x,−y) if necessary.
This gives 24 different labels

The previous labeling process defines a tiling of the unit
sphere into the 24 different regions shown in Figure 1. In
the computation of the label we change the values in the
filter vector correspondingly and we use the last version (after
all normalization operations are applied) as a description of
the location of the filter vector in a standard region on the
sphere. We call this vector the residue vector. Finally we
consider the case of the filter system related to the fifth irre-
ducible representation, corresponding to the ordinary rotation
representation. After the separation of the three-dimensional
filter vector into a length and a direction description we use
the following normalization procedure based on the fact that
the filter transformations correspond to rotations A, D in
Equation (1). The separation of the three-dimensional filter-
result vector into magnitude, label and residue is similar to

−1
−0.5

0
0.5

1−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

Label, 5th Irreducible Representation

Fig. 2: Tiling of the unit sphere based on the fifth irreducible
representation of O

the previous case but now the label is computed as follows:
1) We apply a sequence of operations related to A and D to

convert all three component values of the unit direction
vector to their absolute values. There are eight different
possibilities defining eight different labels

2) Then we apply one of the three shift operations to move
the component with the lowest absolute value into the
first position in the vector. This splits the eight classes
into three subclasses each, resulting in 24 different labels
shown in Figure 2

3) The result vector after this normalization is again the
residue vector.

The group theoretical transforms were implemented in a
package of Maple worksheets and Matlab functions. These
functions generate an abstract description of the group from
the Maple definition in Section III. This description is then
translated into a Matlab struct. Other parts of the Matlab tool-
box implement the generation of arbitrary representations from
two generators, the projection formulas and the generation of
invariant subsets from a given sequence of points in 3D.

VI. EXPERIMENTS AND RESULTS

IN our experiments we use two different types of images.
Both of them are publicly available and can be downloaded

from Internet. The first is the Head MRT Angiography volume
on http://www.volvis.org. It is a 3T Magnetic Resonance
Tomography (MRT) Time-of-Flight Angiography data set of a
human head. It consists of 416× 512× 112 voxels with cubic
voxels of volume 0.4123 mm3. In the following description
we refer to this volume as the Head volume.

The second volume is a magnetic resonance angiography
(MRA) volume from http://www.physionet.org/physiobank/
database/images. It consists of coronal slices acquired from
consecutive anteroposterior positions within the torso of a
human body. It’s size is 512×512×76 and the slice thickness
is 1.2mm. We call it the Torso volume. We selected these two
volumes since they are publicly available and since they have
different statistical properties. We use them for illustration
purposes only and we will only discuss them in general
statistical terms.

A. Transform coding
In the first series of experiments we test how good the

wide-sense stationary assumption fits these datasets, i.e. how

http://www.volvis.org
http://www.physionet.org/physiobank/database/images
http://www.physionet.org/physiobank/database/images
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Original, Head, 8x8x8

(a) Original data

Transformed, Head, 8x8x8

(b) Transformed

Truncated/Transformed, Head, 8x8x8

(c) Transformed, without
upper left

Fig. 3: Correlation matrices computed from 50000 randomly
collected cubes of size 8× 8× 8 in the Head volume

Original, Torso, Sphere Radius 3.5

(a) Original data

Truncated/Transformed, Torso, Sphere Radius 3.5

(b) Transformed, without upper
left

Fig. 4: Correlation matrices computed from 50000 randomly
collected locations in the Torso volume. The domain is a
sphere of radius r = 3.5 The size of the matrix in (a) is
5122, the matrix in (b) is of size 1602

much information do we loose if we use the block-diagonal
approximation instead of the full correlation matrix.

In Figure 3a we show the correlation matrix C for a random
selection of 50000 8×8×8 windows from the Head data set.
We applied the coordinate transformation and computed the
transformed correlation matrix C̃ = BCB′. The decomposi-
tion into blocks gives five blocks of sizes 24, 24, 80, 192, 192.
The contributions in the first block are always dominating
since they originate in additive combinations of the original
data. This is shown in Figure 3b. We then masked the upper
corner of size 24 × 24 in C̃ to enhance the visibility of the
remaining entries. This gives Figure 3c. The correlation ma-
trices are of size 5122 since the window consists of 83 = 512
voxels.

Figure 4 shows correlation matrices for a random selection
of 50000 positions in the Torso volume. We select only points
in a sphere of radius 3.5 within surrounding 83 windows.
Figure 4a is the correlation matrix (of size 5122) computed
from the full window. Figure 4b shows the same information
as Figure 3c but due to the restriction to the sphere the new,
transformed correlation matrices are only of size 1602. Also
here we truncated the dominating first block and we see from
Both Figures that, visually, the transformed correlation matri-
ces are indeed block-diagonal to a very good approximation.
The goal of the following experiments was to quantify this
similarity (and therefore the approximation errors) in more
detail.

One variant of Principal Component Analysis (PCA) ap-
proximates vectors in the original signal space by linear
combinations of eigenvectors of the correlation matrix of
the process (the other variation employs eigenvectors of the

covariance matrix). In the case of PCA in the original space
this means for the full 83 windows the computation of a 512-
dimensional eigenvector system. If the block-diagonalization is
perfectly valid then a description of the vectors in the geometry
defined basis B simplifies the 512-dimensional eigenvector
problem to a series of five smaller eigenvector problems of
sizes 24, 24, 80, 192, 192. In the following figures we illustrate
the effects of replacing the full (PCA) system with a system
computed from the block-diagonal correlation matrices. We
use the two cases mentioned above: full 83-windows from the
Head volume and spherical domains of radius 3.5 from the
Torso volume.

In Figure 11 we show the original image and reconstructed
versions for one slice from the Torso volume using the first
eigenvector, the first five, nine and ten eigenvectors, only the
points inside a sphere of radius 3.5 are used. We illustrate
the result using the fourth slice of the eight slices in the
middle region of the volume only, but all computations are
based on all points in the full 83 cube. The results show
that the difference between the reconstruction from the full
PCA system and the reconstruction from the block-diagonal
approximation is very small.

The next experiment investigates the eigenvalue structure
for the two volumes. In this experiment we use again the
same geometries as in the last experiment: the full cube for
the Head and the sphere for the Torso. Both the original
correlation matrix and the block-diagonal approximation are
used. In Figure 5 we show the normalized accumulated sum
of eigenvalues computed from the correlation matrices of the
Head volume and the correlation matrices of the Torso volume.
The normalization used is Λi =

∑i
j=1 λj/trace(C) where

the λ’s are the eigenvalues. We can see that for these two
volumes the first four or five eigenvalues explain more than
90% of the total variance in the data (based on the averaging
over 50000 random cube positions).

An interesting property of the eigenvectors is their relation
to the blocks in the block-diagonal approximation. The values
of the first ten eigenvalues and the block from which they are
computed are collected in Table I. In this table we normalized
the value of the first eigenvalue to one since they had different
absolute values due to the difference in the 8- and 16-bit pixel
values of the original volumes.

Apart from the dominance of the first eigenvalue and the
origin in the first block this table shows several other interest-
ing properties that confirm the validity of the group theoretical
symmetry assumption. The most important of these properties
is the sequence of the three eigenvalues in second to fourth
position. These three eigenvectors all transform in the same
way as the fifth irreducible representation which is given by the
ordinary rotations in three-dimensional space. Since this is a
three-dimensional representation we expect those eigenvectors
to come in packages of three which is clearly the case here.
We also expect these eigenvectors to have more or less the
same eigenvalue which is almost the case, only the third in
the class has a lower value than the other two. After these first
four eigenvalues the next values in the sequence are already
very small and their ordering is probably already influenced
by noise contributions. We see however that in both cases,
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Fig. 5: Distribution of accumulated Eigenvalues for the Head
image using all points of the cube and for the Torso images
considering the points in a sphere of radius r = 3.5 centered
in the cube
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Fig. 6: Mean reconstruction errors for the Head image using
all points of the cube and for the Torso images considering
the points in a sphere of radius r = 3.5 centered in the cube

for the Head and the Torso volume the next six eigenvalues
come in a package of three eigenvalues related to irreducible
representation number four and two eigenvalues related to
irreducible representation number three and one to block
number one. Also these properties are in accordance with the
prediction of the group theoretical framework: eigenvalues in
block four should come in triples, those from block three in
pairs and those from block one and two are independent of
each other. Another interesting property is that eigenvectors
from block two are missing. This is an observation we made in
other experiments too and shows that they are less prominent
in real data sets.

The fact that the basis computed from the full correlation
matrix and the basis computed from its block-diagonal ap-
proximation have almost identical properties is also confirmed
by the distribution of the mean reconstruction error. We
used 50000 random samples from the volumes and then we
reconstructed the distributions using both bases. In Figure 6
we see that the performance of the approximation system is
nearly identical to the reconstruction based on the eigenvectors
computed from the full correlation matrix.

B. Filtering

We now illustrate some results obtained by the filter systems
constructed in Section V above. First we use filters based on
some analytical description of the filter form. Then we illus-
trate how the eigenfunctions computed in the previous section

Filter I

(a) First filter

Filter D

(b) Second filter

Filter A

(c) Third filter

Fig. 7: Edge-type Filters, Sphere Radius 3.4, Window Size 7

Filter I

(a) First filter

Filter D

(b) Second filter

Filter A

(c) Third filter

Fig. 8: Filters related to the two-dimensional representation,
Radii 1.5 and 3, Window Size 7

can be used to construct filter systems that are optimized for
group theoretical analysis.

In the first example we consider a cube of size 7 × 7 ×
7 and in this cube all points with a distance less than 3.4
to the origin. This gives a sphere-like region on which these
filters are defined. We define an edge detection filter starting
from the function f(ξ, η, ζ) = ξ. The analysis shows that the
filter is completely located in the fifth block and therefore
transforms like a three-dimensional representation. After the
averaging filters from block one this filter type was dominating
in the previous analysis of the eigenvector structure. We show
the three filters, given by f(ξ, η, ζ) = ξ and its D- and A-
transform in Figure 7. We show them as a sequence of seven
slices with varying z-index. The first image in the upper left
corner shows thus the distribution of the filter values in the
lowest layer of the three-dimensional filter kernel.

In the next example we use f(ξ, η, ζ) = η2 − γ. Here γ
is a constant that assures that filter coefficients sum to zero.
The window size is again seven but now we use a hollow
sphere with inner radius 1.5 and an outer radius 3. The three
filter functions (given by the quadratic polynomial, defined
above, and its D- and A-transform) are shown in Figure 8.
These filters are related to the two-dimensional representation
and we see that the third filter, related to the A-transform, is
redundant as predicted.

The third filter is given by the product f(ξ, η, ζ) =
P3(ξ)P3(ζ) of a third order polynomial P3. The window size
was seven as before but now all points in the cube were
used, resulting in three filters with 343 coefficients each. The
result is shown in Figure 9. The system consists of three filter
functions and its transformation properties are those of the
fourth irreducible representation.

In Figure 12 we illustrate the results obtained by apply-
ing the edge filter system described above. The system is
related to the fifth irreducible representation and corresponds
to a conventional edge detection filter defined in a spherical
domain. In Figures 12a to 12c we see the raw filter results
(using Matlabs imagesc conversion) from the three filters.
Figure 12d is the magnitude image and Figure 12e shows the
color coded labeling. The residual vectors are simply coded
in scaled RGB vectors. Since the components in the residual
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Filter I

(a) First filter

Filter DA

(b) Second filter

Filter D

(c) Third filter

Fig. 9: Filters related to second three-dimensional representa-
tion, All Points, Window Size 7

vector are ordered we see that the last one (coded in Blue) is
dominating.

In the previous illustrations we used an analytical descrip-
tion of the filter functions (or rather one filter function from
which we computed the others in the system). In the last
illustration we now show how the eigenvectors calculated from
the block-diagonal approximation of the correlation matrix can
be used for filtering. In this construction we use an eigenvector,
in the same way as the analytically described filter function
used before. From it we construct the other filters in the system
using the group theoretical transformations.

For the Torso image we select from the first ten eigen-
vectors the vectors number: 1, 2, 5, 6, 8 corresponding to the
first eigenvectors belonging to blocks 1, 5, 3, 4 and 1. Using
the same construction as in the analytical design before we
compute from the eigenvector belonging to representation 5
a 3-filter system, for the eigenvector from representation 3 a
2-filter system, then a 3-filter system again for type 4. We
use the eigenvectors from block 1 as they are. This gives a
new filter system consisting of ten filter functions where five
of them are selected as eigenvectors and the remaining five
are added to create a symmetry-adapted filter system. All of
these functions are defined on a spherical region with radius
3.5 inside a cube with 83 voxels. The reconstruction properties
are almost identical to the results earlier shown in 11 and we
therefore choose to illustrate reconstruction properties with the
help of the two diagrams in Figure 10. In this figure we show
first (Figure 10a) a small region of the center slice shown in 11
and the scan-line used in the following diagrams. The first
diagram (Figure 10b) shows the original distribution and the
reconstructions using the coefficients from the filter system.
The filter system consists ten filters belonging to five blocks
and we show the reconstruction based on these blocks. In the
second diagram (Figure 10c) we illustrate an example of a
symmetry based thresholding strategy. A common strategy in
techniques like denoising is to map the original volume into
a transform domain, to threshold some of the coefficients and
to map the filtered volume back to the original domain. In this
example we show how this strategy can be used in conjunction
with symmetry based filtering: we first filter the volume with
the eigenvector based filter system described before (defined
inside a sphere of radius 3.5 in a surrounding cube of size 83

voxels). The coefficients are now thresholded in blocks, i.e.
all of the coefficients belonging to a given block are either
used as they are or set to zero. In this illustration we only use
those coefficients where the magnitude of the corresponding
block is at least 25% of the maximum value of this block
computed over the whole image. We see that the truncation

Scan Line

(a) Subregion with scan line
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(c) Reconstruction, truncated block-
based

Fig. 10: Reconstruction with and without truncation of coef-
ficients

results in a smoother reconstruction and we also see that the
error of the reconstruction based on the full filter result vector
around pixel 360 is avoided in the reconstruction based on the
thresholded filter results.

VII. SUMMARY AND CONCLUSIONS

WE started with the well-known fact that the group of
three-dimensional rotations has only a few truly three-

dimensional finite subgroups. The one that is related to a cubic
sampling of space is the octahedral group O. We derived some
of its most important properties and sketched a few basic facts
from its representation theory. The result is a type of Fourier
Analysis for signals defined on domains that are invariant
under these octahedral transformations.

We implemented the most important algorithms using a
combination of Maple worksheets and Matlab functions and
m-files. Using these tools it is easy to construct bases for vec-
tor spaces of signals defined on these domains that implement
a type of Fourier-transform. We illustrated the usage of the
tools by investigating the statistical properties of two MRI-
volumes and by designing three-dimensional filter systems.
We showed that for these volumes the predictions made by the
group theoretical assumptions were essentially valid: we found
that the transformed correlation matrices were block-diagonal,
that the highest eigenvalue was related to a filter function of
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the averaging type and that the next few eigenvectors came
in packages of one, two and three filter functions depending
on their origin in the different blocks of the transformed
correlation matrices.
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No. 1 2 3 4 5 6 7 8 9 10
Torso
E-val. 1 0.039 0.019 0.017 0.007 0.006 0.0057 0.0051 0.0037 0.0032
Block 1 5 5 5 3 4 4 1 4 3
Head

E-val. 1 0.010 0.009 0.004 0.003 0.002 0.0021 0.0018 0.0016 0.0016
Block 1 5 5 5 4 1 3 4 3 4

TABLE I: Eigenvalues and the block from which they were obtained
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Fig. 11: Original and reconstructed images for the Torso volume using data slices 30− 37 for 1 to 20 eigenvectors, selecting
all points inside a sphere of radius r = 3.5 with center in the cube of size W = 83. First row, eigenvectors from the full
correlation matrix. Second row, eigenvectors from the Block correlation matrix. Third row, difference between reconstructions.
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Filter 1

(a) First filter result

Filter 2

(b) Second filter result

Filter 3

(c) Third filter result

Filter Magnitude

(d) Magnitude of filter results

Class, threshold: 0.15

(e) Class label of filter results

Residual, threshold: 0.15

(f) Residue of filter results

Fig. 12: Filter results for filters related to the rotation-representation


