
DAX
Development and implementation of

algorithms with RNG and procedural
level generation

Sergio Juan Pérez Jiménez

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

June 28, 2024

Supervised by: Emilio Bueso Aparici.

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my loved ones

Acknowledgments

To begin with, I would like to thank my parents, siblings, girlfriend, and friends, who
have always supported me regardless of my decisions, whether they were more successful
or, at times, less fortunate.. . .

I also want to thank my tutor, Emilio, because in the moments when I was somewhat
lost, he was the one who guided me and helped me materialize the ideas that were initially
somewhat scattered.

I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

i

http://lorca.act.uji.es/curso/latex/

Abstract

Dax is a Rogue-like game in which you step into the shoes of a fox who ventures into
the forest in search of his missing wife. It is a 2D pixel-art game with a top-down view,
where the level design is procedurally generated.
In this project, various types of procedural generation algorithms have been studied and
some features that use RNG have been implemented, ensuring that each play-through is
different from the last. Academically, this document consists of the final degree project
report for the Video Game Design and Development bachelor’s degree at Jaume I Uni-
versity.

Keywords

Rogue-like, RNG, procedural generation, Final Degree Work.

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

2 Planning and resources evaluation 3
2.1 Planning . 3
2.2 Resource Evaluation . 5

3 System Analysis and Design 7
3.1 Requirement Analysis . 7
3.2 System Design . 12
3.3 System Architecture . 13
3.4 Interface Design . 13

4 Work Development and Results 17
4.1 Work Development . 17
4.2 Results . 24
4.3 Comparison of Procedural Generation Methods for Dungeons 25

5 Conclusions and Future Work 33
5.1 Conclusions . 33
5.2 Future work . 34

Bibliography 35

A Source code 37

v

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

I knew that I wanted to explore procedural generation and implement it in a game.
However, I wasn’t sure which genre to choose because when I think of procedural gen-
eration, the first genres that come to mind are survival or sandbox games. After all,
Minecraft has been a significant influence since its release, so it’s natural for it to be the
first thing that comes to mind. I also recalled the Diablo series, which, despite having a
pre-designed map, features procedurally generated dungeons.

Ultimately, since the genre I’ve engaged with the most this year is Rogue-lites, specif-
ically Cult of the Lamb, Moonlighter, and Hades, I decided to focus on procedural dun-
geon generation for a Rogue-like game, more in the style of The Binding of Isaac than
the aforementioned three. This decision wasn’t because I prefer The Binding of Isaac,
but because I appreciate its approach to managing dungeons and in-game progression.
In comparison, Hades has significant in-game progression but lacks the procedural gen-
eration I was interested in, while Cult of the Lamb and Moonlighter have most of their
progression in the meta-game.

1.1 Work Motivation
The motivation for creating Dax stems from my desire to combine procedural room-
based level generation with a system capable of integrating prefabricated rooms alongside
"default" rooms. This approach allows for the implementation of "special" rooms without

1

2 Introduction

any additional effort once the procedural generation is established. Additionally, the
Rogue-like genre offers a high level of replayability, and if well-balanced, provides great
satisfaction as players learn enemy movements and progressively advance further.

Beyond wanting to explore different methods of procedural generation, which has
always intrigued me, I aimed to investigate the mechanisms for randomizing various
aspects of a Rogue-like game. This includes enemies, items, and considering multiple
factors to control the randomization’s effectively.

1.2 Objectives
The primary objective of the Dax project is to develop a 2D Rogue-like video game with
a top-down perspective, featuring procedurally generated levels to ensure each game
session is unique. The specific objectives include:

• Procedural Generation: Implement an efficient procedural generation algo-
rithm created for loading any kind of room of the dungeon without trouble.

• Engaging Gameplay Mechanics: Design gameplay mechanics that make the
game attractive for players, with a player dynamic movement and challenging
enemies.

• High Replayability: Ensure each playthrough is different to enhance replayabil-
ity.

• Academic Contribution: Document the development process, challenges, and
solutions in a detailed report as part of the final degree project for the Video Game
Design and Development bachelor’s degree at Jaume I University.

This project aims to contribute significantly to the academic field of game design and
development while providing a polished and enjoyable gaming experience.

1.3 Environment and Initial State
The development of Dax was carried out using Unity for game development, with C#
for scripting, and Libresprite for pixel-art designing. Unity has a great potential in 2D
video games, and Libresprite is a nice free pixel-art software. Some sprites were obtained
from the Unity Asset Store and Itch.io.

The initial state of the project involved creating a basic framework for procedural gen-
eration and defining the main gameplay mechanics. This includes classes like Player.cs,
Crawler.cs, CrawlerController.cs, DungeonCreator.cs, Room.cs and RoomController.cs.
There was no enemies, no bosses, no special rooms.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 3
2.2 Resource Evaluation . 5

This chapter is the most technical part of the work, and shows all the work assessed
from objective information and its estimated cost.

2.1 Planning

At first, the initial idea of how my project would turn out differed slightly from the final
result, not because of an inability to achieve the outcome, but rather due to a shift in
focus towards creating a more enjoyable game that reflects my personal gaming style.
Initially, the project was intended as a study of procedural algorithms; however, a video
game must be entertaining to make for understanding the algoriths.

The estimated hours and tasks at the beginning of development can be seen in the
following table (see Table 2.1).

To demonstrate the actual process through which the game state has evolved, a Gantt
chart has been added. This chart not only displays the hours required for each part of the
development but also shows the sequence and time during which tasks were carried out,
even when multiple tasks were being executed concurrently. This approach was necessary
as certain elements of the game were interdependent and could only be implemented
once others were completed (see Figure 2.1). In addition to the game development
itself, approximately fifty additional hours were dedicated to game documentation and
algorithm research.

3

4 Planning and resources evaluation

Figure 2.1: Gantt chart (made with TeamGantt)

2.2. Resource Evaluation 5

Task Name Estimated Hours
Game Mechanics Implementation 50 hours
Procedural Level Generation 50 hours
Character and Enemy AI 35 hours
Boss Battles Implementation 40 hours
UI/UX Design 20 hours
Pixel Art Assets Creation 50 hours
Bug Fixing and Testing 35 hours
Documentation and Reports 20 hours
Total 300 hours

Table 2.1: Estimated hours for each task

2.2 Resource Evaluation
Taking into account the hours required to carry out the game and adding the tasks that
were initially replaced by freely available assets, the following is an estimation in hours
and costs necessary to complete the project.

2.2.1 Human Resources

The human resources involved in the project primarily include the development team,
composed of roles such as project manager, programmer, level designer, translator, audio
designers and UI/UX designer. The estimated time allocation for each major task is:

• Programmer: Estimated at 230 hours

• Art Designer: Estimated at 50 hours

• UI/UX Designer: Estimated at 20 hours

• Audio Designer: Estimated at 25 hours

• Translators: Estimated at 40 hours

• QA Tester: Estimated at 15 hours

2.2.2 Equipment

The equipment necessary for the development of Dax as a full game includes the follow-
ing:

• Hardware:

– Development PCs with sufficient specifications to run Unity and other re-
quired software.

6 Planning and resources evaluation

– Peripherals such as keyboards, mice, sound systems and monitors.

• Software:

– Unity for game development.
– Visual Studio for coding.
– Libresprite for creating the assets.
– Cloud storage devices for backups and version control, as Github.
– Git for version control.
– Audacity for audio design.
– TeamGantt for project management and planning.
– Microsoft Office Excel for the localization.

2.2.3 Cost Estimation

The estimated cost of resources includes both the human labor and the necessary equip-
ment, without using any public assets library is:

• Human Resources:

– Programmer: Estimated at 10,77€/hour
– Art Designer: Estimated at 10,56€/hour
– UI/UX Designer: Estimated at 15,38€/hour
– Audio Designer: Estimated at 7,29€/hour
– Translators: Estimated at 12,03€/hour
– QA Tester: Estimated at 14,10€/hour

• Hardware:

– Development PCs: 5,000€
– Peripherals: 500€

• Software Licenses:

– Unity Pro License: 185€/month
– Visual Studio License: 45€/month
– Libresprite (Free)
– Git (Free, unless using private repositories)
– TeamGantt License: 50€/month

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 7
3.2 System Design . 12
3.3 System Architecture . 13
3.4 Interface Design . 13

This chapter delves into the detailed analysis and design of the system. All aspects of
the system’s requirements, both functional and non-functional, are explored, providing
a comprehensive blueprint for the development process.

3.1 Requirement Analysis

To carry out a job, it is necessary to perform a preliminary analysis of its requirements.
In this section, the functional and non-functional requirements of the presented work
are detailed.

3.1.1 Functional Requirements

A functional requirement defines a function of the system that is going to be developed.
This function is described as a set of inputs, its behavior, and its outputs[6]. The
functional requirements for this project are as follows:

• R1: Procedural Generation of Levels

7

8 System Analysis and Design

Input: Enter any floor

Output: A procedurally generated dungeon with a mix of prefabricated
and default rooms

The system will procedurally generate levels by creating dungeons composed of
rooms that are a mix of prefabricated special rooms and procedurally generated
default rooms.

Table 3.1: Functional requirement «Procedural Generation of Levels»

• R2: Player Character Actions

Input: Player input from keyboard/controller

Output: Corresponding player actions (move, attack, dash, etc.)

The system will process player inputs to control the character’s movements,
attacks, dashes, and other actions.

Table 3.2: Functional requirement «Player Character Actions»

• R3: Enemy AI and Behavior

Input: Game state and player position

Output: Enemy actions and reactions

The system will manage enemy AI to react to the player’s position and actions,
including movement, attack patterns, and special behaviors.

Table 3.3: Functional requirement «Enemy AI and Behavior»

• R4: Boss Fights

Input: Enter the Boss room

Output: Boss battle sequence

The system will initiate and manage boss fights, with unique attack patterns
and behaviors for each boss.

Table 3.4: Functional requirement «Boss Fights»

3.1. Requirement Analysis 9

• R5: User Interface

Input: Game events and player interaction

Output: Display of game menus, HUD, and other UI elements

The system will provide a user interface to display game information, including
menus, HUD, player stats, and minimap.

Table 3.5: Functional requirement «User Interface»

• R6: Item Collection and Management

Input: Player interaction with chests

Output: Item effects are applied

The system will handle item collection, and usage, applying effects to the player
character as appropriate.

Table 3.6: Functional requirement «Item Collection and Management»

• R7: Pause

Input: Player presses pause key/button

Output: The game is paused and a Pause Menu is displayed.

The system will handle the time multiplier, pausing the game, and the Pause
Menu will be displayed.

Table 3.7: Functional requirement «Pause»

10 System Analysis and Design

• R8: Quit Run

Input: Player clicks the button Exit in the Pause Menu

Output: The game returns to the Main Menu.

The scene changes to the menu, saving the last floor achieved if it is greater
than it was before the run.

Table 3.8: Functional requirement «Quit Run»

• R9: Resume Game

Input: Player clicks the button Resume in the Pause Menu or presses
the pause input.

Output: The game is resumed.

The system will handle the time multiplier, resuming the game, and the Pause
Menu will be hidden.

Table 3.9: Functional requirement «Resume Game»

• R10: Open Settings

Input: Player clicks the button Settings in the Pause Menu or Main
Menu.

Output: The settings tab is opened.

The system will handle the menu tabs, hiding the unnecessary buttons and
showing the Settings tab.

Table 3.10: Functional requirement «Open Settings»

• R11: Change volume

3.1. Requirement Analysis 11

Input: Player uses the volume sliders.

Output: The music / sfx volume changes.

The system will handle the audio manager, adapting the volume of the music
/ sfx with a logarithmic function.

Table 3.11: Functional requirement «Change volume»

• R12: Quit game

Input: Player clicks the button X in the Main Menu.

Output: The game is closed.

The game is closed.

Table 3.12: Functional requirement «Quit game»

• R13: Room closing

Input: The player enters a room with enemies.

Output: The room is closed.

The doors in the room are closed when the player enters the room, making it
impossible to leave the room until every enemy is beaten.

Table 3.13: Functional requirement «Room closing»

• R14: Play

Input: Player clicks the Play button.

Output: The game begins.

The dungeon is generated and the game starts.

Table 3.14: Functional requirement «Play»

12 System Analysis and Design

3.1.2 Non-functional Requirements

Non-functional requirements impose conditions on the design or implementation to meet
performance, safety, or reliability constraints[8]. The non-functional requirements for
this project include:

• R15: Performance

– Description: The system will perform efficiently with minimal delay, ensuring
smooth gameplay even during intensive boss battles or when multiple enemies
are on screen. The floor loads should not take long.

• R16: Usability

– Description: The game will have an intuitive user interface and controls,
making it accessible and easy to learn for new players.

• R17: Compatibility

– Description: The system will be compatible with Windows 7 or higher and
MacOS X 10 or higher.

• R18: Reliability

– Description: The system will be reliable, with none bugs or crashes, providing
a stable gaming experience.

• R19: Save Data

– Description: The system will save correctly, both the player settings and the
last floor reached, even when closing the game.

3.2 System Design
This section presents the operational design of the system to be carried out:

3.3. System Architecture 13

Figure 3.1: Flowchart (made with Lucid)

3.3 System Architecture
• Minimum requirements [1]

– 105 Mb of free space.
– 4 Gb RAM.
– Windows 7 o greater o MacOS X 10.8 or greater.
– DX9 o DX11.

• Recomended requirements

– 105 Mb of free space.
– 8 Gb RAM.
– Windows 7 or greater o MacOS X 10.8 or greater.
– Graphic card INTEL GRAPHIC 4000 or greater, or Nvidia o ATI with 1G

VRAM or greater.

3.4 Interface Design
The main menu interface is pretty simple (see Figure 3.2), with a button for starting
the game, other for the settings menu (see Figure 3.3 and Figure 3.4) and the last one
for quitting the game . Same happens with the pause menu (see Figure 3.5), having,

14 System Analysis and Design

instead of a Starting Game button, a Resume button, and instead of a Quit button, it
exists the run. About the GUI, it is composed by a health system made of hearts, each
one represents four HP, situated in the top-left corner of the screen, a mini-map that
saves the visited rooms and a stats overview (see Figure 3.6).

Figure 3.2: Main Menu

3.4. Interface Design 15

Figure 3.3: Audio Settings

Figure 3.4: Controls Setting

16 System Analysis and Design

Figure 3.5: Pause Menu

Figure 3.6: GUI

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 17
4.2 Results . 24
4.3 Comparison of Procedural Generation Methods for Dungeons 25

The developed work and the obtained results should be made explicit in this chapter.
All possible deviations from the initial planning should be detailed and justified. In
this way, readers of the memory must be able to understand the possible reasons for
discrepancies between the objectives of the work, the planning that supposedly allowed
to obtain it, and the final results achieved.

4.1 Work Development

In this section, the most relevant aspects of the developed work will be explained in
detail. The structure follows a chronological order, highlighting significant milestones
and issues encountered during the project.

4.1.1 Initial Planning and Objectives

The primary objective of this project was to develop a Rogue-like game featuring pro-
cedurally generated levels. The project was structured around several key components:
Procedural Generation of Levels, Player Character Actions, Enemy AI and Behavior,
Boss Fights, User Interface (UI), Item Collection and Management, Game Mechanics,
and Testing and Bug Fixing.

17

18 Work Development and Results

4.1.2 Development Phases

Procedural Generation of Levels

The first phase focused on creating a system for procedural generation of dungeon levels.
This system aimed to provide players with a unique experience every time they played
the game by generating dungeons composed of both prefabricated special rooms and pro-
cedurally generated default rooms. The algorithm used for this task was a combination
of Depth-First Search (DFS) and random selection.

The DFS algorithm was chosen for its efficiency in creating connected paths, ensuring
that all rooms in the dungeon were accessible. Random selection was used to introduce
variability in the room types and layouts, enhancing replayability. The primary challenge
in this phase was balancing the mix of room types to maintain a coherent and engaging
dungeon layout.

Specifically, this depth-first search iterates simultaneously from the same starting
point (the origin coordinates) and moves randomly, taking a random number within a
stipulated range as the limit. Each entity that iterates by adding to a list of "visited"
points is called a "Crawler"[3].

Player Character Actions

The second phase focused on implementing responsive and intuitive controls for the
player character. This included handling inputs for movement, attacks, and dash, using
the New Input System (see Figure 4.1 and Figure 4.2). The last two actions have a
cool-down, in order to balance the game, so the player cannot attack or dash infinitely.

Animations are synchronized with player actions to provide visual feedback and
enhance immersion.

Overall, the player control system was successfully integrated.

Figure 4.1: Player attacking.

4.1. Work Development 19

Figure 4.2: Player dashing.

Enemy AI and Behavior

Developing the AI for enemies was one of the most challenging aspects of the project.
The AI needed to react dynamically to the player’s actions and position. This involved
programming different behaviors for various enemy types, including movement patterns,
and attack strategies (see Figure 4.3).

Figure 4.3: Enemies attacking.

The AI system used state machines to manage different behaviors and transitions
between them based on game state and player actions.

The enemy generation is prepared for generating the random number of enemies
without colliding with any object or enemy. This was implemented by creating a grid,
with the same size as the tile-set. When a room is created, the Enemy Spawner chooses
random positions in the grid, checking if they are "occupied", and generating the enemies
correctly (see Figure 4.4 and Figure 4.5).

20 Work Development and Results

Figure 4.4: Tiles without obstacles

Figure 4.5: Tiles with obstacles

Boss Fights

Boss fights are a critical component of any Rogue-like game, providing significant chal-
lenges. Each boss in the game was designed with unique attack patterns and behaviors,
requiring players to develop different strategies to defeat them.

For example, the Slime boss attacks by jumping at you. Its attack has a lot of cool-
down, so the player can attack it while it is not jumping, but carefully, because once it
jumps, it does quite fast (see Figure 4.6).

4.1. Work Development 21

Figure 4.6: Slime Jumping.

User Interface (UI)

An intuitive and informative UI is essential for player interaction and immersion. The
UI needed to display critical game information, including health, stats, and a mini-map,
in a clear and accessible manner.

The design process involved several iterations to ensure that the UI was both func-
tional and visually appealing. The health system uses images that are placed but inactive
at the beginning, so there is a limit the health can scale, the limit is 120hp, because
there are only thirty hearts that fits in the screen without overlapping the mini-map or
the doors (see Figure 4.7 and Figure 4.8). The stats are in the bottom-left corner, so
they are accessible but not annoying for the gameplay (see Figure 4.7).

Figure 4.7: Hearts

22 Work Development and Results

Figure 4.8: Maximum health.

Figure 4.9: Stats.

The mini-map is implemented using a camera aiming in the y-axis (see Figure 4.10).
The image of that camera is saved in a texture, so applying that texture to an image
makes visible the mini-map objects. Every time a room is registered, its mini-map game
object is created, instantiated and deactivated. When the player visits a room, the
mini-map room is activated, so it is visible in the screen.

4.1. Work Development 23

Figure 4.10: Minimap.

Item Collection and Management

Item collection and management added depth to the gameplay, allowing players to collect
items they found in the dungeon.

Each item provides some different stats, and every time the player opens a chest, a
random item is collected (see Figure 4.11).

Figure 4.11: Item collection

4.1.3 Deviations from Initial Planning

During the development process, some deviations from the initial plan occurred due to
unforeseen challenges. The complexity of AI development took longer than expected,

24 Work Development and Results

requiring additional time for iterative testing and adjustments. Additionally, extra time
was needed for optimization and bug fixing to achieve the desired performance and
stability. Initially, the special dungeon rooms were implemented by a complex method,
that was executed just after the dungeon was completely generated, deleting the room
that was in the needed position, but this method was deleted, so now there are only two
methods that calculate the position where the special rooms have to be placed so the
rooms are placed in once:

Item Room Position

The method generates a list of item room locations from a given collection of room
positions (Vector2Int). It converts the collection to a list and checks if it contains
any rooms. If not, it returns null. It then determines the number of item rooms to
generate, based on a random fraction of the total room count. The method iterates,
selecting random rooms from the list while ensuring they are not the origin room, not
adjacent to the origin, and not at the maximum distance. Selected rooms are added to
the "generatedItemRooms" list and removed from the original list to prevent duplicates.
The method returns the list of generated item room locations.

Boss Room Position

As the Boss Room is the farthest one from the origin (0, 0), the method finds the room
farthest from the origin in a list of room positions represented by Vector2Int. It initializes
the farthest room to the first room in the list and calculates its distance from the origin.
It then iterates through the list, updating the farthest room and maximum distance
whenever a room farther from the origin is found. Finally, it returns the position of the
farthest room.

4.2 Results

The results of the project are described below, referenced to the initial objectives.

4.2.1 Achieved Milestones

The project successfully achieved several key milestones:

• Procedural Level Generation: The procedural generation system was successfully
implemented, providing varied and engaging dungeon layouts for each playthrough.

• Player actions: Responsive and intuitive player controls were developed, enhancing
the overall gameplay experience.

• Enemy AI and Behavior: A dynamic and challenging enemy AI system was created,
providing engaging combat encounters.

4.3. Comparison of Procedural Generation Methods for Dungeons 25

• Boss Fights: Unique and challenging boss fights were designed and implemented,
adding significant depth to the gameplay.

• User Interface: An intuitive and informative UI was developed, clearly displaying
essential game information.

• Item Collection and Management: An efficient item collection and management
system was implemented, adding strategic depth to the game.

4.2.2 Applications and Future Releases

The developed game has several potential applications and future release plans:

• Educational Tool: The game can be used as an educational tool to demonstrate
procedural generation techniques and AI behavior.

• Open Source Release: The project code will be made available on GitHub, allowing
other developers to study and contribute to the project.

4.3 Comparison of Procedural Generation Methods for
Dungeons

Procedural generation is a technique widely used in game development to create content
algorithmically rather than manually. This method offers a variety of advantages such
as reducing the amount of hand-crafted content required and increasing the replayability
of the game by providing a unique experience each time. In this section, we will compare
the procedural generation method employed in our project, which utilizes simultaneous
depth-first search with random movement (crawlers), against two other widely used
methods: cellular-automata and marching-squares.

4.3.1 Crawler-Based Procedural Generation

Our approach to dungeon generation uses a crawler-based depth-first search algorithm.
This method involves multiple entities called "crawlers" that start from the same origin
point and move randomly within a predetermined range. Each crawler iterates through
the dungeon space, adding points to a list of "visited" locations and creating paths and
rooms in the process (see Figure 4.12).

Advantages

• Simplicity and Flexibility: The crawler-based method is relatively simple to im-
plement and highly flexible. Crawlers can be programmed to follow different rules,
such as favoring certain directions or avoiding previously visited areas, which can
create a wide variety of dungeon layouts.

26 Work Development and Results

Figure 4.12: Crawler-Based Procedural Generation [4]

• Natural Layouts: This method often produces layouts that feel organic and natu-
ral. The random movement of crawlers tends to create winding paths and irregular
room shapes, which can be more immersive for players compared to more struc-
tured methods.

• Scalability: The crawler method scales well with complexity. By increasing the
number of crawlers or adjusting their movement patterns, developers can easily
control the density and complexity of the generated dungeon.

• Dynamic Room Creation: Crawlers can be programmed to create different types of
rooms (e.g., special rooms, boss rooms) based on specific conditions. This allows
for dynamic and varied dungeon experiences.

• Performance: This approach is typically efficient in terms of memory usage because
it operates directly on a graph or grid structure without needing to maintain
a large amount of additional data. It can be effective for generating complex
interconnected structures like dungeons or cave systems if they are not extremely
large. Its cost is O(C×I), where:

– C: Number of crawlers used.
– I: Number of iterations each crawler performs.

Disadvantages

• Control and Predictability: While the randomness can be a strength, it can also
lead to a lack of control over the final layout. Ensuring that all rooms are accessible
and that the dungeon has a coherent structure can be challenging.

4.3. Comparison of Procedural Generation Methods for Dungeons 27

• Balance: Balancing the difficulty and ensuring that items and enemies are dis-
tributed fairly throughout the dungeon can be difficult due to the random nature
of the method.

4.3.2 Cellular Automata-Based Procedural Generation

Cellular automata is another popular method for procedural dungeon generation. This
technique uses a grid of cells that evolve according to a set of rules. Each cell can be
in one of several states (e.g., wall, floor), and its state is determined by the states of its
neighboring cells[5](see Figure 4.13).

Figure 4.13: Cellular Automata-Based Procedural Generation [9]

Advantages

• Control and Structure: Cellular automata allow for greater control over the final
layout. By carefully tuning the rules that govern cell evolution, developers can
create dungeons with specific properties, such as a certain level of connectivity or
room size.

• Balance: The structured nature of cellular automata makes it easier to balance
the distribution of rooms, enemies, and items. Developers can impose constraints
to ensure that dungeons meet certain criteria.

28 Work Development and Results

• Procedural Refinement: Cellular automata can be used in multiple passes to refine
the dungeon layout. For example, an initial pass might create the basic layout,
while subsequent passes can add details such as corridors and special rooms.

Disadvantages

• Complexity: Cellular automata can be more complex to implement and require
careful tuning of rules to achieve the desired results. The initial setup and fine-
tuning process can be time-consuming.

• Cost: This method can be more efficient than crawler-based methods if both are
used on fixed grids, as it typically involves fewer iterations, but it is still so com-
putationally intensive. Its cost is O(W×H×I), where:

– W: Width of the map in cells
– H: Height of the map in cells.
– R: Resolution of the noise generation (detail frequency).

• Uniformity: While cellular automata can create structured and balanced dungeons,
they may lack the natural, organic feel that crawler-based methods provide. The
resulting layouts can sometimes feel too regular and predictable.

• Less Dynamic Room Creation: Adding special rooms or unique features dynam-
ically can be more challenging with cellular automata compared to the flexible
crawler approach.

4.3.3 Marching Squares-Based Procedural Generation

The marching squares algorithm is another method often used for generating organic
and natural-looking dungeons. This method works by dividing the dungeon space into
a grid and then determining the walls and floors by evaluating the corners of each grid
square[7] (see Figure 4.14).

Advantages

• Natural and Organic Layouts: The marching squares method excels at producing
layouts that mimic natural formations like caves and caverns. This creates an
immersive environment that can enhance the player’s experience of exploration.

• Smooth Transitions: Unlike grid-based methods, marching squares can create
smooth transitions between different areas, resulting in more visually appealing
and less blocky dungeon structures.

• Control over Density: Developers can adjust the density of the dungeon by altering
the threshold values used in the algorithm. This allows for easy tuning of how open
or cramped the dungeon feels.

4.3. Comparison of Procedural Generation Methods for Dungeons 29

Figure 4.14: Marching Squares-Based Procedural Generation [2]

• Flexibility in Design: By combining marching squares with other techniques, such
as Perlin noise, developers can create complex and varied dungeon layouts that
offer a unique blend of procedural and hand-crafted elements.

Disadvantages

• Complex Implementation: The marching squares algorithm can be more complex
to implement compared to simpler methods like crawlers or cellular automata. It
requires a good understanding of the underlying mathematics and algorithms.

• Performance Overhead: Generating smooth and organic layouts can be compu-
tationally expensive, especially for larger dungeons. Optimization techniques are
necessary to maintain performance. Its cost is O(W×H×R), where:

– W: Width of the map in cells

– H: Height of the map in cells.

– R: Resolution of the noise generation (detail frequency).

• Difficulty in Adding Special Rooms: While marching squares can create natural
layouts, adding specific types of rooms (e.g., boss rooms, treasure rooms) can be
challenging. It often requires additional steps or hybrid approaches to integrate
these features seamlessly.

30 Work Development and Results

4.3.4 Case Study: Applying All Three Methods

To illustrate the differences between these methods, consider a dungeon crawler game
where the goal is to explore a series of interconnected rooms, fight enemies, and find
treasure.

Crawler-Based Generation

In our project, the crawler-based method starts with multiple crawlers at the dungeon
entrance. Each crawler moves randomly, carving out paths and rooms as it goes. Special
conditions are set for creating specific types of rooms, such as treasure rooms or boss
rooms. This method results in a dungeon that feels labyrinthine and unpredictable,
enhancing the sense of exploration.

Cellular Automata-Based Generation

Using cellular automata, the dungeon is initially set up as a grid of cells, all in a "wall"
state. A set of rules is applied iteratively to convert some of these cells into "floor" states,
forming rooms and corridors. For instance, a common rule might be: "If a cell has three
or more neighboring floor cells, it becomes a floor cell." This rule is applied multiple
times to generate the basic layout.

Additional rules can be introduced to ensure connectivity and balance. For example,
once the basic layout is generated, another pass might add corridors to connect isolated
rooms, ensuring that the player can reach all areas of the dungeon.

Marching Squares-Based Generation

Using the marching squares algorithm, the dungeon space is divided into a grid, and
the algorithm evaluates the corners of each grid square to determine wall and floor
placement. This method can produce a layout that feels like a natural cave system with
smooth transitions between areas. For instance, applying Perlin noise to the grid values
before running the marching squares algorithm can result in a dungeon with varying
room sizes and shapes, enhancing the organic feel of the environment.

4.3.5 Conclusion

All three methods, crawler-based, cellular automata, and marching squares have their
strengths and weaknesses. The choice of method depends on the specific requirements
of the game and the desired player experience.

The crawler-based method excels in creating natural, unpredictable layouts that
enhance the sense of exploration but can be harder to control and optimize. Cellular
automata provide more control and efficiency, producing structured, balanced dungeons
but may lack the organic feel of crawler-generated layouts. Marching squares offer a
highly natural and organic dungeon layout, which can greatly enhance immersion, but
may be more complex to implement and optimize.

4.3. Comparison of Procedural Generation Methods for Dungeons 31

In this project, the crawler-based method was chosen for its ability to create dy-
namic, varied dungeons that contribute to the replayability of the game and the capac-
ity of implement prefabricated rooms. By carefully tuning the behavior of crawlers and
incorporating special room conditions, we achieved a balance between randomness and
structure, resulting in a compelling dungeon-crawling experience. However, exploring
hybrid approaches that combine elements of cellular-automata and marching-squares
could provide even greater flexibility and variety in dungeon design.

Aspect Depth-First Search
Crawler-Based Gen-
eration

Cellular Automata Organic Noise-Based
Generation

Pros

• High customiza-
tion with various
crawler behaviors
and constraints.

• High control over
dungeon layout
and room place-
ment.

• Efficient for small
to medium-sized
dungeons.

• Easy to imple-
ment with simple,
repeatable rules.

• Natural cave-like
structures.

• Moderate perfor-
mance for simple
caves.

• Highly realistic
natural land-
scapes.

• High flexibility in
shaping and de-
tailing.

• Suitable for
diverse environ-
ments.

Cons

• Requires careful
management of
crawler interac-
tions.

• Medium complex-
ity in implementa-
tion.

• Can be less natu-
ral and random.

• Can become
computationally
intensive with
extensive grids.

• Limited control
over specific lay-
out.

• Sometimes repeti-
tive patterns.

• Computationally
intensive.

• Complex imple-
mentation.

• Requires op-
timization for
large-scale use.

Table 4.1: Comparison of Procedural Generation Algorithms

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 33
5.2 Future work . 34

In this chapter, the conclusions of the work, as well as its future extensions are shown.

5.1 Conclusions

The completion of this project has been a significant learning experience that has en-
riched both my technical skills and understanding of procedural content generation in
game development. Implementing the crawler-based procedural generation method re-
quired a deep dive into algorithm design and programming, offering insights into the
complexities and trade-offs involved.

Professionally, this project has equipped me with practical skills in software devel-
opment and problem-solving. It underscored the importance of iterative development
cycles and the need for adaptability when faced with challenges. It also demonstrated
the relevance of theoretical concepts from courses such as algorithms, data structures,
and artificial intelligence in real-world applications.

On a personal level, managing this project taught me valuable lessons in time man-
agement, perseverance, and collaboration. Balancing project demands with other aca-
demic and personal commitments reinforced the importance of effective planning and
communication.

The project’s connection to my coursework was evident throughout, as it integrated
concepts and techniques from various subjects directly applicable to game development.

33

34 Conclusions and Future Work

This practical application solidified my understanding and underscored the interdisci-
plinary nature of effective software engineering.

In conclusion, this project has been a pivotal experience that deepened my technical
expertise, enhanced my problem-solving skills, and provided a solid foundation for future
projects in game development and procedural content generation. It has been a journey
of learning and growth, preparing me well for challenges and opportunities in my future
career.

5.2 Future work
Firstly, while the crawler-based procedural generation method has proven effective, there
is potential to explore hybrid approaches. Combining the strengths of crawler-based
methods with those of cellular automata and marching squares could result in even
more varied and engaging dungeon layouts. For instance, integrating cellular automata
to refine room connectivity or using marching squares for creating organic cave-like
structures could provide additional diversity and complexity to the generated dungeons.

Secondly, optimization is a critical area for future work. Improving the performance
of the procedural generation algorithm, particularly for larger and more complex dun-
geons, would enhance the overall user experience. Techniques such as spatial partition-
ing, multi-threading, and efficient memory management could be investigated to achieve
this goal.

Expanding the variety of special rooms and events within the dungeon is another
potential area for development. Introducing more diverse room types, environmental
hazards, puzzles, and interactive elements could enrich the gameplay experience. Addi-
tionally, procedural narrative elements could be integrated to create a more immersive
and engaging story within the dungeon.

Personally, I am committed to continuing the development of this project. The
knowledge and skills I have gained through this experience have motivated me to further
refine and expand the game. I plan to implement some of the suggested improvements
and explore new features that can enhance the overall quality and appeal of the game.

Bibliography

[1] System requirements for unity 2022.3. https://docs.unity3d.com/Manual/system-
requirements.html.

[2] Jasper Flick. Marching squares. https://catlikecoding.com/unity/tutorials/marching-
squares/.

[3] JVCOB. Binding of isaac clone - unity beginner tuto-
rial series. https://www.youtube.com/watch?v=jQClYQ4cK-
Elist=PLosGp2abdYXQF3ukYDoB3mzX0h0eKWXkQ.

[4] Maurits Laanbroek. Procedural dungeon generation for houdini and unity.
https://www.youtube.com/watch?v=uLiHWJP-GBg.

[5] Wikipedia. Cellular automaton. https://en.wikipedia.org/wiki/Cellularautomaton.

[6] Wikipedia. Functional requirements. http://en.wikipedia.org/wiki/Functional_require-
ments. Accessed: 2019-02-28.

[7] Wikipedia. Marching squares. https://en.wikipedia.org/wiki/Marchingsquares : :
text = In

[8] Wikipedia. Non-functional requirements. http://en.wikipedia.org/wiki/Non-
functional_requirement. Accessed: 2019-02-28.

[9] Georgios Yannakakis. Cellular automata for real-time generation of.
https://www.researchgate.net/publication/228919622.

35

A
p

p
e

n
d

ix A
Source code

Here is some interesting code from the game:

37

38 Source code

Chest.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class Chest : MonoBehaviour

6 {

7 [SerializeField] private Sprite chestOpenedSprite;

8 [SerializeField] private SpriteRenderer spriteRenderer;

9 [SerializeField] private SpriteRenderer itemSprite;

10 public Sprite[] itemSprites;

11 private bool isOpen = false;

12
13 public void OnPlayerAttack()

14 {

15 if (!isOpen)

16 {

17 isOpen = true;

18 spriteRenderer.sprite = chestOpenedSprite;

19
20 int randomLoot = Random.Range(0, itemSprites.Length); // Obtener un nmero aleatorio para seleccionar el botn y aumentar estadsticas

21 UpdatePlayerStats(randomLoot); // Actualizar las estadsticas del jugador seg n el botn obtenido

22 UpdateChestSprite(randomLoot); // Actualizar el sprite del cofre seg n el botn obtenid

23 }

24 }

25
26 private void UpdatePlayerStats(int lootIndex)

27 {

28 switch (lootIndex)

29 {

30 case 0: //ring_02

31 GameController.MaxHealth += 2;

32 GameController.HealPlayer(2);

33 break;

34 case 1: //feather_a

35 GameController.MoveSpeed += 1f;

36 GameController.Luck += 10;

37 break;

38 case 2: //sword_01

39 GameController.AttackDamage += 1f;

40 break;

41 case 3: //clover_leaf

42 GameController.Luck += 25;

43 break;

44 case 4: //spear_02

45 GameController.AttackDamage += 0.5f;

46 GameController.CriticDamage += 0.25f;

47 break;

48 case 5: //glasses

49 GameController.CriticDamage += 0.25f;

50 GameController.Luck += 10;

51 break;

52 case 6: //sword_02

Source code 39

53 GameController.CriticDamage += 0.5f;

54 break;

55 case 7: //boots_02

56 GameController.MoveSpeed += 1f;

57 GameController.MaxHealth += 1;

58 GameController.HealPlayer(1);

59 break;

60 case 8: //bow_02

61 GameController.Luck += 10;

62 GameController.AttackDamage += 0.5f;

63 break;

64 case 9: //bow_02

65 GameController.MoveSpeed += 2f;

66 break;

67 }

68 if (GameController.Luck > 100) GameController.Luck = 100;

69 }

70
71 private void UpdateChestSprite(int lootIndex)

72 {

73 // Verificar si el dice de botn est dentro del rango de sprites disponibles

74 if (lootIndex >= 0 && lootIndex < itemSprites.Length)

75 {

76 itemSprite.sprite = itemSprites[lootIndex];

77 }

78 else

79 {

80 // Si el dice de botn est fuera de rango, mostrar un mensaje de advertencia

81 Debug.LogWarning("Loot index out of range!");

82 }

83 }

84
85 void OnTriggerEnter2D(Collider2D collision)

86 {

87 if (collision.tag == "Attack")

88 {

89 OnPlayerAttack();

90 }

91 }

92 }

DungeonCrawler.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class DungeonCrawler : MonoBehaviour

6 {

7 public Vector2Int Position { get; set; }

8 public DungeonCrawler(Vector2Int startPos)

9 {

40 Source code

10 Position = startPos;

11 }

12
13 public Vector2Int Move(Dictionary<Direction, Vector2Int> directionMovementMap)

14 {

15 Direction toMove = (Direction)Random.Range(0, directionMovementMap.Count);

16 Position += directionMovementMap[toMove];

17 return Position;

18 }

19 }

EnemyController.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using System.Transactions;

4 using Unity.VisualScripting;

5 using UnityEngine;

6 using UnityEngine.UIElements;

7
8 public enum EnemyState

9 {

10 Idle,

11 Wander,

12 Follow,

13 Attack,

14 Die

15 };

16
17 public class EnemyController : MonoBehaviour

18 {

19
20
21 public EnemyState currentState = EnemyState.Idle;

22
23 public float hp;

24 public float range;

25 public float speed;

26 public float attackRange;

27 public float attackFinishRange;

28 private bool isAttacking;

29 private bool isDamaged;

30 private bool chooseDir = false;

31 private bool dead = false;

32 private Vector3 randomDir;

33 public bool notInRoom = false;

34 private SpriteRenderer _spriteRenderer;

35 private Collider2D _collider;

36 private GameObject _player;

37 private Animator _animator;

38
39 void Start()

Source code 41

40 {

41 _player = GameController.player;

42 _spriteRenderer = GetComponent<SpriteRenderer>();

43 _animator = GetComponent<Animator>();

44 _collider = GetComponent<Collider2D>();

45 }

46
47 void Update()

48 {

49 switch(currentState)

50 {

51 case(EnemyState.Idle):

52 Idle();

53 break;

54 case(EnemyState.Wander):

55 Wander();

56 break;

57 case (EnemyState.Follow):

58 Follow();

59 break;

60 case (EnemyState.Attack):

61 Attack();

62 break;

63 case (EnemyState.Die):

64 break;

65 }

66
67 if (!notInRoom)

68 {

69 if (IsPlayerInRange(range) && currentState != EnemyState.Die)

70 {

71 currentState = EnemyState.Follow;

72 }

73 else if (!IsPlayerInRange(range) && currentState != EnemyState.Die)

74 {

75 currentState = EnemyState.Wander;

76 }

77
78 if (_player.transform.position.x < transform.position.x)

79 {

80 _spriteRenderer.flipX = true;

81 }

82 else

83 {

84 _spriteRenderer.flipX = false;

85 }

86
87 if (Vector3.Distance(transform.position, _player.transform.position) <= attackRange && !isAttacking)

88 {

89 currentState = EnemyState.Attack;

90 }

91
92 if (gameObject.transform.position.y < _player.transform.position.y - 0.2f)

93 {

42 Source code

94 _spriteRenderer.sortingOrder = 2;

95 }

96 else

97 {

98 _spriteRenderer.sortingOrder = 0;

99 }

100 }

101 else

102 {

103 currentState = EnemyState.Idle;

104 }

105 }

106
107 private bool IsPlayerInRange(float range)

108 {

109 return Vector3.Distance(transform.position, _player.transform.position) <= range;

110 }

111
112 private IEnumerator ChooseDirection()

113 {

114 chooseDir= true;

115 yield return new WaitForSeconds(Random.Range(3f, 5f));

116 randomDir = new Vector3(0, 0, Random.Range(0, 360));

117 chooseDir = false;

118 }

119
120 void Idle()

121 {

122
123 }

124
125 void Wander()

126 {

127 if(!chooseDir)

128 {

129 StartCoroutine(ChooseDirection());

130 }

131
132 transform.position += transform.right * speed * Time.deltaTime;

133 if (IsPlayerInRange(range))

134 {

135 currentState = EnemyState.Follow;

136 }

137 }

138
139 void Follow()

140 {

141 if (!isAttacking && !isDamaged)

142 {

143 transform.position = Vector2.MoveTowards(transform.position, _player.transform.position, speed * Time.deltaTime);

144 }

145 }

146
147 void Attack()

Source code 43

148 {

149 if (!isAttacking && !isDamaged)

150 {

151 _animator.SetBool("Attack", true);

152 isAttacking = true;

153 }

154 }

155
156 void StopAttacking()

157 {

158 //switch(gameObject.name)

159 //{

160 // case "Mushroom":

161 //

162 // break;

163 //}

164 if (Vector3.Distance(transform.position, _player.transform.position) <= attackRange + attackFinishRange)

165 {

166 GameController.DamagePlayer(1);

167
168 }

169
170 _animator.SetBool("Attack", false);

171 isAttacking = false;

172 }

173
174
175 public void Damaged()

176 {

177 hp -= GameController.Strike();

178 if (hp <= 0)

179 {

180 Death();

181 }

182 _animator.SetBool("Damage", true);

183 isDamaged = true;

184 }

185
186 public void EndDamage()

187 {

188 isDamaged = false;

189 _animator.SetBool("Damage", false);

190 }

191
192 public void Death()

193 {

194 currentState = EnemyState.Die;

195 _animator.SetTrigger("Death");

196 _collider.enabled = false;

197 }

198
199 public void Destroy()

200 {

201 Destroy(gameObject);

44 Source code

202 }

203
204 void OnTriggerEnter2D(Collider2D collision)

205 {

206 if (collision.tag == "Attack")

207 {

208 Damaged();

209 }

210 }

211 }

GameController.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4 using UnityEngine.SceneManagement;

5 using UnityEngine.UI;

6
7 public class GameController : MonoBehaviour

8 {

9 public static GameObject player;

10 public static int floorNumber = 0;

11 public Text statsText;

12
13 public static GameController instance;

14 private static int health = 8;

15 private static int maxHealth = 8;

16 private static float moveSpeed = 6;

17 private static float attackDamage = 1;

18 private static float criticDamage = 1.5f;

19 private static int luck = 1;

20 public static bool fullStats = false;

21 private static Animator playerAnimator;

22 private AudioManager audioManager;

23
24 public static int Health { get => health; set => health = value; }

25 public static int MaxHealth { get => maxHealth; set => maxHealth = value; }

26 public static float MoveSpeed { get => moveSpeed; set => moveSpeed = value; }

27 public static float AttackDamage { get => attackDamage; set => attackDamage = value; }

28 public static float CriticDamage { get => criticDamage; set => criticDamage = value; }

29 public static int Luck { get => luck; set => luck = value; }

30
31 private void Awake()

32 {

33 Cursor.visible = false;

34 Cursor.lockState = CursorLockMode.Locked;

35 health = 8;

36 maxHealth = 8;

37 moveSpeed = 6;

38 attackDamage = 1;

39 criticDamage = 1.5f;

Source code 45

40 luck = 1;

41 player = GameObject.FindGameObjectWithTag("Player");

42 playerAnimator = player.GetComponent<Animator>();

43 if (instance == null)

44 {

45 instance = this;

46 }

47
48 audioManager = GameObject.FindGameObjectWithTag("Audio").GetComponent<AudioManager>();

49 audioManager.PlayMusic(audioManager.backgroundGame);

50 }

51
52 void Update()

53 {

54 if (fullStats)

55 {

56 statsText.text = "Spd: " + moveSpeed + "\n" +

57 "Dmg: " + attackDamage + "\n" +

58 "Crt: " + criticDamage + "\n" +

59 "Lck: " + luck + "\n";

60 }

61 else

62 {

63 statsText.text = moveSpeed + "\n" +

64 attackDamage + "\n" +

65 criticDamage + "\n" +

66 luck + "\n";

67 }

68
69 }

70
71 public static float Strike()

72 {

73 if (Random.Range(0, 101) <= luck)

74 {

75 return attackDamage * criticDamage;

76 }

77
78 else return attackDamage;

79 }

80
81 public static void DamagePlayer(int damage)

82 {

83 if (health > 0)

84 {

85 health -= damage;

86
87 if (health <= 0)

88 {

89 health = 0;

90 KillPlayer();

91 }

92 }

93 }

46 Source code

94
95 public static void HealPlayer (int healAmount)

96 {

97 health = Mathf.Min(MaxHealth, health + healAmount);

98 }

99
100 private static void KillPlayer()

101 {

102 playerAnimator.SetTrigger("Death");

103 }

104
105 public static void EndGame()

106 {

107 SaveHighestScore();

108 SceneManager.LoadSceneAsync("MainMenu");

109 }

110
111 public static void SaveHighestScore()

112 {

113 if (PlayerPrefs.GetInt("HighestScore") < floorNumber)

114 {

115 PlayerPrefs.SetInt("HighestScore", floorNumber);

116 PlayerPrefs.Save();

117 }

118 }

119 }

MinimapCamera.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4 using UnityEngine.UIElements;

5
6 public class MinimapCamera : MonoBehaviour

7 {

8 private Transform m_Camera;

9 private Vector3 m_position;

10 private float m_movSpeed = 2;

11
12 private void Start()

13 {

14 m_Camera = GetComponent<Transform>();

15 }

16 private void Update()

17 {

18 if (CameraController.instance.currRoom != null)

19 {

20 m_position = new Vector3(CameraController.instance.currRoom.X * 0.32f, 5, CameraController.instance.currRoom.Y * 0.32f);

21 m_Camera.position = Vector3.MoveTowards(m_Camera.position, m_position, Time.deltaTime * m_movSpeed);

22 }

23 }

Source code 47

24 }

Room.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using System.Linq;

4 using UnityEngine;

5
6 public class Room : MonoBehaviour

7 {

8
9 public int Width = 19;

10 public int Height = 11;

11 public int X;

12 public int Y;

13 private bool updatedDoors = false;

14 public bool roomVisited = false;

15
16 public Room(int x, int y)

17 {

18 X = x;

19 Y = y;

20 }

21
22 public GameObject minimapRoom;

23 public Door leftDoor;

24 public Door rightDoor;

25 public Door bottomDoor;

26 public Door topDoor;

27
28
29 public List<Door> doors = new List<Door>();

30
31 void Start()

32 {

33 if (RoomController.instance == null)

34 {

35 return;

36 }

37
38 Door[] ds = GetComponentsInChildren<Door>();

39 foreach (Door d in ds)

40 {

41 doors.Add(d);

42 switch (d.doorType)

43 {

44 case Door.DoorType.right:

45 rightDoor = d;

46 break;

47 case Door.DoorType.left:

48 leftDoor = d;

48 Source code

49 break;

50 case Door.DoorType.bottom:

51 bottomDoor = d;

52 break;

53 case Door.DoorType.top:

54 topDoor = d;

55 break;

56 }

57 }

58 minimapRoom = RoomController.instance.minimapRoomObject;

59 RoomController.instance.RegisterRoom(this);

60 minimapRoom.SetActive(false);

61 }

62
63 void FixedUpdate()

64 {

65 //EnemyController[] enemiesInRoom = GetComponentsInChildren<EnemyController>();

66 List<GameObject> enemies = GetEnemiesInRoom(this, "Enemy");

67 if (enemies.Count == 0)

68 {

69 RemoveConnectedDoors();

70 }

71 if(roomVisited)

72 {

73 minimapRoom.SetActive(true);

74 }

75 //else

76 //{

77 // minimapRoom.SetActive(false);

78 //}

79 }

80
81 public List<GameObject> GetEnemiesInRoom(Room parent, string tag)

82 {

83 List<GameObject> taggedChildren = new List<GameObject>();

84
85 foreach (Transform child in parent.transform)

86 {

87 if (child.CompareTag(tag))

88 {

89 taggedChildren.Add(child.gameObject);

90 }

91 }

92
93 return taggedChildren;

94 }

95
96 public void RemoveConnectedDoors()

97 {

98 foreach(Door door in doors)

99 {

100 switch (door.doorType)

101 {

102 case Door.DoorType.right:

Source code 49

103 if (GetRight() != null)

104 door.gameObject.SetActive(false);

105 break;

106 case Door.DoorType.left:

107 if (GetLeft() != null)

108 door.gameObject.SetActive(false);

109 break;

110 case Door.DoorType.bottom:

111 if (GetBottom() != null)

112 door.gameObject.SetActive(false);

113 break;

114 case Door.DoorType.top:

115 if (GetTop() != null)

116 door.gameObject.SetActive(false);

117 break;

118 }

119 }

120 }

121
122 public void CloseDoors()

123 {

124 foreach (Door door in doors)

125 {

126 door.gameObject.SetActive(true);

127 }

128 }

129
130 public Room GetRight()

131 {

132 if (RoomController.instance.DoesRoomExist(X + 1, Y))

133 {

134 return RoomController.instance.FindRoom(X + 1, Y);

135 }

136 return null;

137 }

138 public Room GetLeft()

139 {

140 if (RoomController.instance.DoesRoomExist(X - 1, Y))

141 {

142 return RoomController.instance.FindRoom(X - 1, Y);

143 }

144 return null;

145 }

146 public Room GetTop()

147 {

148 if (RoomController.instance.DoesRoomExist(X, Y + 1))

149 {

150 return RoomController.instance.FindRoom(X, Y + 1);

151 }

152 return null;

153 }

154 public Room GetBottom()

155 {

156 if (RoomController.instance.DoesRoomExist(X, Y - 1))

50 Source code

157 {

158 return RoomController.instance.FindRoom(X, Y - 1);

159 }

160 return null;

161 }

162
163 private void OnDrawGizmos()

164 {

165 Gizmos.color = Color.red;

166 Gizmos.DrawWireCube(transform.position, new Vector3(Width, Height, 0));

167 }

168
169 public Vector3 GetRoomCentre()

170 {

171 return new Vector3(X * Width, Y * Height);

172 }

173
174 private void OnTriggerEnter2D(Collider2D other)

175 {

176 if(other.tag == "Player")

177 {

178 RoomController.instance.OnPlayerEnterRoom(this);

179 }

180 }

181 }

SlimeBoss.cs

1 using System;

2 using System.Collections;

3 using UnityEngine;

4 using UnityEngine.InputSystem.Processors;

5 using UnityEngine.UIElements;

6
7 public class SlimeBoss : MonoBehaviour

8 {

9 public float hp = 20f;

10 public float jumpForce = 30f;

11 public float jumpCooldown = 5f;

12 public float jumpHeight = 2f;

13
14 private Room room;

15 private TransitionController transitionController;

16 private Rigidbody2D rb;

17 private Transform transform;

18 private Vector3 playerDirection;

19 private Animator animator;

20 private bool isJumping = false;

21 private bool canJump = true;

22 private bool isDamaged = false;

23 private bool bossActive = false;

24 private static Transform playerTransform;

Source code 51

25 private SpriteRenderer spriteRenderer;

26
27 void Start()

28 {

29 playerTransform = GameController.player.transform;

30 transform = GetComponentInParent<Transform>();

31 animator = GetComponentInParent<Animator>();

32 room = GetComponentInParent<Room>();

33 transitionController = room.GetComponentInChildren<TransitionController>();

34 rb = GetComponent<Rigidbody2D>();

35 spriteRenderer = GetComponent<SpriteRenderer>();

36 }

37
38 void Update()

39 {

40 if (bossActive)

41 {

42 if (!isJumping && canJump && bossActive)

43 {

44 StartJump();

45 }

46
47 if (playerTransform.position.x < transform.position.x)

48 {

49 spriteRenderer.flipX = true;

50 }

51 else

52 {

53 spriteRenderer.flipX = false;

54 }

55
56 //if (isJumping)

57 //{

58 //

59 // transform.position = Vector2.MoveTowards(transform.position, playerDirection, jumpForce * Time.deltaTime);

60 //

61 //}

62
63 if (gameObject.transform.position.y < playerTransform.position.y - 0.2f)

64 {

65 spriteRenderer.sortingOrder = 2;

66 }

67 else

68 {

69 spriteRenderer.sortingOrder = 0;

70 }

71 }

72 else if (room == CameraController.instance.currRoom)

73 {

74 StartCoroutine(BossActive());

75 }

76 }

77
78 IEnumerator BossActive()

52 Source code

79 {

80 yield return new WaitForSeconds(0.4f);

81 room.CloseDoors();

82 yield return new WaitForSeconds(0.4f);

83 bossActive = true;

84 }

85
86 void StartJump()

87 {

88 playerDirection = playerTransform.position;

89 canJump = false;

90 animator.SetBool("Jump", true);

91 }

92
93 void Jump()

94 {

95 isJumping = true;

96 Vector2 direction = (playerDirection - transform.position).normalized;

97 rb.velocity = direction * jumpForce;

98 }

99
100 void FinishJump()

101 {

102 isJumping = false;

103 rb.velocity = Vector2.zero;

104 animator.SetBool("Jump", false);

105 Invoke("EnableJump", jumpCooldown);

106 }

107
108 void EnableJump()

109 {

110 canJump = true;

111 }

112
113 void Damaged()

114 {

115 if (!isJumping && !isDamaged)

116 {

117 animator.SetBool("Damaged", true);

118 isDamaged = true;

119 hp -= GameController.Strike();

120 if (hp <= 0)

121 {

122 Death();

123 }

124 }

125 }

126
127 void FinishDamage()

128 {

129 animator.SetBool("Damaged", false);

130 isDamaged = false;

131 }

132

Source code 53

133 void Death()

134 {

135 animator.SetTrigger("Death");

136 }

137
138 void Destroy()

139 {

140 Destroy(gameObject);

141 transitionController.Open();

142 }

143
144 void OnTriggerEnter2D(Collider2D collision)

145 {

146 if (collision.tag == "Attack")

147 {

148 Damaged();

149 }

150 }

151
152 private void OnCollisionEnter2D(Collision2D collision)

153 {

154 if (collision.gameObject.tag == "Player")

155 {

156 GameController.DamagePlayer(2);

157 }

158 }

159 }

TransitionController.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using Unity.VisualScripting;

4 using UnityEngine;

5
6 public class TransitionController : MonoBehaviour

7 {

8 [SerializeField] private SpriteRenderer spriteRenderer;

9 [SerializeField] private Sprite openedTrapdoor;

10 private bool isOpened = false;

11
12 public void Open()

13 {

14 isOpened = true;

15 spriteRenderer.sprite = openedTrapdoor;

16 }

17
18 void OnTriggerEnter2D(Collider2D collision)

19 {

20 if (collision.tag == "Player" && isOpened)

21 {

22 GameController.floorNumber += 1;

54 Source code

23 RoomController.instance.GetComponent<DungeonGenerator>().ClearDungeon();

24
25 ResetPlayerPosition();

26 }

27 }

28
29
30 public void ResetPlayerPosition()

31 {

32 GameController.player.transform.position = Vector3.zero;

33 CameraController.instance.transform.position = new Vector3(0,0,-10);

34
35 if (RoomController.instance != null)

36 {

37 Room currentRoom = RoomController.instance.GetComponent<RoomController>().startRoom;

38 RoomController.instance.GetComponent<RoomController>().OnPlayerEnterRoom(currentRoom);

39 }

40 }

41 }

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Work Development
	Results
	Comparison of Procedural Generation Methods for Dungeons

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source code

