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P. Albertos

pedro@aii.upv.es
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Abstract

In this paper, the problem of observing the state of a class of discrete

nonlinear system is addressed. The design of the observer is dealt with

using H∞ performance techniques, taking into account disturbance and

noise attenuation. The result is an LMI optimization problem that can be

solved by standard optimization techniques. A design strategy is proposed

based on the available disturbances information.

1 Introduction

The design of observers for non linear discrete systems has been studied by sev-
eral authors in the literature. The idea behind is to obtain information about
internal variables which are not directly available at the output, they are cor-
rupted by noise or, in any practical situation, they are not accessible any time
they are required. As usual in the nonlinear setting, there is no general solu-
tion for any nonlinearity. Observability conditions, as reviewed in [2], must be
assumed. The simplest general assumption is to consider that the state and
measurement functions satisfy some conic condition, [14]. Also, model uncer-
tainties, noise and disturbances are assumed to be generally bounded. Most of
the published works deal with a class of linear systems with additive nonlinear-
ity characterized by a non linear term in the state and output equation, that are
assumed to fulfill a Lipschitz condition. The use of linear matrix inequalities
has made possible to address the design of observers for that class of systems
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surpassing the drawbacks of previous approaches, where a high gain was needed
to compensate for the non linear term, as initially proposed in [3]. Another
alternative is the use of proportional/integral observers [1], that is, observers
where the corrective action is proportional to the observation error and its in-
tegral, leading to a more complex observer dynamics. This approach has been
applied for single output continuous time uniformly observed systems [4].

There are three ways of considering the Lipschitz condition in the additive
nonlinearity in order to incorporate it in the LMI. The simplest one is the scalar
form, consisting of

‖f(x1) − f(x2)‖ ≤ γ‖x1 − x2‖. (1)

This condition is taken into account, for example, in [15]. The drawback
of this approach is that it can lead to very conservative results, or even to the
non feasibility of the LMI for large γ. A more complex form of the Lipschitz
condition consists of incorporating a matrix in the form

‖f(x1) − f(x2)‖ ≤ ‖F (x1 − x2)‖. (2)

The advantage of this approach is that if the matrix F is adequately chosen,
based on the form of the function f(x), the resulting LMI is less conservative
and more likely to have a feasible solution. This approach is used, for example,
in [10], [11] or [13].

The most complex form of the Lipschitz condition (proposed in [16]) assumes
that there are known upper and lower bounds on the elements of the jacobian
matrix of f(x), as

aij ≤
∂fi

∂xj

≤ bij . (3)

This idea, and the use of the differential mean value theorem (DMVT), allows
to express the condition as

f(x1) − f(x2) =





n∑

i,j=1

hijMij



 (x1 − x2) (4)

where Mij are empty matrices, except the element i, j that is 1, and where the
terms hij are time varying but bounded by aij ≤ hij ≤ bij . Based on this
condition, the error dynamics can be expressed as a Linear Parameter Varying
system, with bounded parameters, that can be taken into account easily in the
LMI’s by considering the convex hull. The advantage of this approach is that
less conservative results can be obtained. The important drawback is that the
number of LMI to be solved simultaneously can grow exponentially with the
system order (for a system of order n with p outputs the number of LMI can be

up to 2n2
+np).

In the present paper, the design of observers for non linear discrete systems
is addressed. The Lipschitz condition in the form of matrix F is considered,
and the disturbance and noise attenuation are taken into account in order to
minimize the norm of the estimation error. The use of Lipschitz matrix condi-
tions is similar to the one developed in [10] and extended in [12] (where time
delays and uncertainties are also considered) for continuous systems. In [13],
the discrete observer design based on the matrix Lipschitz condition is studied,
but the disturbances are not taken into account. In [15], on the other hand,
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the discrete case is also studied, but with the scalar Lipschitz condition and no
disturbances consideration. With respect to the approach developed in [16], the
presented work has the advantage of reaching a simple to solve LMI optimiza-
tion problem, that consists of one single LMI, independently of the system order
(compared to the up to 2n2

+np simultaneous LMI that must be solved in [16]).
The drawback is that the result of the proposed approach is more conservative
than the one presented in [16], and therefore, some problems solved by that
approach could lead to an unfeasible LMI if the approach of the present paper
is used. On the other hand, the proposed approach can be extended to the
case when the outputs are measured scarcely and irregularly in time, increasing
the LMI’s to be solved to a number equal to the possible measuring scenarios,
while extending the approach of [16] to this case could lead to a really huge and
almost unsolvable number of LMI’s. In summary, the contribution of the paper
is the design of a discrete observer for H∞ disturbance attenuation, based on
a matrix Lipschitz condition in the nonlinear terms, that has the advantage of
a less conservative result if compared to previous works that use scalar Lips-
chitz conditions, and the advantage of a much simpler (lower computer cost)
optimization problem to be solved compared to the approach in [16].

The outline of the paper is as follows: first, the problem is introduced,
including the plant and observer equations, then, the prediction error dynamics
is obtained, and the main result (the H∞ design of the observer) is developed.
Some examples illustrate the applicability of the proposed approach, compared
with other works, and finally the main conclusions are summarized.

2 Problem statement

2.1 Plant and observer

Consider a discrete nonlinear time-invariant MIMO system described by the
equations

x[t + 1] = Ax[t] + f(x[t], u[t]) + w[t], (5a)

y[t] = C x[t] + h(x[t]) + v[t]. (5b)

where x ∈ R
n is the state, u ∈ R

nu is the control input vector, y ∈ R
ny is the

measured output variables, w[t] ∈ R
n is the state disturbance and v[t] ∈ R

ny

is the measurement noise. The pair (A, C) is assumed to be observable. The
functions f(·) : Rn+nu → R

n y h(·) : Rn → R
ny are known nonlinear functions

that are assumed to fulfill the Lipschitz condition, i.e.,

‖f(x1, u) − f(x2, u)‖p ≤ ‖F · (x1 − x2)‖p, (6)

‖h(x1) − h(x2)‖p ≤ ‖H · (x1 − x2)‖p, (7)

for any vectorial norm p.
In order to estimate the state from the output measurements, a model based

observer is proposed. The state is initially estimated in open loop, leading to

x̂[t−] = A x̂[t − 1] + f(x̂[t − 1], u[t − 1]), (8a)

This estimation is updated with the measurement as

x̂[t] = x̂[t−] + L (y[t] − C x̂[t−] − h(x̂[t−])). (8b)
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where L is the gain matrix to be designed.
The dynamic of the state observer depends on the gain matrix, L, that

must be designed to assure predictor stability and a proper attenuation of the
disturbances and sensor noises.

2.2 Prediction error

In order to design a predictor, that is, the predictor gain L, with these properties,
the prediction error dynamic equation must be obtained, that is, an explicit
relationship between prediction error at measurement instants t and previous
one t− 1 must be obtained. If the process equations are introduced in the state
estimation equations, (8), the estimation error can be expressed as

x̃[t] =Ax̃[t − 1] + f(x[t − 1], u[t− 1]) − f(x̂[t − 1], u[t − 1])−

− L
(
Cx̃[t−] + h(x[t]) − h(x̂[t−])

)
+ w[t − 1] − Lv[t]

where x̃[t] = x[t]− x̂[t]. As it is observed, due to the presence of f and h, it is
not possible to explicitly write x̃[t] as a function of x̃[t−1]. In order to simplify
the next mathematical developments, the following notation is introduced

x̃[t−] = x[t] − x̂[t−],

f̃ [t] = f(x[t], u[t]) − f(x̂[t], u[t]),

h̃[t−] = h(x[t]) − h(x̂[t−]).

The predictor error dynamics at sampling instants can then be written as

x̃[t] = x̃[t−] − L
(

Cx̃[t−] + h̃[t−] + v[t]
)

, (9)

where the open loop estimation error (x̃[t−]) can be written as a function of the
information at the previous control period as

x̃[t−] = Ax̃[t − 1] + f̃ [t − 1] + w[t − 1], (10)

and the functions f̃ [t] and h̃[t−] fulfill

‖f̃ [t]‖ ≤ ‖F x̃[t]‖, (11)

‖h̃[t−]‖ ≤ ‖H x̃[t−]‖. (12)

The design objective of the predictor is to find a gain L that stabilizes the
observer and assures a proper attenuation of state disturbance and measurement
noise. For the next section some previous results must be obtained.

Lemma 1 [9] For any pair of vectors x, y ∈ R
n and any positive definite

matrix P ∈ R
n×n, the following condition holds

2x
⊺

y ≤ x
⊺

Px + y
⊺

P−1y.

Lemma 2 Assume that x is a vector and A, B, P are matrices of proper
dimensions, such that P is symmetric and positive definite (P = P

⊺

> 0).
Assume that y is a vector that satisfies

‖y‖ ≤ ‖F x‖, (13)
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being F a matrix of proper dimensions. Then, for any ε > 0

(Ax + By)
⊺

P (Ax + By) ≤ x
⊺

Wx, (14)

with

W = A
⊺

(

P + PB
(

εI − B
⊺

PB
)
−1

B
⊺

P

)

A + εF
⊺

F . (15)

Proof 1 Expanding the left expression in (14) one obtains

(Ax + By)
⊺

P (Ax + By) = x
⊺

A
⊺

PAx + 2x
⊺

A
⊺

PBy + y
⊺

B
⊺

PBy.

Adding and subtracting εy
⊺

y on the right term it yields

(Ax + By)
⊺

P (Ax + By) = x
⊺

A
⊺

PAx+2x
⊺

A
⊺

PBy−y
⊺

(

εI − B
⊺

PB
)

y+εy
⊺

y.

Applying lemma 1, it leads to

(Ax + By)
⊺

P (Ax + By)≤x
⊺

A
⊺

PAx+x
⊺

A
⊺

PB
(

εI − B
⊺

PB
)
−1

B
⊺

PAx+εy
⊺

y.

Taking into account (13) it is easy to obtain

(Ax + By)
⊺

P (Ax + By)≤x
⊺

(

A
⊺

PA+A
⊺

PB
(

εI − B
⊺

PB
)
−1

B
⊺

PA + εF
⊺

F

)

x.

Lemma 3 Assume x and u are vectors and B, P matrices of proper dimen-
sions (such that P = P

⊺

> 0). Then, for any Γ ≻ 0

(x + Bu)
⊺

P (x + Bu) − u
⊺

Γ2u ≤ x
⊺

Wx, (16)

with

W = P + PB
(

Γ2 − B
⊺

PB
)
−1

B
⊺

P . (17)

Proof 2 Expanding the left expression in (16) it is easy to obtain

(x + Bu)
⊺

P (x + Bu) − u
⊺

Γ2u = x
⊺

Px + 2x
⊺

PBu − u
⊺
(

Γ2 − B
⊺

PB
)

u.

Applying lemma 1, it leads to

(x + Bu)
⊺

P (x + Bu) − u
⊺

Γ2u ≤ x
⊺

(

P + PB
(

Γ2 − B
⊺

PB
)
−1

B
⊺

P

)

x.

3 H∞ design

Theorem 1 Consider the predictor algorithm (8) applied to system (5). For
some given Γw,Γv > 0, assume that there exist some matrices P = P

⊺

∈ R
n×n,

X ∈ R
n×ny and some scalars εf , εh > 0 such that the next inequality fulfills













P PA − XCA P − XC P − XC X X

⋆

(
P − I − ǫfF

⊺

F

−ǫhA
⊺

H
⊺

HA

)

−ǫhA
⊺

H
⊺

H −ǫhA
⊺

H
⊺

H 0 0

⋆ ⋆ ǫfI − ǫhH
⊺

H −ǫhH
⊺

H 0 0
⋆ ⋆ ⋆ Γ2

w − ǫhH
⊺

H 0 0
⋆ ⋆ ⋆ ⋆ ǫhI 0
⋆ ⋆ ⋆ ⋆ ⋆ Γ2

v













≻0,

(18)

5



with
Γv = diag{γv1

, . . . , γvny
}

Γw = diag{γw1
, . . . , γwn

}.

Then, defining the predictor gain matrix as L = P−1X, under null disturbances,
the prediction error converges to zero asymptotically, and, under null initial
conditions, the following condition holds

‖x̃[t]‖2
2 ≤ ‖Γvv[t]‖2

2 + ‖Γww[t]‖2
2. (19)

Proof 3 In order to prove the theorem, a cost index including estimation error
and disturbances is created. That index is bounded using the Lyapunov function
of the state estimation error. Introducing the state estimation error dynamics
in the index bound it is demonstrated that if LMI (18) holds, then the cost
index is negative and therefore, condition (19) holds. It is also demonstrated
that if (18) holds, then the Lyapunov function of the state estimation error
decreases, proving the convergence of the state estimation algorithm.

Consider the index

J =

∞∑

t=0

(

x̃[t]
⊺

x̃[t] − v[t]
⊺

Γ2
vv[t] − w[t]

⊺

Γ2
ww[t]

)

.

Taking the Lyapunov function V [t] = V(x̃[t]) = x̃[t]
⊺

Px̃[t] and assuming null
initial conditions, one can write

J ≤

∞∑

t=1

(

x̃[t − 1]
⊺

x̃[t − 1] − v[t − 1]
⊺

Γ2
vv[t − 1] − w[t]

⊺

Γ2
ww[t]

)

+ V [t]|t=∞ − V [t]|t=0

=

∞∑

t=1

(

x̃[t − 1]
⊺

x̃[t − 1] − v[t − 1]
⊺

Γ2
vv[t − 1] − w[t]

⊺

Γ2
ww[t] + ∆V [t]

)

,

where ∆V [t] = V [t] − V [t − 1]. Substituting ∆V [t] by

∆V [t] = x̃[t]
⊺

Px̃[t] − x̃[t − 1]
⊺

Px̃[t − 1]

=
(

(I − LC)x̃[t−] − Lh̃[t−] − Lw[t]
)

︸ ︷︷ ︸

⋆

⊺

P (⋆) − x̃[t − 1]
⊺

Px̃[t − 1],

lemma 3 can be applied to eliminate the term v[t]
⊺

Γ2
vv[t], leading to

J ≤
∞∑

t=1

(

x̃[t − 1]
⊺

(I − P )x̃[t − 1] − v[t − 1]
⊺

Γ2
vv[t − 1]

+
(

(I − LC)x̃[t−] − Lh̃[t−]
)

︸ ︷︷ ︸

⋆

⊺

Pv (⋆)




 .

with

Pv = P + PL
(

Γ2
v − L

⊺

PL
)
−1

L
⊺

P . (20)
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Applying lemma 2 to eliminate the term h̃[t−] it yields

J ≤

∞∑

t=1

(

x̃[t − 1]
⊺

(I − P )x̃[t − 1] − w[t − 1]
⊺

Γ2
ww[t − 1] + x̃[t−]

⊺

Phx̃[t−]
)

.

with

Ph = (I − LC)
⊺

(

Pv + PvL
(

ǫhI − L
⊺

PvL
)
−1

L
⊺

Pv

)

(I − LC) + ǫhH
⊺

H .

(21)

Substituting the open loop prediction error by x̃[t−] = Ax̃[t−1]+f̃ [t−1]+w[t−1]
and applying lemma 3 to eliminate the term w[t − 1]

⊺

Γ2
ww[t − 1] it yields

J ≤

∞∑

t=1



x̃[t − 1]
⊺

(I − P )x̃[t − 1] + (Ax̃[t − 1] + f̃ [t − 1])
︸ ︷︷ ︸

⋆

⊺

Pw(⋆)



 ,

with
Pw = Ph + Ph

(
Γ2

w − Ph

)
−1

Ph. (22)

Applying now lemma 2 it yields that

J ≤

∞∑

t=1

(

x̃[t − 1]
⊺

(I + Pf − P )x̃[t − 1]
)

, (23)

with
Pf = A

⊺
(

Pw + Pw (ǫfI − Pw)
−1

Pw

)

A + ǫfF
⊺

F . (24)

Condition (19) holds if J < 0, but this will always be true if

I + Pf − P ≺ 0.

Substituting Pf as a function of Pw (using (24)) and applying Schur comple-
ments, the previous condition is equivalent to condition

[
A

⊺

PwA − P + I + ǫfF
⊺

F A
⊺

Pw

PwA Pw − ǫfI

]

≺ 0.

sustituting Pw as a function of Ph (using (22)) and applying Schur complements
leads to





A
⊺

PhA + ǫfF
⊺

F − P + I A
⊺

Ph A
⊺

Ph

PhA Ph − ǫfI Ph

PhA Ph Ph − Γ2
w



 ≺ 0.

Substituting Ph as a function of Pv (using (21)) and applying Schur comple-
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ments it leads to








(
P − ǫfF

⊺

F − I

−ǫhA
⊺

H
⊺

HA

)

−ǫhA
⊺

H
⊺

H −ǫhA
⊺

H
⊺

H 0

−ǫhH
⊺

HA ǫfI − ǫhH
⊺

H −ǫhH
⊺

H 0
−ǫhH

⊺

HA −ǫhH
⊺

H Γ2
w − ǫhH

⊺

H 0
0 0 0 ǫhI









−

−







A
⊺

(I − LC)
⊺

(I − LC)
⊺

(I − LC)
⊺

L
⊺







Pv







A
⊺

(I − LC)
⊺

(I − LC)
⊺

(I − LC)
⊺

L
⊺







⊺

≻ 0.

Substituting Pv as a function of P using (20), applying Schur complements
twice, and taking into account that PL = X it finally leads to (18).

Applying the same mathematical manipulations as before, the increment of
the Lyapunov function, i.e.,

∆V [t] = x̃[t]
⊺

Px̃[t] − x̃[t − 1]
⊺

Px̃[t − 1],

will be negative if









P P (I − LC)A P (I − LC) PL

⋆

(
P − ǫfF

⊺

F

−ǫhA
⊺

H
⊺

HA

)

−ǫhA
⊺

H
⊺

H 0

⋆ ⋆ ǫfI − ǫhH
⊺

H 0
⋆ ⋆ ⋆ ǫhI









≻0, (25)

holds. It must be noted that the matrix in inequality (25) can be formed taking
the first, second, third and fifth blocks of rows and columns of matrix in LMI (18)
with X = PL and adding matrix diag{0, I,0,0}, that is a semidefinite matrix.
This implies that if (18) holds, (25) holds, and then, the Lyapunov function of
the state observed error decrease and the estimation error of algorithm (under
null disturbances and noises) decreases exponentially to zero.

Remark 1 (Design procedure) If the ℓ2 norm of disturbance and noise mea-
surement signals are considered to be known, the upper bound on ‖x̃[t]‖2 can be
reduced to a minimum value by minimizing

ny∑

i=1

γ2
vi
‖vi[t]‖

2
2 +

n∑

i=1

γ2
wi
‖wi[t]‖

2
2

along the variables γvi
, γwi

, P and X that satisfy the LMI (18). This convex
minimization problem can be easily addressed using standard LMI solvers (such
as Matlab LMI toolbox) that solve problems of the form

Minimize h
⊺

x subject to M(X) ≺ 0, (26)

where h is a constant vector, X denotes the matrix variables, x is a vector
with all the components of X, and M(X) represents the matrices of the LMI
problem. The computation cost of this minimization problem for one simple
LMI, such as (18), is relatively low. First, Γ2

v and Γ2
w must be expressed as
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matricial variables and γ2
v1

, . . . , γ2
vnv

, γ2
w1

, . . . , γ2
wnm

must be written as the last

components of vector x in (26). Then, the vector h
⊺

is defined as

h
⊺

= [0 . . . 0 ‖v1[t]‖
2
2 . . . ‖vny

[t]‖2
2 ‖w1[t]‖

2
2 . . . ‖wn[t]‖2

2].

The previous remark also applies if the RMS norms of the disturbances and
measurement noise are known. In that case, the upper bound on ‖x̃[t]‖RMS can
be minimized if

γ2
v‖v[t]‖2

RMS + γ2
w‖w[t]‖2

RMS

is minimized along all variables γv, γw, P and X that satisfy the LMI (18).

Remark 2 With respect the practical computation of matrices F and H, a
simple general procedure may be to calculate the jacobian of f and h, and then
to obtain the maximum of the absolute values of each one of their elements, in
the domain of validity of the involved variables for the specific problem. Those
maximums would then form the elements of matrices F and H. For a specific
problem, however, tighter matrix bounds F and H could perhaps be obtained
through the exploitation of the structure of the particular functions f and h.

Remark 3 The proposed approach can be extended to the case when the mea-
surements are taken irregularly and scarcely in time (see [7] for details in the
linear case). Assume that the output y[t] is measured only every Nk periods,
where Nk can take values in a finite integer set of size s, and define tk as the
instant when the k-th measurement is taken (hence Nk = tk − tk−1). Then the
prediction error at instant tk can be expressed as a function of the error at in-
stant tk−1, using a variant observer matrix gain Lk that is a function of Nk. As
a result, if there are s possible values of Nk, one can obtain s LMI’s to be solved
to obtain s matrix gains, L(Nk) that are precalculated off line and applied as a
function of the measurement characteristics, Nk. The authors are finishing the
detailed development of the irregular measurement case.

On the other hand the extension of the work presented in [16] to the scarce
measurement case would lead to a huge and almost unsolvable number of LMI’s.

4 Examples

In this section some examples will illustrate the applicability of the proposed
observer design technique, comparing it with other approaches.

4.1 Example 1

Consider the example of the flexible robot modeled in [5] and [8], being stud-
ied [6] and [16] (example 1). If an Euler approximation is applied, the dynamics
of the robot can be described by equations

x[t] = (I + TA)x[t − 1] +







0
0
0

−3.33T sin(x3)







+ w[t − 1]

y[t] = Cx[t] + v[t]
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Figure 1: States (solid lines) and estimations (dotted lines)

where T is the sampling period and

A =







0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0







, C =
[
1 0 0 0

]

The components of the state represent the angular position of the motor (x1),
its angular velocity (x2), the angular position of the link (x3) and its velocity
(x4). Vector w is the state disturbance whose components are null except the
third one with an assumed norm of ‖w3‖2 = 0.1T , and v is the measurement
noise with an assumed norm ‖v‖2 = 0.1. The matrix F that fits the Lipschitz
condition is in this case

F =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 3.33T 0







.

If the method proposed in this work is applied, an observer gain

L =
[
0.9996 16.5691 1.9360 −5.1833

]⊺

is obtained. This gain cannot be compared with the one obtained in [16] because
here a discrete-time observer is considered, but in figure 1 the evolution of the
state and its estimate is shown to be similar to the behavior reached in [16].
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If the scalar Lipschitz condition is applied, that is:

‖f(x[t]) − f(x̂[t])‖ ≤ 0.33T ‖x̃[t]‖

the solution of the LMI problem is unfeasible (applying LMIs on this work
with matrix F = 0.33TI), showing that the matrix Lipschitz condition is less
conservative than the scalar one.

The proposed method calculates the gain as a function of the available infor-
mation of disturbances and measurement noises. To show this idea, assume now
that the system has a smaller measurement noise of ‖v‖2 = 0.01. The resulting
observer gain is then

L =
[
0.9998 24.0856 3.3106 −6.5132

]⊺

.

On the other hand, if the input disturbance is assumed to have an smaller value
of ‖w3‖2 = 0.01T , the resulting observer gain is

L =
[
0.9996 12.5120 1.3297 −4.1024

]⊺

.

This shows that the proposed design strategy fits the observer gain to mini-
mize the observation error taking into account the available information of the
disturbances and noises.

4.2 Example 2

Consider the MIMO discrete time non linear system defined by

A =





0.15 0.2 −0.01
0.1 0.9 −0.1
0.02 0.26 0.8



 B =





0.6 0.4
1 0

0.15 0.9



 C =

[
0.5 1 0.5
0 −1.5 1

]

f(x, u) = B u +





0.05 sin(x1)cos(2x2) − 0.01 sin(x3)
0.01 sin(x2)cos(2x1)sin(x3)

0.15 sin2(3x3) + 0.01 sin(x2)cos(3x1)





h(x) =

[
0.05 sin(2x1)cos(x2)sin(2x3)

0.05 cos2(x3) + 0.05 sin(2x2)cos(x1)

]

and assume that the disturbances w and v are vectors of independent white
noises of variances 0.2, 0.3, 0.1 and 0.1, 0.1 respectively.

In this case the matrices that define the bounds on the Lipschitz conditions
of f and h are easy to obtain

F =





0.05 0.1 0.01
0.02 0.01 0.01
0.03 0.01 0.9





H =

[
0.1 0.05 0.1
0.05 0.1 0.1

]

Applying the proposed design method, the following observer matrix gain is
obtained:

L =





0.1048 0.01135
0.5409 −0.2762
0.8134 0.5439



 ,
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Figure 2: States, outputs (solid lines) and estimations (dotted lines)

and its implementation leads to the state estimations shown in figure 2. On the
other hand, if a scalar Lipschitz condition is taken into account instead of the
matrix one, the value of the bounding constant would be γ = 0.9. In this case,
the resulting LMI is unfeasible, and hence, no solution can be found. Finally,
in order to apply the method described in [16], a huge number of 215 = 32768
LMI’s should be solved simultaneously, because in this case n = 3, p = 3, q = 2,
implying a huge computational effort.

5 Conclusions

In this paper, the design of observers for non linear discrete systems has been
addressed. The non linear terms in the state and output equation has been
assumed to fulfill a matrix Lipschitz condition, leading to a less conservative
result than the assumption of a scalar Lipschitz condition.

The proposed design strategy takes into account the attenuation of distur-
bances and measurement noise.

The final design procedure is based on the solution of a convex minimization
problem subject to a linear matrix inequality, that can be solved by means of
standard LMI solvers.

The problem is formulated in terms of the available knowledge about the
norms of the disturbances, leading to a solution that minimizes the bound on
the state estimation error norm.

The proposed approach is suitable to be extended to the case when the
measurements are taken scarcely and irregularly in time. Those alternative

12



approaches already discussed would also lead to a huge number of LMI’s to be
solved.
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