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New developments on our real-time recognition engine for isolated handwritten 

characters are presented. This engine is based on approximate Dynamic Time Warping 
comparisons with prototypes selected by fast, less accurate classification procedures. 
The error rate it currently obtains on the standard Pendigits task, 0.60%, is significantly 
lower than both the error rate of other recently published techniques and the one we ob-
tain from the recognition engine included in the Microsoft Vista operating system.   
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1. INTRODUCTION 
 

Pen-based input is experiencing great demand since the advent of pen-based com-
puters and devices, such as Tablet PCs, Personal Digital Assistants, digitizing tablets, 
and pressure sensitive screens. State-of-the-art techniques, though not perfect, allow the 
use of on-line character recognition in practical applications. Thus, recent operating sys-
tems integrate input controls and text recognition engines to ease programming applica-
tions that offer pen-based interaction. For instance, Microsoft XP Tablet PC Edition and 
Microsoft Vista contain powerful recognition engines which can be easily accessed by 
the user via an input panel. 

We have recently designed and built an open source recognition engine for isolated 
characters and we have integrated it into our own text input panel, a portable one that 
mimics Microsoft’s widget and is aimed at improving it. Our engine, first presented at 
CCIA 2007 [1] and in continuous development, offers state-of-the-art performance for 
isolated character recognition and works in real time. In this paper, we present the recog-
nition engine and its more recent improvements, readjusting its parameters from new 
experimental results on our own alphanumeric corpus, UJIpenchars [2], publicly avail-
able at the UCI Machine Learning Repository [3]. The engine recognition code is avail-
able at ftp://acrata.act.uji.es/pub/MIRlibInk.zip. 

Our engine uses a 3-nearest-neighbours classifier with an approximate Dynamic 
Time Warping dissimilarity measure. In order to accelerate the process, two different fast 
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filtering procedures are applied to the prototypes and only a subset of them is considered 
by the classifier. On our UJIpenchars standard writer-independent task, this improved 
engine currently obtains a 10.85% error rate and runs in real time: it classifies more than 
50 characters per second on a conventional laptop. On the Pendigits [4] task, it presents 
an excellent 0.60% error rate, significantly lower than both the error rate of other re-
cently published techniques and the one we obtain from the recognition engine included 
in the Microsoft Vista operating system.  

The remainder of this paper is organized as follows. Next section explains how 
handwritten characters are represented in order to feed our system. Section 3 describes 
this recognition engine in detail, along with the empirical work carried out for adjusting 
its parameters. Our current engine is compared with both its previous version and the 
Microsoft Tablet PC SDK recognition engine in section 4. Finally, section 5 presents the 
conclusions. 

2. DIGITAL INK AND ITS PREPROCESSING 

Digital ink is a time-ordered sequence of strokes and each stroke is a time-ordered 
sequence of “packets”. Each packet contains information about the pen at a given instant: 
(x, y) coordinates, velocity, pressure, etc. We only use (x, y) coordinates, the simplest 
kind of packets, since we seek portability and coordinates are the least common denomi-
nator that pen devices offer. We use the term glyph to name ink representing a symbol. 

In our system, each glyph is preprocessed to correct slant and to normalize its di-
mensions and structure (see Fig. 1). In order to estimate the slant, vectors determined by 
every pair of consecutive points in the same stroke are considered, but only vectors 
whose angle difference with respect to the vertical axis is equal or less than 50 degrees 
are selected. In order to make all these selected vectors point towards a growing y direc-
tion, the signs of both vector components are changed if the y one is negative. Then, the 
angle of the summation of selected vectors is considered to be the glyph slant angle, 
which is corrected by applying the appropriate shear transform to all glyph points. After 
slant correction, the glyph is scaled, preserving its aspect ratio, in order to be boxed in a 
rectangle whose longest side measures one. Then, all coordinates in the glyph are made 
relative to the center of mass of the points. If the glyph contains two or more strokes, 
they are concatenated by simply preserving its time-ordered point sequence and discard-
ing its stroke-level structure. 

In our system, normalizing steps described above are applied to all glyphs as a 
common preprocessing. Moreover, when two glyphs are going to be compared by using a 
certain dissimilarity measure, appropriate glyph versions are employed depending on the 
kind of measure. Different glyph versions are obtained by applying additional processing 
steps to the result of the common preprocessing. An important additional processing step 
in our system, aimed at attaching angular information to merely positional coordinates, is 
one we refer to as segment-based representation: in order to avoid end-point problems in 
the definition of angles, each straight segment determined by a pair of consecutive points, 
pk and pk+1, is represented by its middle point and the angle of 1.k kp p +

uuuuuuur
 Thus, the seg-

ment-based representation of an n-point glyph version is a sequence of n − 1 point/angle 
pairs. 
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(a) (b) 

  
(c) (d) 

Fig. 1. Common preprocessing; (a) Sample glyph as drawn by the writer; (b) Only pairs of con-
secutive points whose angle is between certain limits (shown as vectors) are taken into ac-
count when computing the estimated slant (shown as an arrow in the background); (c) The 
slant can be corrected by means of a shear transform; (d) Normalized version of the glyph: 
the slant is corrected, the scale is normalized to fit into the unit square without affecting the 
aspect ratio, the origin of coordinates is placed at the center of mass of the points, and the 
strokes are joined. 

3. THE RECOGNITION ENGINE 

Our engine has to assign a category label to each glyph it is presented to for recog-
nition, and this classification must be performed in real time, i.e. it should take much less 
than one tenth of a second to provide users with a response. To achieve this, we follow a 
template-based approach to recognition. So, our system needs a corpus of correctly la-
belled glyphs, to be referred to as training set, before starting to classify new, test glyphs. 
Glyphs in the training set are considered prototypes of their categories, and are preproc-
essed in order to store different versions appropriate for the different dissimilarity meas-
ures to be employed for the classification of new glyphs. 

As a first approach, we can consider just a dissimilarity measure and, therefore, just 
one preprocessed version of each prototype stored by our system. A new glyph, after 
suffering the same preprocessing, could be classified as belonging to the category of its 
nearest prototype according to the chosen dissimilarity measure. 

Thus, it makes sense to first consider a well-known technique for sequence com-
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parison such as Dynamic Time Warping (DTW), introduced by Vintsyuk [5] as a com-
parison method for speech, but also appropriate for digital ink. Unfortunately, DTW is 
computationally intensive and does not fulfill our real-time response requirement on cur-
rently conventional hardware. Sakoe and Chiba [6] proposed a technique that speeds up 
DTW by sacrificing correctness but, as we will see, it is still not fast enough for our pur-
poses. On the other hand, some simpler comparison techniques are much faster than 
DTW, but they provide too high error rates. So the approach we finally implemented in 
our engine is a kind of trade-off where fast techniques are employed to preselect a few 
prototypes and accelerated DTW takes a classification decision by comparing the test 
glyph only with prototypes in this reduced set. 

In next subsections, we will present the different techniques employed in our engine 
and how experimental results on the UJIpenchars task [2] guided our decisions on how to 
use them. The UJIpenchars corpus contains glyphs of the 10 digits, the 26 lowercase let-
ters, and the 26 uppercase letters from 11 writers; each person wrote two instances of 
each symbol on a Tablet PC, totaling 1,364 glyphs. Some examples from the corpus are 
illustrated in Fig. 2. Since there are some indistinguishable handwritten characters, such 
as lower and upper “o” and zero, lower and upper “s”, etc., only 35 categories are con-
sidered in its standard classification task: 9 for the “1” to “9” digits and 26 for the lower 
and uppercase versions of each letter, where zero is included in the “o” class. This task is 
a writer-independent one: all glyphs in the corpus are to be classified by considering as 
training set only those glyphs provided by the other 10 writers.  

 
Fig. 2. Some examples from the UJIpenchars corpus. 

 
All the experiments presented in this paper were run on a laptop PC with an Intel 

Core2 CPU T5600 at 1.83 GHz and 2 Gb of RAM on the .NET platform under the Mi-
crosoft Vista Business Edition operating system. The programs were coded in C# without 
unsafe code.  

3.1 Classification with DTW-Based Comparisons 

Given two sequences of possibly different lengths, A = a1a2 … am and B = b1b2 … 
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bn, where each ai and each bj belong to some set Σ, and a dissimilarity measure δ between 
elements in Σ, δ: Σ × Σ → , a very natural way to apply δ to the comparison of se-
quences A and B consists in averaging local dissimilarities between “corresponding” ai 
and bj elements. DTW provides a well-founded way of determining which element pairs 
correspond to each other by solving an optimization problem: the minimum-cost path in 
a directed graph like the one in Fig. 3, from the initial circular node to the top-right cor-
ner one. The cost of each arc mainly depends on the node it arrives to: if it is the one at 
column i and row j, the arc cost will have a factor δ(ai, bj). Moreover, such a cost may be 
affected by a weight associated to the arc direction: horizontal, vertical, or diagonal. In 
the most general case, the cost of the optimal path arriving at node (i, j) can be recur-
sively expressed as 

 
( 1, ) ( , ),

( , ) min ( , 1) ( , ), .

( 1, 1) ( , )

h i j

v i j

d i j

C i j w a b

C i j C i j w a b

C i j w a b

δ

δ

δ

⎧ ⎫− +
⎪ ⎪⎪ ⎪= − +⎨ ⎬
⎪ ⎪− − +⎪ ⎪⎩ ⎭

    (1) 

 
When weights are set as wh = wv = 1 and wd = 2, the dissimilarity between sequences A 
and B can be easily defined in a length-normalized way as 
 

D(A, B) = C(m, n)/(m + n).    (2) 
 

The DTW measure D can be efficiently computed in O(mn) time and O(min(m, n)) 
space by applying Dynamic Programming to the computation of C(m, n) in the graph of 
Fig. 3. Moreover, Sakoe and Chiba [6] proposed a technique to speed up DTW computa-
tion by sacrificing correctness: the node set involved in the search for the minimum-cost 
path in the DTW acyclic graph is then limited by a given maximum vertical distance d 
from the bottom-left-to-top-right diagonal. For instance, Fig. 3 shows as grey nodes those 
ones that would never be visited for d = 2: they would be too far from diagonal nodes, 
marked with dots. Since we always place the longest sequence on the horizontal axis (in 
order to ensure that diagonal nodes, one per column, will form a connected path), the 
running time of this algorithm is O(max(m, n)d). Smaller values of d result in faster but 
less accurate DTW estimations.   

 
Fig. 3. An acyclic graph for DTW. 
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In order to completely specify the DTW measure, the local dissimilarity function δ 
must be defined. We have studied a linear combination of squared Euclidean distance 
between points and minimum angular difference applied to the point/angle pairs of seg-
ment-based representation of glyphs, where the angular difference, measured in radians, 
is affected by a factor α ≥ 0.   

Finally, classifying a test glyph as belonging to the category of its most similar pro-
totype is just a particular case of the more general k-Nearest-Neighbours (k-NN) rule: 
each one of the k more similar prototypes votes for its own category, and the winner 
category becomes the classifier response. Ties can be solved by applying 1-NN to just 
the prototypes voting for the tied categories. 

So there are three parameters to be empirically set: distance d determining the 2d + 
1 width of the Sakoe-Chiba band; the weight α affecting angular distances in the dis-
similarity measure δ between point/angle pairs; and the number of prototypes k for the 
k-NN classification rule. We first considered a large band width by provisionally setting 
d = 20 and measured error rates for several values of α and k (main results are plotted in 
Fig. 4 (a)). We found that k = 3 is the best choice for every value we had considered for 
α and that the lowest error rate, 11.22%, is achieved at α = 0.09. As expected, the time 
cost, about 200 milliseconds per glyph (ms/glyph), makes the approach unsuitable for 
real-time recognition. Once k and α were fixed, we tried to determine how much DTW 
band width can be reduced without affecting classification results too much, and results 
of the corresponding experiment are plotted in Fig. 4 (b). The choice d = 18 preserves the 
error rate for d = 20, but does not reduce time cost significantly. Another interesting 
value for d is 8: error rate 11.44% is slightly worse, but time cost is reduced to a half. 
However, to achieve less than 25 ms/glyph, d must be reduced to 1, and then error rate 
grows to 16.94%. Thus, empirical results showed that real-time recognition requires a 
different approach.  

Approximate DTW with d = 20
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Approximate DTW with α = 0.09 and 3-NN
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(a)                                         (b) 

Fig. 4. Experimental results for (a) setting parameters α and k and (b) reducing parameter d. 

 
3.2 Fast Comparison Techniques 

 
The main reason for DTW to be computationally expensive is its search for a path 

determining which element pairs correspond to each other in the comparison of two pos-
sibly-different-length glyph representations. By using an appropriate resampling as a glyph  
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(a)                           (b)                            (c) 

Fig. 5. Segment-based resampling; (a) Normalized glyph after common preprocessing; (b) A fixed 
number, m + 1, of equally-spaced points are sampled along the path; (c) The final result is a 
sequence of m point/angle pairs. 

 
processing step, glyph versions of fixed length can be obtained for the application of 
faster dissimilarity measures. The first additional processing step we follow for repre-
senting a sequence-of-points glyph resulting from common preprocessing as a sequence 
of m point/angle pairs consists in resampling the glyph arc at m + 1 points equally spaced 
along their arc length, assuming straight lines between every pair of consecutive points in 
the original glyph. After this, a segment-based representation (as explained in section 2) 
provides the desired m point/angle pairs. This combination of two processing steps will 
be referred to as “resampling to m segments” (see Fig. 5).   
 
3.2.1 One-to-one alignment 

 
Once glyphs are represented by sequences having the same length, m, we can com-

pare them by means of a one-to-one alignment: 

1
( , ) ( , ).i i

i m
D A B a bδ

≤ ≤
= ∑     (3) 

This value can be computed in O(m) time, which is significantly faster than DTW 
techniques. The resampling size m should be carefully chosen, since both the error rate 
and the running time depend on it. For the parameter α affecting δ, we kept the previ-
ously fixed value, 0.09. 

 
3.2.2 Region/direction-histogram comparison 
 

As a second fast comparison technique, we have explored one where glyphs are rep-
resented as histograms. After common preprocessing and resampling to m segments, the 
minimum bounding box of the resulting glyph version is partitioned into 9 regions with a 
3 × 3 grid. Then, for each point/angle pair, the point is replaced with its corresponding 
region label and the angle is discretized using a standard 8-direction code. Finally, from 
the resulting sequence of m region/direction pairs, a histogram consisting of 9 × 8 = 72 
pair counts is obtained (see Fig. 6). If we let ai and bi now denote the values at the ith 
histogram cells for glyphs A and B, the two histogram distance functions we have studied 
can be expressed as follows: 
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(a)                                    (b) 

Fig. 6. Histogram representation of a glyph; (a) Transformation of its sequence of point/angle pairs 
into a set of region/direction pairs; the glyph bounding box has been divided into 3 × 3 re-
gions and each angle has been discretized using a standard 8-direction code; (b) The same 
glyph as a histogram consisting of 3 × 3 × 8 cells. 

 
• the Manhattan distance, as 
 

1 72
( , ) ;i i

i
D A B a b

≤ ≤
= −∑     (4) 

 
• a χ2-like distance, as  

2

1 72
0

( / / )
( , ) .

( ) / 2
i i

i i

i ii
a b

a m b m
D A B

a b m≤ ≤
+ >

−
=

+∑     (5) 

Both distances can be computed in O(1) time, independently of m. Thus, the resam-
pling size m only marginally affects total time classification costs because of its influence 
in glyph processing steps, but the error rate may strongly depend on it. Moreover, both 
the error rate and the running time depend on the distance employed for histogram com-
parison.  

 
3.2.3 Discussion on fast methods 
 

Fig. 7 shows the error rate (left) and the time needed to classify a glyph (right) as a 
function of the resampling size m. The best 3-NN error rate, 17.08%, is obtained by the 
χ2-like distance when m = 130 employing less than 6 ms/glyph. The other histogram dis-
tance, the Manhattan one, is faster but more inaccurate: it gets its best error rate, 18.33%, 
at m = 60 in less than 2.5 ms/glyph. One-to-one alignment, which provides clearly worse 
results than histogram-based distances, presents its best error rate at m = 90: 19.50% in 
around 6 ms/glyph; at m = 20, a similar error rate, 19.57%, is achieved with time cost 
reduced to a half. Thus, these comparison techniques are actually much faster than DTW, 
but the error rates they provide are too high for such techniques to be employed as final 
classifiers in a practical recognition engine. However, they can be used to focus the 
search of a 3-NN DTW-based classifier on a reduced set of prototypes, as we will see in 
the next subsection. 
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Fig. 7. Experimental results for choosing fast comparison methods and their parameters. 

 
3.3 The Two-Stage Recognition Procedure 

 
In our previous paper [1], fast comparison methods were employed for preselecting 

categories. Given a fast method, a test glyph, and a given number c of desired candidates, 
the method ranked prototypes first, then only one best prototype per category was re-
tained, and the c-best categories in the resulting category ranking were returned; finally, 
all prototypes in the training set belonging to these c candidate categories were included 
in the selected prototype set to be considered by the approximate DTW classifier. The 
rationale behind that design choice was to provide the final classifier with all the infor-
mation that could be useful for choosing between preselected possible responses. This 
could have, however, a couple of disadvantages. On one hand, prototypes belonging to 
candidate categories but being very different from the test glyph are not going to influ-
ence the classification decision, but their DTW comparisons are going to slow down the 
system. On the other hand, how parameter c affects classification times is too much task 
dependent: how many prototypes will be passed to the final classifier per each selected 
category? Thus, we have recently decided to study a different, more direct way of inter-
preting the number c of desired candidates: in this case, only the c-best prototypes, as 
ranked by the corresponding fast method, would be included in the preselected prototype 
set. 

In order to fairly compare different engine settings, error rates were plotted against 
their time costs, as shown in Fig. 8. Only settings consuming less than 25 ms/glyph were 
considered. For each comparison method (approximate DTW, one-to-one alignment, and 
histogram comparison), parameters were set to the values providing best 3-NN error rates 
in previously shown experiments. Selecting candidates using only one-to-one alignment 
did not provide interesting results, as expected, and we found out that the best error rate, 
10.85%, can be achieved in only 18 ms/glyph when both one-to-one alignment and our 
χ2-like distance select 20 candidate prototypes each one. Though this is the setting finally 
decided for our engine, as depicted in Fig. 9, additional experiments have shown us that 
further research is needed in order to conclude more general facts about best method 
combination. For instance, the same error rate, 10.85%, can be achieved with a similar 
time cost (14 ms/glyph) applying quite different engine settings: when the Manhattan 
histogram distance (with m = 60) selects 5 candidate categories for an approximate DTW 
classifier with a reduced band width, d = 8. 
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Approximate DTW with α = 0.09, d = 18, 3-NN
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Fig. 8. Experimental results for choosing how to use fast methods in our engine. 

 
Fig. 9. Recognition engine. 

4. COMPARISON WITH OTHER RECOGNITION ENGINES 

On UJIpenchars task [2], we can compare our new results with those presented at 
CCIA 2007 [1]: our old engine achieved an 11.58% error rate in around 20 ms/glyph 
(and 11.51% in around 30); now we get better recognition results, a 10.85% error rate, 
without needing more time. We have also run C# experiments with the 1.7 version of the 
Microsoft Tablet PC SDK recognition engine, using a Microsoft.Ink.RecognizerContext ob-
ject with an appropriate WordList and flags Coerce and WordMode: it fails the glyph cate-
gory for 14.74% of the original corpus glyphs (no preprocessing at all) and classification 
runs in less than 5 ms/glyph. If we help the Microsoft recognizer by providing it with the 
dimensions of the acquisition box via its Guide property, both error rate and time drop to 
a very impressive 8.36% in less than 1 ms/glyph, so we plan to study how we can incor-
porate such kind of positional information in future versions of our engine. 

Finally, we have run a standard experiment on the original, non-normalized version 
of the Pendigits database [4], available at the UCI Machine Learning Repository [3] too. 
This corpus contains handwritten instances of the 10 digits from several writers: 7,494 
glyphs from 30 writers are used as training set and 3,498 glyphs from 14 different writers 
are used as test data. Our new engine, with exactly the same settings depicted in Fig. 9, 
obtains on this writer-independent task a 0.60% error rate in 70 ms/glyph. This is an im-
portant improvement on our previous result (a 0.83% while tripling classification time) 
and the error rate is significantly better than both recent results published in the literature 
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for the same experiment (2.26% in 2005 [7]; 1.66% in 2006 [8]) and the one we get from 
the Microsoft recognizer even properly setting its Guide property (1.89%; and 4.20% 
without that setting). However, our engine needs new improvements for keeping recog-
nition times low, as the ones it gets on the UJIpenchars corpus, when facing tasks with 
larger training sets, as Pendigits is: maybe some kind of test-glyph-independent preselec-
tion of prototypes to control the number of fast comparisons our current engine has to 
make in its first stage. 

5. CONCLUSIONS 

We have improved our recognition engine for isolated handwritten characters and 
presented new experimental work for tuning its parameters and for comparing its per-
formance with that of the Microsoft recognition engine. The error rate achieved on a 
standard experiment with the Pendigits database, 0.60%, is significantly lower than both 
the error rate of other recently published techniques and the one we obtain from Micro-
soft’s engine. Moreover, we have identified two promising sources for future improve-
ment: using information about glyph position relative to its acquisition box and con-
densing the training set for retaining just its most informative prototypes.   
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