
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 779-791 (2009)

779

A Template-based Recognition System for On-line
Handwritten Characters*

FEDERICO PRAT, ANDRÉS MARZAL, SERGIO MARTÍN, RAFAEL RAMOS-GARIJO

AND MARÍA JOSÉ CASTRO+

Dep. de Llenguatges i Sistemes Informàtics
Universitat Jaume I

Castellón, Spain
+Dep. de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Valencia, Spain

New developments on our real-time recognition engine for isolated handwritten

characters are presented. This engine is based on approximate Dynamic Time Warping
comparisons with prototypes selected by fast, less accurate classification procedures.
The error rate it currently obtains on the standard Pendigits task, 0.60%, is significantly
lower than both the error rate of other recently published techniques and the one we ob-
tain from the recognition engine included in the Microsoft Vista operating system.

Keywords: on-line handwritten text recognition, template-based recognition, dynamic
time warping, nearest-neighbours, filter-and-refine classification

1. INTRODUCTION

Pen-based input is experiencing great demand since the advent of pen-based com-
puters and devices, such as Tablet PCs, Personal Digital Assistants, digitizing tablets,
and pressure sensitive screens. State-of-the-art techniques, though not perfect, allow the
use of on-line character recognition in practical applications. Thus, recent operating sys-
tems integrate input controls and text recognition engines to ease programming applica-
tions that offer pen-based interaction. For instance, Microsoft XP Tablet PC Edition and
Microsoft Vista contain powerful recognition engines which can be easily accessed by
the user via an input panel.

We have recently designed and built an open source recognition engine for isolated
characters and we have integrated it into our own text input panel, a portable one that
mimics Microsoft’s widget and is aimed at improving it. Our engine, first presented at
CCIA 2007 [1] and in continuous development, offers state-of-the-art performance for
isolated character recognition and works in real time. In this paper, we present the recog-
nition engine and its more recent improvements, readjusting its parameters from new
experimental results on our own alphanumeric corpus, UJIpenchars [2], publicly avail-
able at the UCI Machine Learning Repository [3]. The engine recognition code is avail-
able at ftp://acrata.act.uji.es/pub/MIRlibInk.zip.

Our engine uses a 3-nearest-neighbours classifier with an approximate Dynamic
Time Warping dissimilarity measure. In order to accelerate the process, two different fast

Received February 1, 2008; accepted November 28, 2008.
Communicated by Yau-Hwang Kuo, Pau-Choo Chung and Jar-Ferr Yang.
* This work partially supported by the Spanish Ministerio de Educación y Ciencia (TIN2006-12767 and Conso-

lider Ingenio 2010 CSD2007-00018), the Generalitat Valenciana (GV06/302), and Bancaixa (P1·1B2006-31).

F. PRAT, A. MARZAL, S. MARTÍN, R. RAMOS-GARIJO AND M. J. CASTRO

780

filtering procedures are applied to the prototypes and only a subset of them is considered
by the classifier. On our UJIpenchars standard writer-independent task, this improved
engine currently obtains a 10.85% error rate and runs in real time: it classifies more than
50 characters per second on a conventional laptop. On the Pendigits [4] task, it presents
an excellent 0.60% error rate, significantly lower than both the error rate of other re-
cently published techniques and the one we obtain from the recognition engine included
in the Microsoft Vista operating system.

The remainder of this paper is organized as follows. Next section explains how
handwritten characters are represented in order to feed our system. Section 3 describes
this recognition engine in detail, along with the empirical work carried out for adjusting
its parameters. Our current engine is compared with both its previous version and the
Microsoft Tablet PC SDK recognition engine in section 4. Finally, section 5 presents the
conclusions.

2. DIGITAL INK AND ITS PREPROCESSING

Digital ink is a time-ordered sequence of strokes and each stroke is a time-ordered
sequence of “packets”. Each packet contains information about the pen at a given instant:
(x, y) coordinates, velocity, pressure, etc. We only use (x, y) coordinates, the simplest
kind of packets, since we seek portability and coordinates are the least common denomi-
nator that pen devices offer. We use the term glyph to name ink representing a symbol.

In our system, each glyph is preprocessed to correct slant and to normalize its di-
mensions and structure (see Fig. 1). In order to estimate the slant, vectors determined by
every pair of consecutive points in the same stroke are considered, but only vectors
whose angle difference with respect to the vertical axis is equal or less than 50 degrees
are selected. In order to make all these selected vectors point towards a growing y direc-
tion, the signs of both vector components are changed if the y one is negative. Then, the
angle of the summation of selected vectors is considered to be the glyph slant angle,
which is corrected by applying the appropriate shear transform to all glyph points. After
slant correction, the glyph is scaled, preserving its aspect ratio, in order to be boxed in a
rectangle whose longest side measures one. Then, all coordinates in the glyph are made
relative to the center of mass of the points. If the glyph contains two or more strokes,
they are concatenated by simply preserving its time-ordered point sequence and discard-
ing its stroke-level structure.

In our system, normalizing steps described above are applied to all glyphs as a
common preprocessing. Moreover, when two glyphs are going to be compared by using a
certain dissimilarity measure, appropriate glyph versions are employed depending on the
kind of measure. Different glyph versions are obtained by applying additional processing
steps to the result of the common preprocessing. An important additional processing step
in our system, aimed at attaching angular information to merely positional coordinates, is
one we refer to as segment-based representation: in order to avoid end-point problems in
the definition of angles, each straight segment determined by a pair of consecutive points,
pk and pk+1, is represented by its middle point and the angle of 1.k kp p +

uuuuuuur
 Thus, the seg-

ment-based representation of an n-point glyph version is a sequence of n − 1 point/angle
pairs.

A TEMPLATE-BASED RECOGNITION SYSTEM FOR ON-LINE HANDWRITTEN CHARACTERS

781

(a) (b)

(c) (d)

Fig. 1. Common preprocessing; (a) Sample glyph as drawn by the writer; (b) Only pairs of con-
secutive points whose angle is between certain limits (shown as vectors) are taken into ac-
count when computing the estimated slant (shown as an arrow in the background); (c) The
slant can be corrected by means of a shear transform; (d) Normalized version of the glyph:
the slant is corrected, the scale is normalized to fit into the unit square without affecting the
aspect ratio, the origin of coordinates is placed at the center of mass of the points, and the
strokes are joined.

3. THE RECOGNITION ENGINE

Our engine has to assign a category label to each glyph it is presented to for recog-
nition, and this classification must be performed in real time, i.e. it should take much less
than one tenth of a second to provide users with a response. To achieve this, we follow a
template-based approach to recognition. So, our system needs a corpus of correctly la-
belled glyphs, to be referred to as training set, before starting to classify new, test glyphs.
Glyphs in the training set are considered prototypes of their categories, and are preproc-
essed in order to store different versions appropriate for the different dissimilarity meas-
ures to be employed for the classification of new glyphs.

As a first approach, we can consider just a dissimilarity measure and, therefore, just
one preprocessed version of each prototype stored by our system. A new glyph, after
suffering the same preprocessing, could be classified as belonging to the category of its
nearest prototype according to the chosen dissimilarity measure.

Thus, it makes sense to first consider a well-known technique for sequence com-

F. PRAT, A. MARZAL, S. MARTÍN, R. RAMOS-GARIJO AND M. J. CASTRO

782

parison such as Dynamic Time Warping (DTW), introduced by Vintsyuk [5] as a com-
parison method for speech, but also appropriate for digital ink. Unfortunately, DTW is
computationally intensive and does not fulfill our real-time response requirement on cur-
rently conventional hardware. Sakoe and Chiba [6] proposed a technique that speeds up
DTW by sacrificing correctness but, as we will see, it is still not fast enough for our pur-
poses. On the other hand, some simpler comparison techniques are much faster than
DTW, but they provide too high error rates. So the approach we finally implemented in
our engine is a kind of trade-off where fast techniques are employed to preselect a few
prototypes and accelerated DTW takes a classification decision by comparing the test
glyph only with prototypes in this reduced set.

In next subsections, we will present the different techniques employed in our engine
and how experimental results on the UJIpenchars task [2] guided our decisions on how to
use them. The UJIpenchars corpus contains glyphs of the 10 digits, the 26 lowercase let-
ters, and the 26 uppercase letters from 11 writers; each person wrote two instances of
each symbol on a Tablet PC, totaling 1,364 glyphs. Some examples from the corpus are
illustrated in Fig. 2. Since there are some indistinguishable handwritten characters, such
as lower and upper “o” and zero, lower and upper “s”, etc., only 35 categories are con-
sidered in its standard classification task: 9 for the “1” to “9” digits and 26 for the lower
and uppercase versions of each letter, where zero is included in the “o” class. This task is
a writer-independent one: all glyphs in the corpus are to be classified by considering as
training set only those glyphs provided by the other 10 writers.

Fig. 2. Some examples from the UJIpenchars corpus.

All the experiments presented in this paper were run on a laptop PC with an Intel

Core2 CPU T5600 at 1.83 GHz and 2 Gb of RAM on the .NET platform under the Mi-
crosoft Vista Business Edition operating system. The programs were coded in C# without
unsafe code.

3.1 Classification with DTW-Based Comparisons

Given two sequences of possibly different lengths, A = a1a2 … am and B = b1b2 …

A TEMPLATE-BASED RECOGNITION SYSTEM FOR ON-LINE HANDWRITTEN CHARACTERS

783

bn, where each ai and each bj belong to some set Σ, and a dissimilarity measure δ between
elements in Σ, δ: Σ × Σ → , a very natural way to apply δ to the comparison of se-
quences A and B consists in averaging local dissimilarities between “corresponding” ai
and bj elements. DTW provides a well-founded way of determining which element pairs
correspond to each other by solving an optimization problem: the minimum-cost path in
a directed graph like the one in Fig. 3, from the initial circular node to the top-right cor-
ner one. The cost of each arc mainly depends on the node it arrives to: if it is the one at
column i and row j, the arc cost will have a factor δ(ai, bj). Moreover, such a cost may be
affected by a weight associated to the arc direction: horizontal, vertical, or diagonal. In
the most general case, the cost of the optimal path arriving at node (i, j) can be recur-
sively expressed as

(1,) (,),

(,) min (, 1) (,), .

(1, 1) (,)

h i j

v i j

d i j

C i j w a b

C i j C i j w a b

C i j w a b

δ

δ

δ

⎧ ⎫− +
⎪ ⎪⎪ ⎪= − +⎨ ⎬
⎪ ⎪− − +⎪ ⎪⎩ ⎭

 (1)

When weights are set as wh = wv = 1 and wd = 2, the dissimilarity between sequences A
and B can be easily defined in a length-normalized way as

D(A, B) = C(m, n)/(m + n). (2)

The DTW measure D can be efficiently computed in O(mn) time and O(min(m, n))
space by applying Dynamic Programming to the computation of C(m, n) in the graph of
Fig. 3. Moreover, Sakoe and Chiba [6] proposed a technique to speed up DTW computa-
tion by sacrificing correctness: the node set involved in the search for the minimum-cost
path in the DTW acyclic graph is then limited by a given maximum vertical distance d
from the bottom-left-to-top-right diagonal. For instance, Fig. 3 shows as grey nodes those
ones that would never be visited for d = 2: they would be too far from diagonal nodes,
marked with dots. Since we always place the longest sequence on the horizontal axis (in
order to ensure that diagonal nodes, one per column, will form a connected path), the
running time of this algorithm is O(max(m, n)d). Smaller values of d result in faster but
less accurate DTW estimations.

Fig. 3. An acyclic graph for DTW.

F. PRAT, A. MARZAL, S. MARTÍN, R. RAMOS-GARIJO AND M. J. CASTRO

784

In order to completely specify the DTW measure, the local dissimilarity function δ
must be defined. We have studied a linear combination of squared Euclidean distance
between points and minimum angular difference applied to the point/angle pairs of seg-
ment-based representation of glyphs, where the angular difference, measured in radians,
is affected by a factor α ≥ 0.

Finally, classifying a test glyph as belonging to the category of its most similar pro-
totype is just a particular case of the more general k-Nearest-Neighbours (k-NN) rule:
each one of the k more similar prototypes votes for its own category, and the winner
category becomes the classifier response. Ties can be solved by applying 1-NN to just
the prototypes voting for the tied categories.

So there are three parameters to be empirically set: distance d determining the 2d +
1 width of the Sakoe-Chiba band; the weight α affecting angular distances in the dis-
similarity measure δ between point/angle pairs; and the number of prototypes k for the
k-NN classification rule. We first considered a large band width by provisionally setting
d = 20 and measured error rates for several values of α and k (main results are plotted in
Fig. 4 (a)). We found that k = 3 is the best choice for every value we had considered for
α and that the lowest error rate, 11.22%, is achieved at α = 0.09. As expected, the time
cost, about 200 milliseconds per glyph (ms/glyph), makes the approach unsuitable for
real-time recognition. Once k and α were fixed, we tried to determine how much DTW
band width can be reduced without affecting classification results too much, and results
of the corresponding experiment are plotted in Fig. 4 (b). The choice d = 18 preserves the
error rate for d = 20, but does not reduce time cost significantly. Another interesting
value for d is 8: error rate 11.44% is slightly worse, but time cost is reduced to a half.
However, to achieve less than 25 ms/glyph, d must be reduced to 1, and then error rate
grows to 16.94%. Thus, empirical results showed that real-time recognition requires a
different approach.

Approximate DTW with d = 20

10

12

14

16

18

20

E
rr

or
ra

te
(%

)
E

rr
or

ra
te

(%
)

0.00 0.05 0.10 0.15 0.20

Angular difference weight, αAngular difference weight, α

1-NN
3-NN
5-NN
7-NN

Approximate DTW with α = 0.09 and 3-NN

10

12

14

16

18

20

E
rr

o
r

ra
te

(%
)

E
rr

o
r

ra
te

(%
)

0 5 10 15 20

Band width from diagonal, dBand width from diagonal, d

0

50

100

150

200

T
im

e
(m

s/
g
ly

p
h
)

T
im

e
(m

s/
g
ly

p
h
)

Error
Time

(a) (b)

Fig. 4. Experimental results for (a) setting parameters α and k and (b) reducing parameter d.

3.2 Fast Comparison Techniques

The main reason for DTW to be computationally expensive is its search for a path

determining which element pairs correspond to each other in the comparison of two pos-
sibly-different-length glyph representations. By using an appropriate resampling as a glyph

A TEMPLATE-BASED RECOGNITION SYSTEM FOR ON-LINE HANDWRITTEN CHARACTERS

785

(a) (b) (c)

Fig. 5. Segment-based resampling; (a) Normalized glyph after common preprocessing; (b) A fixed
number, m + 1, of equally-spaced points are sampled along the path; (c) The final result is a
sequence of m point/angle pairs.

processing step, glyph versions of fixed length can be obtained for the application of
faster dissimilarity measures. The first additional processing step we follow for repre-
senting a sequence-of-points glyph resulting from common preprocessing as a sequence
of m point/angle pairs consists in resampling the glyph arc at m + 1 points equally spaced
along their arc length, assuming straight lines between every pair of consecutive points in
the original glyph. After this, a segment-based representation (as explained in section 2)
provides the desired m point/angle pairs. This combination of two processing steps will
be referred to as “resampling to m segments” (see Fig. 5).

3.2.1 One-to-one alignment

Once glyphs are represented by sequences having the same length, m, we can com-

pare them by means of a one-to-one alignment:

1
(,) (,).i i

i m
D A B a bδ

≤ ≤
= ∑ (3)

This value can be computed in O(m) time, which is significantly faster than DTW
techniques. The resampling size m should be carefully chosen, since both the error rate
and the running time depend on it. For the parameter α affecting δ, we kept the previ-
ously fixed value, 0.09.

3.2.2 Region/direction-histogram comparison

As a second fast comparison technique, we have explored one where glyphs are rep-
resented as histograms. After common preprocessing and resampling to m segments, the
minimum bounding box of the resulting glyph version is partitioned into 9 regions with a
3 × 3 grid. Then, for each point/angle pair, the point is replaced with its corresponding
region label and the angle is discretized using a standard 8-direction code. Finally, from
the resulting sequence of m region/direction pairs, a histogram consisting of 9 × 8 = 72
pair counts is obtained (see Fig. 6). If we let ai and bi now denote the values at the ith
histogram cells for glyphs A and B, the two histogram distance functions we have studied
can be expressed as follows:

F. PRAT, A. MARZAL, S. MARTÍN, R. RAMOS-GARIJO AND M. J. CASTRO

786

(a) (b)

Fig. 6. Histogram representation of a glyph; (a) Transformation of its sequence of point/angle pairs
into a set of region/direction pairs; the glyph bounding box has been divided into 3 × 3 re-
gions and each angle has been discretized using a standard 8-direction code; (b) The same
glyph as a histogram consisting of 3 × 3 × 8 cells.

• the Manhattan distance, as

1 72
(,) ;i i

i
D A B a b

≤ ≤
= −∑ (4)

• a χ2-like distance, as

2

1 72
0

(/ /)
(,) .

() / 2
i i

i i

i ii
a b

a m b m
D A B

a b m≤ ≤
+ >

−
=

+∑ (5)

Both distances can be computed in O(1) time, independently of m. Thus, the resam-
pling size m only marginally affects total time classification costs because of its influence
in glyph processing steps, but the error rate may strongly depend on it. Moreover, both
the error rate and the running time depend on the distance employed for histogram com-
parison.

3.2.3 Discussion on fast methods

Fig. 7 shows the error rate (left) and the time needed to classify a glyph (right) as a
function of the resampling size m. The best 3-NN error rate, 17.08%, is obtained by the
χ2-like distance when m = 130 employing less than 6 ms/glyph. The other histogram dis-
tance, the Manhattan one, is faster but more inaccurate: it gets its best error rate, 18.33%,
at m = 60 in less than 2.5 ms/glyph. One-to-one alignment, which provides clearly worse
results than histogram-based distances, presents its best error rate at m = 90: 19.50% in
around 6 ms/glyph; at m = 20, a similar error rate, 19.57%, is achieved with time cost
reduced to a half. Thus, these comparison techniques are actually much faster than DTW,
but the error rates they provide are too high for such techniques to be employed as final
classifiers in a practical recognition engine. However, they can be used to focus the
search of a 3-NN DTW-based classifier on a reduced set of prototypes, as we will see in
the next subsection.

A TEMPLATE-BASED RECOGNITION SYSTEM FOR ON-LINE HANDWRITTEN CHARACTERS

787

Fast methods and 3-NN

16

18

20

22

24
E

rr
or

ra
te

(%
)

E
rr

or
ra

te
(%

)

0 50 100 150 200

Resampling size, mResampling size, m

One-to-one alignment with α = 0.09

Histograms with χ2-like distance

Histograms with Manhattan distance

Fast methods and 3-NN

0

5

10

15

T
im

e
(m

s/
gl

y
p
h
)

T
im

e
(m

s/
gl

y
p
h
)

0 50 100 150 200

Resampling size, mResampling size, m

One-to-one alignment with α = 0.09

Histograms with χ2-like distance

Histograms with Manhattan distance

Fig. 7. Experimental results for choosing fast comparison methods and their parameters.

3.3 The Two-Stage Recognition Procedure

In our previous paper [1], fast comparison methods were employed for preselecting

categories. Given a fast method, a test glyph, and a given number c of desired candidates,
the method ranked prototypes first, then only one best prototype per category was re-
tained, and the c-best categories in the resulting category ranking were returned; finally,
all prototypes in the training set belonging to these c candidate categories were included
in the selected prototype set to be considered by the approximate DTW classifier. The
rationale behind that design choice was to provide the final classifier with all the infor-
mation that could be useful for choosing between preselected possible responses. This
could have, however, a couple of disadvantages. On one hand, prototypes belonging to
candidate categories but being very different from the test glyph are not going to influ-
ence the classification decision, but their DTW comparisons are going to slow down the
system. On the other hand, how parameter c affects classification times is too much task
dependent: how many prototypes will be passed to the final classifier per each selected
category? Thus, we have recently decided to study a different, more direct way of inter-
preting the number c of desired candidates: in this case, only the c-best prototypes, as
ranked by the corresponding fast method, would be included in the preselected prototype
set.

In order to fairly compare different engine settings, error rates were plotted against
their time costs, as shown in Fig. 8. Only settings consuming less than 25 ms/glyph were
considered. For each comparison method (approximate DTW, one-to-one alignment, and
histogram comparison), parameters were set to the values providing best 3-NN error rates
in previously shown experiments. Selecting candidates using only one-to-one alignment
did not provide interesting results, as expected, and we found out that the best error rate,
10.85%, can be achieved in only 18 ms/glyph when both one-to-one alignment and our
χ2-like distance select 20 candidate prototypes each one. Though this is the setting finally
decided for our engine, as depicted in Fig. 9, additional experiments have shown us that
further research is needed in order to conclude more general facts about best method
combination. For instance, the same error rate, 10.85%, can be achieved with a similar
time cost (14 ms/glyph) applying quite different engine settings: when the Manhattan
histogram distance (with m = 60) selects 5 candidate categories for an approximate DTW
classifier with a reduced band width, d = 8.

F. PRAT, A. MARZAL, S. MARTÍN, R. RAMOS-GARIJO AND M. J. CASTRO

788

Approximate DTW with α = 0.09, d = 18, 3-NN
and fast methods preselecting categories

10

12

14

16

18

20

E
rr

or
ra

te
(%

)
E

rr
or

ra
te

(%
)

0 5 10 15 20 25

Time (ms/glyph)Time (ms/glyph)

One-to-one alignment with α = 0.09 and m = 90

Histograms with χ2-like distance and m = 130

Combination of both fast methods

Approximate DTW with α = 0.09, d = 18, 3-NN
and fast methods preselecting prototypes

10

12

14

16

18

20

E
rr

or
ra

te
(%

)
E

rr
or

ra
te

(%
)

0 5 10 15 20 25

Time (ms/glyph)Time (ms/glyph)

One-to-one alignment with α = 0.09 and m = 90

Histograms with χ2-like distance and m = 130

Combination of both fast methods

Fig. 8. Experimental results for choosing how to use fast methods in our engine.

Fig. 9. Recognition engine.

4. COMPARISON WITH OTHER RECOGNITION ENGINES

On UJIpenchars task [2], we can compare our new results with those presented at
CCIA 2007 [1]: our old engine achieved an 11.58% error rate in around 20 ms/glyph
(and 11.51% in around 30); now we get better recognition results, a 10.85% error rate,
without needing more time. We have also run C# experiments with the 1.7 version of the
Microsoft Tablet PC SDK recognition engine, using a Microsoft.Ink.RecognizerContext ob-
ject with an appropriate WordList and flags Coerce and WordMode: it fails the glyph cate-
gory for 14.74% of the original corpus glyphs (no preprocessing at all) and classification
runs in less than 5 ms/glyph. If we help the Microsoft recognizer by providing it with the
dimensions of the acquisition box via its Guide property, both error rate and time drop to
a very impressive 8.36% in less than 1 ms/glyph, so we plan to study how we can incor-
porate such kind of positional information in future versions of our engine.

Finally, we have run a standard experiment on the original, non-normalized version
of the Pendigits database [4], available at the UCI Machine Learning Repository [3] too.
This corpus contains handwritten instances of the 10 digits from several writers: 7,494
glyphs from 30 writers are used as training set and 3,498 glyphs from 14 different writers
are used as test data. Our new engine, with exactly the same settings depicted in Fig. 9,
obtains on this writer-independent task a 0.60% error rate in 70 ms/glyph. This is an im-
portant improvement on our previous result (a 0.83% while tripling classification time)
and the error rate is significantly better than both recent results published in the literature

A TEMPLATE-BASED RECOGNITION SYSTEM FOR ON-LINE HANDWRITTEN CHARACTERS

789

for the same experiment (2.26% in 2005 [7]; 1.66% in 2006 [8]) and the one we get from
the Microsoft recognizer even properly setting its Guide property (1.89%; and 4.20%
without that setting). However, our engine needs new improvements for keeping recog-
nition times low, as the ones it gets on the UJIpenchars corpus, when facing tasks with
larger training sets, as Pendigits is: maybe some kind of test-glyph-independent preselec-
tion of prototypes to control the number of fast comparisons our current engine has to
make in its first stage.

5. CONCLUSIONS

We have improved our recognition engine for isolated handwritten characters and
presented new experimental work for tuning its parameters and for comparing its per-
formance with that of the Microsoft recognition engine. The error rate achieved on a
standard experiment with the Pendigits database, 0.60%, is significantly lower than both
the error rate of other recently published techniques and the one we obtain from Micro-
soft’s engine. Moreover, we have identified two promising sources for future improve-
ment: using information about glyph position relative to its acquisition box and con-
densing the training set for retaining just its most informative prototypes.

REFERENCES

1. R. Ramos-Garijo, S. Martín, A. Marzal, F. Prat, J. M. Vilar, and D. Llorens, “An in-
put panel and recognition engine for on-line handwritten text recognition,” in C.
Angulo and L. Godo, eds., Artificial Intelligence Research and Development, IOS
Press, 2007, pp. 223-232.

2. D. Llorens, F. Prat, A. Marzal, and J. M. Vilar, “UJIpenchars: A pen-based classifica-
tion task for isolated handwritten characters,” available as UJI Pen Characters data
set at [3].

3. A. Asuncion and D. J. Newman, “UCI machine learning repository,” http://www.ics.
 edu/~mlearn/MLRepository.html.
4. E. Alpaydın and F. Alimoğlu, “Pen-based recognition of handwritten digits,” avail-

able at [3].
5. T. K. Vintsyuk, “Speech discrimination by dynamic programming,” Cybernetics, Vol.

4, 1968, pp. 52-57.
6. H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken

word recognition,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
Vol. 26, 1978, pp. 43-49.

7. J. Zhang and S. Z. Li, “Adaptive nonlinear auto-associative modeling through mani-
fold learning,” Lecture Notes in Computer Science, Vol. 3518, 2005, pp. 599-604.

8. B. Spillmann, M. Neuhaus, H. Bunke, E. Pękalska, and R. P. W. Duin, “Transforming
strings to vector spaces using prototype selection,” Lecture Notes in Computer Sci-
ence, Vol. 4109, 2006, pp. 287-296.

F. PRAT, A. MARZAL, S. MARTÍN, R. RAMOS-GARIJO AND M. J. CASTRO

790

Federico Prat received his M.S. and Ph.D. degrees in
Computer Science from the Universidad Politécnica de Valencia,
Spain, in 1991 and 1998, respectively. He currently works as an
Associate Professor at the Departament de Llenguatges i Sistemes
Informàtics of the Universitat Jaume I at Castellón, Spain. His
research interests include pattern recognition, machine learning,
and language modeling.

Andrés Marzal received his M.S. and Ph.D. degrees in
Computer Science from the Universidad Politécnica de Valencia,
Spain, in 1990 and 1994, respectively. He currently works as an
Associate Professor at the Departament de Llenguatges i Sistemes
Informàtics of the Universitat Jaume I at Castellón, Spain. His
research interests include pattern recognition, machine learning,
and multimodal interaction.

Sergio Martín received in 2007 his M.S. degree in Com-
puter Science from the Universitat Jaume I at Castellón, Spain,
where he currently studies a Master degree in Intelligent Systems.
His research interests include image processing, handwritten text
recognition and predictive analytics.

Rafael Ramos-Garijo received in 2004 his M.S. degree in
Computer Science from the Universitat Jaume I at Castellón,
Spain, where he currently studies a Master degree in Intelligent
Systems. His research interests include pattern recognition, case-
based reasoning and image processing.

A TEMPLATE-BASED RECOGNITION SYSTEM FOR ON-LINE HANDWRITTEN CHARACTERS

791

María José Castro is currently an Associate Professor of
the Departamento de Sistemas Informáticos y Computación at the
Universidad Politécnica de Valencia, Spain, where she has taught
since 1993. She received her Ph.D. degree in Computer Science
from this same University, in 1998. Her research interests include
machine learning, speech and handwritten text recognition and
language technologies.

