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Abstract. The estimation of parametric global motion has had a significant at-
tention during the last two decades, but despite the great efforts invested, there
are still open issues. One of the most important ones is related to the ability to re-
cover large deformation between images in the presence of illumination changes
while kipping accurate estimates. Illumination changes in color images are an-
other important open issue. In this paper, a Generalized least squared-based mo-
tion estimator is used in combination with color image model to allow accurate
estimates of global motion between two color images under the presence of large
geometric transformation and illumination changes. Experiments using challeng-
ing images have been performed showing that the presented technique is feasible
and provides accurate estimates of the motion and illumination parameters.

1 Introduction

Image registration ([17]) could be defined as the process to transform an image so that
it matches another image as correctly as possible. This process is necessary when we
want to compare or to integrate the data information from the two images. In the im-
age acquisition process of a scene there are many factors involved: the position and
the distance from the camera (or sensor) to the scene, the illumination, the nature of
the objects to be imaged, etc. Any change in these factors implies that the data in the
corresponding images are not directly comparable.

During the last few years, a special interest has emerged in relation to the need
to cope with simultaneous viewpoint and illumination changes ([10], [12], [1], [2], to
cite a few works). Important examples are those related to the retrieval of images in
image databases where any user can upload an image of a famous place, and where
each person may use different types of cameras and acquire the scene from different
configurations and under different illumination conditions (cloudy, sunny, etc.).

There are evidently different methodologies to assess the best transformation be-
tween two images. One of them considers different versions of optimization-based mo-
tion estimation methods. Their main advantage is that the motion parameter estimation
process is deeply over-constrained. Nevertheless, these methods suffer from a series of
drawbacks [11]. One of the most important drawbacks is the presence of outliers, in the
form of occlusions due to motion, to sensor noise, or to illumination changes.
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In general, we may consider the direct geometric registration problem as that of
minimizing an error function in relation to the difference in the pixel values between an
image we may call Test image and the Reference image. In particular, it can be formally
written as:

min
g

∑
q∈<

‖I1(qi)− I2(G(qi; g))‖2 (1)

where I1 and I2 are two input images, qi = (xi, yi)T are the pixel coordinates, g is
the vector of motion parameters and G is the function to transform the pixel coordinates
from one image to the other. The function G is expressed, for instance, in an affine (Eq.
2) motion (Eq. ??) as follows:

G(qi; g) =
(
a1xi + b1yi + c1
a2xi + b2yi + c2

)
(2)

If we also consider photometric changes, these may be modeled by a transformation
P with parameter vector p and the minimization would therefore be:

min
g

∑
q∈<

‖I1(qi)− P(I2(G(qi; g)); p)‖2 (3)

To solve the problem shown in Eq. 3, Bartoli developed the Dual Inverse Com-
positional (DIC) estimation technique [2] where he considers Eq. 3 and then applies
an inverse compositional update rule for both the geometric and photometric transfor-
mations. See [2] for details on the steps of the algorithm used to assess the geometric
registration and illumination compensation parameters.

In this paper a generalized least squares-based non-linear motion estimation tech-
nique that incorporates the capability to deal with color illumination changes is pre-
sented, where illumination changes are modeled considering an affine transformation
framework. The method is based on the GLS motion estimation method introduced by
Montoliu and Pla in [11], and where a new set of functionals is proposed, incorporating
these illumination changes. GLS method is applied on the functionals, deriving a new
set of equations that allow the simultaneous assessment of the geometric and affine illu-
mination transformation parameters. We show that the method we propose gives better
results than the method recently described in [2].

The rest of the paper is organized as follows: section 2 justify bla bla. In Section
?? the GLS for general problems is briefly introduced. Section 4 presents our proposed
method. Section 5 shows the experiments and results and finally we conclude in Section
6.

2 Illumination compensation model

Illumination compensation is closely related to what it is called chromatic adaptation in
human colour vision. The first chromatic adaptation experiments started in the late 40s
of the last century. A few years later, in a experiment made by Wyszecki and Stiles on
human asymmetric matching [15], a human subject had different adaptation states on



two different parts of his visual field. The subject viewed a test light in one adaptation
state and adjusted a mixture of three primary lights in the other adaptation state until
the test light matched the mixture. They proved that a diagonal linear matrix transform
would be enough to reproduce the experiment of asymmetric matching. Nevertheless,
West and Brill [14] and others proved later that for a given set of sensor sensitivities a
diagonal transform could only cover a restricted group of object colours and illuminant
spectra.

Finlayson et al [3] reasoned that a diagonal transform would be enough for the
modeling of an illumination change if the we may have extremely narrow-band sensors
in the camera, which is often not the case. There are other cases where illumination
compensation can fail, for instance, if there are other processes happening like bias in
the camera, or saturated colours in the scene. In the latter case, some colours would
fall in (and outside of) the camera gamut boundary [4]. This is the reason why the use
of a complete (full) affine transform in the form Ω · I(q) + Φ is justified (see, for
example, [5], [8], [16], to cite a few), where Ω ∈ <3×3 is a full matrix, with elements
ωkl, k, l = 1, . . . , 3, and Φ ∈ <3, a vector with elements φk, k = 1, . . . , 3.

3 GLS for general problems

In general, the GLS estimation problem can be expressed as follows (see [11] for more
details):

minimize [Θυ = υTυ] subject to F(χ, λ) = 0, (4)

where:

– υ is a vector of r unknown residuals in the observation space, that is, υ = λ − λ̃,
where λ and λ̃ are the unperturbed and actually measured vector of observations,
respectively.

– χ = (χ1, . . . , χm)T is a vector of m parameters;
– λ is made up by r elements λi, λ = (λ1, . . . , λr)T , each one is an observation

vector with n components λi = (λ1
i , . . . , λ

n
i )
T

– F(χ, λ) is made up by r elementsFi(χ, λi),F(χ, λ) = (F1(χ, λ1), . . . ,Fr(χ, λr))T ,
each one is, in general, a set of f functions that depend on the common vector of pa-
rameters χ and on an observation vector λi,Fi(χ, λi) = (F1

i (χ, λi), . . . ,F
f
i (χ, λi))T .

Those functions can be non-linear.

Thus, the solution of (4) can be addressed as an iterative optimization starting with
an initial guess of the parameters χ̂(0). At each iteration j, the algorithm estimates
∆̂χ(j) to update the parameters as follows: χ̂(j) = χ̂(j − 1) + ∆̂χ(j). The process
is stopped if the improvement ∆̂χ(j) at iteration j is smaller than an user-specified
resolution in the parameter space.

The improvement ∆̂χ(j) can be expressed as follows (see [11] for more details):

∆̂χ(j) = (ATQA)−1ATQe, (5)



where the matrix Q = (BBT )−1 has been introduced to simplify the notation. Equation
5 can also be expressed in a more convenient way as follows:

∆̂χ(j) =

( ∑
i=1...r

Ni

)−1( ∑
i=1...r

Ti,

)
, (6)

where Ni = At
i(BiBt

i)
−1Ai and Ti = At

i(BiBt
i)
−1ei, with

Bi =


∂F1

i (χ̂(j−1),λi)

∂λ1
i

. . .
∂F1

i (χ̂(j−1),λi)
∂λn

i

...
...

∂Ff
i (χ̂(j−1),λi)

∂λ1
i

. . .
∂Ff

i (χ̂(j−1),λi)

∂λn
i


(f×n)

, (7)

Ai =


∂F1

i (χ̂(j−1),λi)
∂χ1 . . .

∂F1
i (χ̂(j−1),λi)

∂χp

...
...

∂Ff
i (χ̂(j−1),λi)

∂χ1 . . .
∂Ff

i (χ̂(j−1),λi)

∂χp


(f×m)

, (8)

ei =

−F
1
i (χ̂(j − 1), λi)

...
−Ffi (χ̂(j − 1), λi)


(f×1)

. (9)

4 GLS-based color motion estimation under illumination changes

In our formulation of the motion estimation problem, the function Fi(χ, λi) is ex-
pressed as follows:

Fi(χ, λi) = I2(G(qi; g))− P−1(I1(qi); p) (10)

I1(qi) = (R1(qi), G1(qi), B1(qi))T and I2(q′i) = (R2(q′i), G2(q′i), B2(q′i))
T , where

q′i has been introduced to simplify notation as: q′i = G(qi; g). Note that in this case the
number of functions f is 3. The Eq. 10 can also be writen in a more convient way as
follows:

F1
i (χ, λi) = R2(q′i)− (R1(qi)ω11 +G1(qi)ω12 +B1(qi)ω13 + φ1)

F2
i (χ, λi) = G2(q′i)− (R1(qi)ω21 +G1(qi)ω22 +B1(qi)ω23 + φ2)

F3
i (χ, λi) = B2(q′i)− (R1(qi)ω31 +G1(qi)ω32 +B1(qi)ω33 + φ3)

(11)

whereR1(qi),G1(qi) andB1(qi) are theR,G andB, components of the first color im-
age in the sequence (reference image) at the point qi, and R2(q′i), G2(q′i) and B2(q′i)
are the R, G and B, components of the second color image in the sequence (test im-
age) at the transformed point q′i = G(qi; g). In this case, each observation vector λi is
related to each pixel qi, with r being the number of pixels in the area of interest.



Let us define the observation vector as λi = (R1(qi), G1(qi), B1(qi), xi, yi). The
vector of parameters is defined as follows: χ = (g,p)T .

Due to the big dimension of the parameter vector it is difficult to show Ai, Bi using
matrices. We use tables intead. For afine motion, The Ai matrix is showed in two tables:
1 and 2; Bi is showed in two tables: 3 and 4. For projective motion, The Ai matrix is
showed in two tables: 5 and 2; Bi is showed in two tables: 3 and 6.

Function ∂a1 ∂b1 ∂c1 ∂a2 ∂b2 ∂c2
F1(χ, λi) xiR

x
2 yiR

x
2 Rx

2 xiR
y
2 yiR

y
2 Ry

2

F2(χ, λi) xiG
x
2 yiG

x
2 Gx

2 xiG
y
2 yiG

y
2 Gy

2

F3(χ, λi) xiB
x
2 yiB

x
2 Bx

2 xiB
y
2 yiB

y
2 By

2

Table 1. Ai matrix for affine motion. First part.

Function ∂α11 ∂α12 ∂α13 ∂α21 ∂α22 ∂α23 ∂α31 ∂α32 ∂α33 ∂β1 ∂β2 ∂β3

F1(χ, λi) −R1 −G1 −B1 0 0 0 0 0 0 -1 0 0
F2(χ, λi) 0 0 0 −R1 −G1 −B1 0 0 0 0 -1 0
F3(χ, λi) 0 0 0 0 0 0 −R1 −G1 −B1 0 0 -1

Table 2. Ai matrix for affine and projective motion. Second part.

Function ∂R1 ∂G1 ∂B1

F1(χ, λi) −α11 −α12 −α13

F2(χ, λi) −α21 −α22 −α23

F3(χ, λi) −α31 −α32 −α33

Table 3. Bi matrix for affine and projective motion. First part

In the Tables, Rx1 , Ry1 , Rx2 , Ry2 , Gx1 , Gy1 , Gx2 , Gy2 , Bx1 , By1 , Bx2 and By2 have been
introduced to simplify notation as follows: Rx1(qi), R

y
1(qi), Rx2(q′i), R

y
2(q′i), G

x
1(qi),

Gy1(qi), G
x
2(q′i), G

y
2(q
′
i), B

x
1 (qi), B

y
1 (qi), Bx2 (q′i) and By2 (q′i), respectively, being

Rx1(qi), R
y
1(qi),Gx1(qi), G

y
1(qi), B

x
1 (qi), B

y
1 (qi), the components of the gradient of

theR,G,B bands, respectively, of test image at point qi; andRx2(q′i),R
y
2(q′i),G

x
2(q′i),

Gy2(q
′
i), B

x
2 (q′i), B

y
2 (q′i) the components of the gradient of the R,G,B bands, respec-

tively, of the reference image at point q′i.

In addition, Nd, N1, N2, N3, N4, N5 and N6 have also been introduced as follows:



Function ∂x ∂y

F1(χ, λi) (a1R
x
2 + a2R

y
2)− (α11R

x
1 + α12G

x
1 + α13B

x
1 ) (b1R

x
2 + b2R

y
2)− (α11R

y
1 + α12G

y
1 + α13B

y
1 )

F2(χ, λi) (a1G
x
2 + a2G

y
2)− (α21R

x
1 + α22G

x
1 + α23B

x
1 ) (b1G

x
2 + b2G

y
2)− (α21R

y
1 + α22G

y
1 + α23B

y
1 )

F3(χ, λi) (a1B
x
2 + a2B

y
2 )− (α31R

x
1 + α32G

x
1 + α33B

x
1 ) (b1B

x
2 + b2B

y
2 )− (α31R

y
1 + α32G

y
1 + α33B

y
1 )

Table 4. Bi matrix for affine motion. Second part

function ∂a1 ∂b1 ∂c1 ∂a2 ∂b2 ∂c2 ∂d ∂e

F1(χ, λi)
xRx

2
Nd

yRx
2

Nd

Rx
2

Nd

xR
y
2

Nd

yR
y
2

Nd

R
y
2

Nd

−xiRx
2N1−xiR

y
2N2

N2
d

−yiRx
2N1−yiR

y
2N2

N2
d

F2(χ, λi)
xGx

2
Nd

yGx
2

Nd

Gx
2

Nd

G
y
2

Nd

yG
y
2

Nd

G
y
2

Nd

−xiGx
2N1−xiG

y
2N2

N2
d

−yiGx
2N1−yiG

y
2N2

N2
d

F3(χ, λi)
xBx

2
Nd

yBx
2

Nd

Bx
2

Nd

xB
y
2

Nd

yB
y
2

Nd

B
y
2

Nd

−xiBx
2 N1−xiB

y
2 N2

N2
d

−yiBx
2 N1−yiB

y
2 N2

N2
d

Table 5. Ai matrix for projective motion. First part.

Nd = (dxi + eyi + 1)
N1 = a1xi + b1yi + c1, N2 = a2xi + b2yi + c2

N3 =
a1Nd − dN1

N2
d

, N4 =
a2Nd − dN2

N2
d

N5 =
b1Nd − eN1

N2
d

, N6 =
b2Nd − eN2

N2
d

(12)

The estimation process is resumed at Algorithm 1. A Feature Step is used to ini-
tialize the motion estimator (whenever the deformation between images is quite large
we need a good initial vector of motion parameters). It mainly consists of a SIFT-based
technique [9] to detect and describe interest points, where for each interest point be-
longing to the first image a K-NN search strategy is performed to find the k-closest
interest points at the second image. Finally, for estimating the first approximation of the
motion parameters a random sampling technique is used [13].

Regarding the illumination parameters at χ̂(0), they have initially been set to:Ω = I
and Φ = (0, 0, 0)T .

5 Experiments and Results

In order to test the accuracy of the proposed motion estimation technique, several ex-
periments have been perfomed using a set of challeging images. A preview of some

function ∂x ∂y

F1χ, λi (N3R
x
2 +N4R

y
2)− (α11R

x
1 + α12G

x
1 + α13B

x
1 ) (N5R

x
2 +N6R

y
2)− (α11R

y
1 + α12G

y
1 + α13B

y
1 )

F2χ, λi (N3G
x
2 +N4G

y
2)− (α21R

x
1 + α22G

x
1 + α23B

x
1 ) (N5G

x
2 +N6G

y
2)− (α21R

y
1 + α22G

y
1 + α23B

y
1 )

F3χ, λi (N3B
x
2 +N4B

y
2 )− (α31R

x
1 + α32G

x
1 + α33B

x
1 ) (N5B

x
2 +N6B

y
2 )− (α31R

y
1 + α32G

y
1 + α33B

y
1 )

Table 6. Bi matrix for proyective motion. Second part



Input: Images I1 = (R1, G1, B1)
T and I2 = (R2, G2, B2)

T

Output: χ̂, the vector of estimated motion parameters.
1: Calculate image gradients.
2: j = 0.
3: Set Ω0 = I, Φ0 = (0, 0, 0)T and g0 = FeatureStep(I1, I2).
4: χ̂(0) = (g0,p0)

T , with p0 = (ω11, . . . , ω33, φ1, . . . , φ3).
5: repeat
6: j = j + 1.
7: Update matrices Ai, Bi and ei using χ̂(j − 1).
8: Estimate ∆̂χ(j).
9: χ̂(j) = χ̂(j − 1) + ∆̂χ(j).

10: until |∆̂χ(j)| is small enough.
11: χ̂ = χ̂(j).

Algorithm 1: Generalized Least Squares motion estimation algorithm

of them is shown in Figure 1. In all image pairs there exists a geometric tranforma-
tion simultaneus to a photometric one. Theses images have been obtained from several
sources, including: Bartoli’s examples 3, Brainard’s examples 4, Simon Fraser Univer-
sity Computational Vision Lab’s examples 5 and Oxford’s Visual Geometry Group’s
examples 6. Finally, the last four have been acquired by ourselves using a conventional
digital camera and varying the ilumination conditions.

The Dual Inverse Compositional technique [2] was used for comparison purposes
since it is, as far as we known, the only other technique that estimates simultaneuosly
the motion and the illumination parameters in color images. For each image pair, first,
the feature step is performed to obtain a good inital motion parameters. Then, both
algorithms are executed, obtaining two output parameters χGLS and χDIC . With the
estimated parameters, the reference image can be transformed (geometrically and pho-
tometrically). Then if the parameters have been correctly estimated, the resulting im-
ages (IGLS and IDIC) have to be very similar to the corresponding reference images.
Figure 2 shows the results obtained with the proposed technique for Bartoli’s images.
First row shows the test and the reference image. Second row shows the resulting im-
age and the panoramic image created. Note how both, the motion and the illumination
parameters have been correctly estimated.

Once the resulting images (IGLS and IDIC) have been created it is possible to apply
a merit figure to measure to quality of the registration. Four similarity measures have
been used. They are the Normalized Correlation Coefficient (NCC), the Increment
Sign Correlation coefficient (ISC [6]), the selective correlation Coefficient (SCC [7])
and the Normalized Average of Absolute errors (NAAE) defined as:

3 http://www.lasmea.univ-bpclermont.fr/Personnel/Adrien.Bartoli/
Research/DirectImageRegistration/index.html

4 http://color.psych.upenn.edu/brainard/
5 http://www.cs.sfu.ca/˜colour/data/objects_under_different_
lights/index.html

6 http://www.robots.ox.ac.uk/˜vgg/research/affine/index.html



Fig. 1. Input images

NAAE(aae) =

{
0 if aae > TH

(TH − aae)/TH otherwise
, (13)

where aae is the average of the absolute errors and TH is a constant.
The four measures produce values from 0 (low similarity) to 1 (high similarity).

Figure 3 shows the average of the values obtained for all experiments. Note how the
proposed estimation technique overcomes Bartoli’s one for all similarity measures.

6 Conclusions

bla bla
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Fig. 3. Registration results


