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Ciencia de Computadores

Universidad Jaime I
12.071–Castellón, Spain

{quintana,gquintan}@icc.uji.es

Abstract

As part of the FLAME project, we have been dilligently developing new methodologies for analyzing,
designing, and implementing linear algebra libraries. While we did not know it when we started, these
techniques appear to solve many of the programmability problems that now face us with the advent of
multicore and many-core architectures. These efforts have culminated in a new library, libflame, which
strives to replace similar libraries that date back to the late 20th century. With this paper, we introduce
the scientific computing community to this library.

1 Why a New Library

How do we convince people that in programming simplicity and clarity — in short:
what mathematicians call “elegance” — are not a dispensable luxury, but a crucial
matter that decides between success and failure?

Edsger W. Dijkstra

During the past decade, the FLAME project, a collaborative effort between The University of Texas at
Austin and Universidad Jaime I de Castellon, has developed a unique methodology, notation, tools, and
set of application programming interfaces (APIs) for deriving and representing linear algebra libraries. In
an effort to better promote the techniques characteristic to the FLAME project, we have implemented a
functional library that demonstrates findings and insights from the last decade of research. We call this
library libflame.

The primary purpose of libflame is to provide the scientific and numerical computing communities
with a modern, high-performance dense linear algebra library that is extensible, easy to use, and available
under an open source license. Its developers have published two books, numerous papers, and even more
working notes over the last decade documenting the challenges and motivations that led to the APIs and
implementations present within the libflame library [11]. Seasoned users within scientific and numerical
computing circles will quickly recognize the general set of functionality targeted by libflame. In short, in
libflame we wish to provide not only a framework for developing dense linear algebra solutions, but also a
ready-made library that is, by almost any metric, easier to use and offers competitive (and in many cases
superior) real-world performance when compared to the more traditional Basic Linear Algebra Subprograms
(BLAS) [8, 9, 16] and Linear Algebra PACKage (LAPACK) libraries [1].

The purpose of this article is to briefly introduce both the philosophy that underlies the library and the
library itself. Evidence of how easily it can be retargeted to what are often considered “hostile” environments
is presented in form of performance results on different architectures.
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Algorithm: A := Chol l blk var2( A )

Partition A→
(

ATL ATR

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do
Determine block size b
Repartition(

ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× b

A11 := A11 −A10A
T
11 (syrk)

A21 := A21 −A20A
T
10 (gemm)

A11 := Chol(A11) (chol)

A21 := A21A
−T
11 (trsm)

Continue with(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 1: Blocked Cholesky factorization (variant 2) expressed as a FLAME algorithm. Subproblems anno-
tated as syrk, gemm, and trsm correspond to level-3 BLAS operations, and chol is the recursive Cholesky
factorization subproblem.

2 What is Different

We believe there exist numerous reasons for users to adopt libflame into their software solutions:

A solution based on fundamental computer science. The FLAME project advocates a new approach
to developing linear algebra libraries. It starts with a more stylized notation for expressing loop-based linear
algebra algorithms [12, 13, 18, 25]. This notation closely resembles how matrix algorithms are naturally
illustrated with pictures (Figure 1). The notation facilitates rigorous formal derivation of algorithms [2, 12,
20, 25], which guarantees that the resulting algorithms are correct. Moreover, it yields a family of algorithms
so that the best option for a given situation (e.g., problem size or architecture) can be chosen.

Object-based abstractions and API. The BLAS, LAPACK, and ScaLAPACK [5] projects place back-
ward compatibility as a high priority, which hinders progress towards adopting modern software engineering
principles such as object abstraction. libflame is built around opaque structures that hide implementation
details of matrices, such as data layout, and exports object-based programming interfaces to operate upon
these structures [4]. Likewise, FLAME algorithms are expressed (and coded) in terms of smaller operations
on sub-partitions of the matrix operands. This abstraction facilitates programming without array or loop
indices, which allows the user to avoid painful index-related programming errors altogether. Figure 2 com-
pares the coding styles of libflame and LAPACK, highlighting the inherent elegance of FLAME code and
its striking resemblance to the corresponding FLAME algorithm shown in Figure 1. This similarity is quite
intentional, as it preserves the clarity of the original algorithm as it would be illustrated on a white-board
or in a publication.
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libflame LAPACK

FLA_Error FLA_Chol_l_blk_var2( FLA_Obj A, int nb_alg )

{

FLA_Obj ATL , ATR , A00 , A01 , A02 ,

ABL , ABR , A10 , A11 , A12 ,

A20 , A21 , A22;

int b, value;

FLA_Part_2x2( A, &ATL , &ATR ,

&ABL , &ABR , 0, 0, FLA_TL );

while ( FLA_Obj_length( ATL ) < FLA_Obj_length( A ) )

{

b = min( FLA_Obj_length( ABR ), nb_alg );

FLA_Repart_2x2_to_3x3(

ATL , /**/ ATR , &A00 , /**/ &A01 , &A02 ,

/* ************* */ /* ******************** */

&A10 , /**/ &A11 , &A12 ,

ABL , /**/ ABR , &A20 , /**/ &A21 , &A22 ,

b, b, FLA_BR );

/* ------------------------------------------------------ */

FLA_Syrk( FLA_LOWER_TRIANGULAR , FLA_NO_TRANSPOSE ,

FLA_MINUS_ONE , A10 , FLA_ONE , A11 );

FLA_Gemm( FLA_NO_TRANSPOSE , FLA_TRANSPOSE ,

FLA_MINUS_ONE , A20 , A10 , FLA_ONE , A21 );

value = FLA_Chol_unb_external( FLA_LOWER_TRIANGULAR , A11 );

if ( value != FLA_SUCCESS )

return ( FLA_Obj_length( A00 ) + value );

FLA_Trsm( FLA_RIGHT , FLA_LOWER_TRIANGULAR ,

FLA_TRANSPOSE , FLA_NONUNIT_DIAG ,

FLA_ONE , A11 , A21 );

/* ------------------------------------------------------ */

FLA_Cont_with_3x3_to_2x2(

&ATL , /**/ &ATR , A00 , A01 , /**/ A02 ,

A10 , A11 , /**/ A12 ,

/* ************** */ /* ****************** */

&ABL , /**/ &ABR , A20 , A21 , /**/ A22 ,

FLA_TL );

}

return value;

}

SUBROUTINE DPOTRF( UPLO , N, A, LDA , INFO )

CHARACTER UPLO

INTEGER INFO , LDA , N

DOUBLE PRECISION A( LDA , * )

DOUBLE PRECISION ONE

PARAMETER ( ONE = 1.0D+0 )

LOGICAL UPPER

INTEGER J, JB, NB

LOGICAL LSAME

INTEGER ILAENV

EXTERNAL LSAME , ILAENV

EXTERNAL DGEMM , DPOTF2 , DSYRK , DTRSM , XERBLA

INTRINSIC MAX , MIN

INFO = 0

UPPER = LSAME( UPLO , ’U’ )

IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO , ’L’ ) ) THEN

INFO = -1

ELSE IF( N.LT.0 ) THEN

INFO = -2

ELSE IF( LDA.LT.MAX( 1, N ) ) THEN

INFO = -4

END IF

IF( INFO.NE.0 ) THEN

CALL XERBLA( ’DPOTRF ’, -INFO )

RETURN

END IF

INFO = 0

UPPER = LSAME( UPLO , ’U’ )

IF( N.EQ.0 )

$ RETURN

NB = ILAENV( 1, ’DPOTRF ’, UPLO , N, -1, -1, -1 )

IF( NB.LE.1 .OR. NB.GE.N ) THEN

CALL DPOTF2( UPLO , N, A, LDA , INFO )

ELSE

IF( UPPER ) THEN

* Upper triangular case omitted for purpose of fair comparison.

ELSE

DO 20 J = 1, N, NB

JB = MIN( NB, N-J+1 )

CALL DSYRK( ’Lower ’, ’No transpose ’, JB, J-1, -ONE ,

$ A( J, 1 ), LDA , ONE , A( J, J ), LDA )

CALL DPOTF2( ’Lower ’, JB, A( J, J ), LDA , INFO )

IF( INFO.NE.0 )

$ GO TO 30

IF( J+JB.LE.N ) THEN

CALL DGEMM( ’No transpose ’, ’Transpose ’,

$ N-J-JB+1, JB , J-1, -ONE ,

$ A( J+JB , 1 ), LDA , A( J, 1 ),

$ LDA , ONE , A( J+JB, J ), LDA )

CALL DTRSM( ’Right ’, ’Lower ’, ’Transpose ’,

$ ’Non -unit ’, N-J-JB+1, JB , ONE ,

$ A( J, J ), LDA , A( J+JB , J ), LDA )

END IF

20 CONTINUE

END IF

END IF

GO TO 40

30 CONTINUE

INFO = INFO + J - 1

40 CONTINUE

RETURN

END

Figure 2: The algorithm shown in Figure 1 implemented with the FLAME/C API (left) and Fortran-77
(right). The FLAME/C code represents the style of coding found in libflame while the Fortran-77 code
was obtained from LAPACK.

Educational value. Aside from the potential to introduce students to formal algorithm derivation, FLAME
has been successfully used for teaching linear algebra algorithms in a classroom setting. The clean abstrac-
tions afforded by the API also make FLAME ideally suited for instruction of high-performance linear algebra
courses at the undergraduate and graduate level. Historically, the BLAS/LAPACK style of coding has been
used in these pedagogical settings. However, we believe that coding in that manner obscures the algorithms;
students often get bogged down debugging the frustrating errors that often result from indexing directly into
arrays that represent the matrices. As we like to put it, using FLAME in the classroom greatly reduces the
line of students needing help with coding during office hours.

A complete dense linear algebra framework. Like LAPACK, libflame provides ready-made imple-
mentations of common linear algebra operations. The implementations found in libflame mirror many of
those found in the BLAS and LAPACK packages. However, libflame differs from LAPACK in two impor-
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tant ways. First, as mentioned, it provides families of algorithms for each operation so that the best can be
chosen for a given circumstance [3]. Second, it provides a framework for building complete custom linear
algebra codes. We believe this makes it a more useful environment as it allows the user to quickly choose
and/or prototype a linear algebra solution to fit the needs of the application.

High performance. In our publications and performance graphs, we do our best to dispel the myth that
user- and programmer-friendly linear algebra codes cannot yield high performance. Our FLAME implemen-
tations of operations such as Cholesky factorization and triangular matrix inversion often outperform the
corresponding implementations currently available in LAPACK [3]. In Section 3 and numerous papers, we
give numerous examples of how performance is facilitated by the FLAME methodology.

Currently, libflame relies only on the presence of a core set of highly optimized unblocked routines
to perform the small subproblems found in implementations of linear algebra algorithms. However, we
have recently demonstrated that algorithms represented with the FLAME/C API (Figure 2 (left)) can be
mechanically translated to implementations that use a more traditional style of code (Figure 2 (right)) and
thus attain the same performance as traditional code [26]. A source-to-source translator, FLAMES2S, has
been prototyped and is being perfected. As a result, there is no valid reason left for continuing to code linear
algebra algorithms in the traditional style of BLAS/LAPACK as opposed to a high level of abstraction.

Dependency-aware thread-level parallelism. Until recently, the authors of the BLAS and LAPACK
advocated exploiting shared-memory parallelism from LAPACK routines by simply linking to multithreaded
BLAS. This low-level solution requires no changes to LAPACK code but also suffers from sharp limitations
in terms of efficiency and scalability for small- and medium-sized matrix problems, as we will see in Section 3.
The fundamental bottleneck to introducing parallelism directly within many algorithms is the web of data
dependencies that frequently exists between subproblems. The libflame project has developed a runtime
system to detect and analyze dependencies found within algorithms-by-blocks (algorithms whose subproblems
operate only on block operands) [6, 7, 21, 24]. Once data dependencies are known, the system schedules sub-
operations to independent threads of execution. This system is completely abstracted from the algorithm
that is being parallelized and requires virtually no change to the algorithm code, but at the same time
exposes abundant high-level parallelism.

Support for hierarchical storage-by-blocks. Storing matrices by blocks often yields performance gains
through improved spatial locality [10]. Instead of representing matrices as a single linear array of data with a
prescribed leading dimension as legacy libraries require (for column- or row-major order), the storage scheme
is encoded into the matrix object. Here, internal elements refer recursively to child objects that represent
submatrices. Currently, libflame provides a subset of the conventional API that supports hierarchical
matrices, allowing users to create and manage such matrix objects as well as convert between storage-by-
blocks and conventional “flat” storage schemes [17, 24].

Advanced build system. From its early revisions, libflame distributions have been bundled with a
robust build system, featuring automatic makefile creation and a configuration script conforming to GNU
standards (allowing the user to run the ./configure; make; make install sequence common to many
open source software projects). Without any user input, the configure script searches for and chooses
compilers based on a pre-defined preference order for each architecture. The user may request specific
compilers via the configure interface, or enable other non-default features of libflame such as custom
memory alignment, multithreading (via POSIX threads or OpenMP), compiler options (debugging symbols,
warnings, optimizations), and memory leak detection. The reference BLAS and LAPACK libraries provide
no configuration support and require the user to manually modify a makefile with appropriate references to
compilers and compiler options depending on the host architecture.

Cross-platform support. The libflame distribution includes build systems for both GNU/Linux and
Microsoft Windows.
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Backward compatibility with LAPACK. We understand that you may have already invested a lot of
time in your current dense linear algebra application. That is why we provide a set of compatibility routines
that map conventional LAPACK invocations to their corresponding implementations within libflame. By
simply linking to the liblapack2flame compatibility layer, you can take advantage of the performance
benefits offered by FLAME with virtually no changes to your application.1

A detailed users manual. A detailed reference manual is available that details the library [27]. This
document is kept up-to-date as library functionality is changed or added.

3 Performance

The scientific community expects performance. For decades it has been assumed that the price for solving
the programmability problem is deminished performance and thus the kinds of abstractions that underlie
libflame are “not allowed”. We now show that these abstractions in fact yield performance in the same
conditions under which traditional libraries thrive and flexibly support high performance under what are
generally considered more hostile circumstances.

Sequential performance via optimized BLAS. Traditional libraries like LAPACK are layered upon the
BLAS for portable performance. In its simplest mode, libflame is merely an alternative way of programming
families of algorithms for operations, such as the LU, QR, and Cholesky factorizations, still in terms of
traditional BLAS operations and linked to traditional BLAS libraries.

In Figure 3 (left), we show performance of three sequential implementations of LU factorization with
partial pivoting: dgetrf from Intel’s MKL library, FLA LU piv from libflame, and dgetrf from the reference
implementation of LAPACK available from [15]. For this experiment, the target platform is a single Itanium2
processor. The implementation of MKL is highly optimized and attains excellent performance. Yet the other
implementations, which are available under open source license, are highly competitive.

Traditional parallelism via multithreaded kernels. With the advent of parallel computers like sym-
metric multiprocessing (SMP), non-uniform memory access (NUMA), and multicore architectures, the sim-
plest approach to parallelizing libraries like LAPACK and libflame is to link to multithreaded BLAS kernels
so that the parallel implementations remain identical to the original sequential code.

In Figure 3 (right), we again show performance of three implementations of LU factorization with partial
pivoting from MKL, libflame, and LAPACK. For this experiment, the target platform is a 16 Itanium2
CPU system. We notice that extracting parallelism only within the BLAS limits the performance attained
by both the LAPACK and libflame implementations.

Scheduling algorithms-by-blocks to multiple threads. The problems with extracting parallelism only
via multithreaded BLAS are numerous: (1) Each call to a BLAS operation ends with a synchronization of
the threads (so-called fork-and-join parallelism); (2) The factorization of the “current panel” introduces an
operation in the critical path during which there is a reduced opportunity for parallelism; (3) Computing
operations out-of-order to facilitate more parallelism is difficult to implement without greatly complicating
the code.

To overcome these problems, a number of abstractions have been added to libflame:

• The API has been extended to support storage of matrices by blocks. While traditional linear algebra
libraries enforce column-major storage both in how the matrices are mapped to memory and in how
the algorithm code is explicitly written, the object-based FLAME/C API allows elements in a matrix
themselves to be descriptors of matices, thus providing a convenient way of expressing matrices that
are hierarchically stored by blocks [17].

• The concept of algorithms-by-blocks was introduced. These algorithms view each element of a matrix
to be a block and express the computation to be performed in terms of operations between those blocks.

1Currently, any operation called through the liblapack2flame compatibility layer will execute sequentially. In order to
invoke our parallelized implementations, you must use native FLAME interfaces.
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Figure 3: Representative performance of various library implementations of LU factorization with partial
pivoting. Left: Sequential performance. Right: Performance on a 16 Itanium2 CPU system.

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

Matrix size

G
F

LO
P

S

Matrix−multiplication on 4 Tesla2 GPUs (vs. MKL 10.0.1)

 

 
SuperMatrix + Serial CUBLAS (GPU=4)
Serial CUBLAS (GPU=1)
Multithreaded MKL on Intel Xeon Quadcore (CPU=4)

0 2 4 6 8 10

x 10
4

0

100

200

300

400

500

600

700

Matrix size

G
F

LO
P

S

Out−of−core Cholesky factorization on 4 Tesla2 GPUs

 

 

Out−of−core SuperMatrix + CUBLAS (GPU=4)
In−core SuperMatrix + CUBLAS (GPU=4)
In−core MKL on 2 Intel Xeon Quadcore (CPU=8)

Figure 4: Representative performance on a system with four Tesla2 accelerators. Left: Performance of single
precision matrix-multiplication. Right: Performance of in-core and out-of-core, single precision Cholesky
factorization.

• In some cases, new algorithms had to be invented to fit the algorithms-by-blocks concept. For example,
the LU factorization with partial pivoting and QR factorization via Householder transformations in
their traditional incarnations require columns of blocks to collaborate in order to identify a pivot
or perform an inner product. The concepts of incremental pivoting [19, 22] and incremental QR
factorization [14, 23] overcome this bottleneck.

• When blocks are viewed as units of data and operations with blocks as units of computation, parallelism
may be exposed by expressing the algorithm as a directed acyclic graph (DAG) of sub-operations. In
sequential mode, libflame implementations, coded in the style illustrated in Figure 2 (left), execute
sub-operations immediately. However, abstractions within the library allow a nearly identical imple-
mentation to instead build a DAG as it executes, deferring computation until the DAG is complete.
This provides the opportunity for sub-operations to be dispatched to threads for parallel execution
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even when many dependencies exist between subproblems [24]. Thus, libflame algorithms need not
change as one moves from a sequential to a shared-memory parallel environment.

• A run-time system, SuperMatrix, has been developed to analyze and dynamically schedule the sub-
operations captured in algorithms-by-blocks. This system implements in software many of the tech-
niques, such as out-of-order execution, incorporated at the hardware level in superscalar processors.

Together, these abstractions allow for algorithms with many dependencies to be elegantly and efficiently
scheduled to exploit thread-level parallelism.

In Figure 3 (right), we illustrate the benefits of this approach. The SuperMatrix curve reports the
performance of an algorithm-by-blocks for LU factorization with incremental pivoting that was implemented
with the extension to libflame described above.

Exploiting hardware accelerators. A recent development in high-performance computing has been the
arrival of hardware accelerators like IBM’s Cell Broadband Engine and general-purpose graphics processing
units (GPUs).

As part of a prototype extension of libflame, the same mechanism that was used to target shared-
memory parallel architectures allowed stunning performance to be almost effortlessly achieved on systems
with multiple hardware accelerators [21]. In Figure 4 (left), we show how four Tesla2 accelerators achieve a
rate of more than a trillion single precision floating point operations per second (TFLOPS).

Solving medium-sized problems on a desktop. In 1991, the LINPACK benchmark executed on the
fastest machine in the world achieved 13.9 GFLOPS (billions of floating point operations per second) while
factoring what was then a large problem: a 25, 000×25, 000 matrix that fit in the combined memories of 512
processors. A modern desktop computer can now store such a matrix in its memory and solve it in seconds.

But that is now just a small problem. The same mechanism that allows algorithms-by-blocks to be
scheduled to shared-memory parallel architectures can be used to schedule matrix blocks stored on hard
drives. In Figure 4 (right), we show how this allows medium sized symmetric positive definite problems of
size 100, 000× 100, 000 to be factored in about 21 minutes via an out-of-core implementation using multiple
hardware accelerators.

4 Conclusion

While new computer architectures have brought new challenges, for the domain of dense linear algebra it
appears these challenges merely have provided a catalyst for change. Abstraction is no longer a luxury that
must be avoided in order to retain high performance. Rather, it is a necessity that enables high performance.

Many opportunities and much work remain. We are continuously expanding the functionality of libflame
and prototyping new ideas. We hope the scientific computing community not only benefits from libflame
but also contributes feedback so that we may continue to improve the library.

Additional information

For additional information on FLAME visit
http://www.cs.utexas.edu/users/flame/.
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