
Development of a 3D Tower Defense using
Unreal Engine and Blender:

ASTROKEEPER

Juanma Pensado Ballester

Supervised by:
José Ribelles Miguel

29/07/2024

Bachelor's Degree in
Video Game Design and Development

A mis padres, abuelos y novio, gracias por
acompañarme mientras
convierto mi pasión en mi futuro.

Gracias a mis tíos, que en los momentos más
complicados me ayudaron a tomar una de las decisiones
más importantes de mi vida.

Gracias a mis primos y amigos que desde que tengo uso
de razón fueron los que me acompañaron en mi pasión a
los videojuegos

Y sobretodo gracias a esta increible comunidad que
somos los DEVS por luchar por una industria altruista en
la que todos nos ayudamos mutuamente, en concreto a
Matt Aspland, Gorka games, Carlos Coronado y Ryan layle
que sin sus tutoriales no habría podido salir esto
adelante

ABSTRACT:

The document discusses the development process of a 3D Tower
Defense game called ASTROKEEPER using Unreal Engine and
Blender. The primary goal was to create an engaging and fully
playable game with various levels and mechanics. Challenges were
overcome, leading to the successful completion of a playable
game available for download. The project showcases the
developer's skills and determination to craft an original game in
an unfamiliar engine.

KEYWORDS:

● ASTROKEEPER
● UNREAL ENGINE 5
● BLENDER
● 3D
● TOWER DEFENSE
● SHOOTER
● VIDEO GAME DEVELOPMENT

CONTENTS
CONTENTS... 1

INTRODUCTION...3
1.1 Work Motivation.. 3
1.2 Objectives..4
1.3 Environment and initial state...4

PLANNING & EVALUATION...5
2.1 Planning... 5
2.2 Resource Evaluation... 7

SYSTEM ANALYSIS AND DESIGN................................ 8
3.1 Requirement Analysis..8
3.2 System Design.. 10
3.3 System Architecture.. 15
3.4 Interface Design..16

WORK DEVELOPMENT AND RESULTS.................... 18
4.1 Work Development.. 18
4.2 Results..35

CONCLUSIONS AND FUTURE WORK..................... 37
5.1 Conclusions..37
5.2 Future work... 38

BIBLIOGRAPHY..39
A.1 Bibliography.. 39
A.2 List of Figures.. 40

SOURCE CODE...42

1

2

INTRODUCTION
This chapter shows what the purpose of the work was in the
beginning, why and how this project was going to be developed.

1.1 Work Motivation

Video Games are becoming more and more popular, becoming the
first entertainment option paired with the films and series, but
videogames have something that makes them unique, interactivity.

In the rise of video games, I wanted to make a game that
showcases the love I have for video games intertwined with my will
to improve my skills on game development.

At its core, my project is a 3D Tower Defense game where you're a
stranded robot, fighting your way out of an unknown planet. This
idea started when in "VJ-1227 Motors de Jocs" we (my group and I)
made a similar game for a class project. But back then, I had to
use free to use assets from the web due to time limitations.

Software wise, I really wanted to learn and improve my
development skills using Unreal Engine 5, surfacing more with the
Unity last controversy with the licensing prices, as Unity was the
only game engine I really know how to use.
Now, I'm determined to craft something entirely original, by myself
in an unknown Engine.

3

1.2 Objectives

The primary goal of this project is to make an engaging and fully
playable game, with various levels and interesting mechanics, or at
least making the game as I had on the prototype I made years ago
in another engine.

While not having a specific research question, the project is made
to fulfill and acquire new skills. By forcing myself to Unreal Engine
5 and leveling up my skills in Blender, I aim to acquire for myself
the tools necessary for future work in the videogame industry.

1.3 Environment and initial state

At the beginning of this project I started to make it all by myself, to
test my abilities and improve them and also as a project I could
show in my portfolio without shame or insecurities.

The project didn't start as well as I had hoped because I was also
enrolled in the internship of the degree, and other delicate
personal problems, so the first few months of development seemed
to show little progress.

4

PLANNING & EVALUATION
The meaning of this chapter is meant to deal with a more
technical part of the work, showing the planning and evaluation of
the project.

2.1 Planning

Detailed Time Planning:
● Conceptualization and Design:

○ Define the game concept, storyline, and gameplay
mechanics.

○ Develop the game design document outlining all
features and mechanics.

● Asset Creation:
○ Create concept art and sketches.
○ Model 3D assets such as characters, props, and

environments in Blender.
○ Texture and UV map assets.
○ Rig and animate characters and objects.

● Programming:
○ Set up an Unreal Engine project.
○ Write code (blueprints) for gameplay mechanics, AI

behavior, and user interfaces.
○ Debug and optimize code for performance.

● Testing and Polishing:
○ Playtest game mechanics and levels.
○ Implement visual effects and sound design.
○ Gather feedback and iterate on design based on

testing results.
○ Fine-tune gameplay for balance and enjoyment.

5

● Documentation:
○ Create "marketing" materials.
○ Create the necessary documentation for the final

submission

All these tasks shaped an action plan represented in Table 2.1

Table 2.1: Outdated Gantt Chart

2.2 Resource Evaluation

As a solo developer, I will handle mostly all aspects of the game
development process. This includes:

- Game Designer: Conceptualizing and designing the game (on
this task my partner helped me).

- 3D Artist: Creating 3D models, textures, and animations in
Blender.

- Programmer: Writing code and scripting in Unreal Engine.
- Quality Assurance: Testing and debugging the game for

issues (In this task I asked Family and Friends to playtest).

6

Equipment/Resources:
- Computer Setup: Medium-performance PC, capable of

running Unreal Engine and Blender smoothly and sufficient
storage space for project files, assets, and backups.

- Software: Free Licenses for Unreal Engine and Blender, as well
as any additional software tools for asset creation and
development, like Krita, Gimp, or DaVinci Studio.

- Internet Connection: Access to online resources, courses,
tutorials, and community support.

Cost Estimation:
- Software Licenses: All software I used is Free or OpenSource.
- Miscellaneous: All extra assets used are free to use, the

hardware is around the 1000€ (PcComponentes, s. f.) would be
amortized.

- Human Cost: The human cost of this game as it has been
developed is not easy to calculate, since it was all done by
one person, and no matter how much one can do, one
person cannot do the same work as a team. Assuming that
the game was developed in 300 hours (it was likely more), and
that out of these, 100 hours were spent on modeling with an
estimated monthly salary of around 1800€/month, about
11,25€/hour ("Glassdoor," s.f), 200 hours were spent on
programming and testing with an average monthly salary of
1300€/month approx 8,125€/hour ("Glassdoor," s.f), and
disregarding the hours for other tasks such as learning and
document development which, for simplicity, would not be
remunerated, the total human cost would be approximately
1125 + 1625 = 2750€ in total

- TOTAL COST: The cost of the game will round about the
4000€ summing all the costs

7

SYSTEM ANALYSIS AND DESIGN
This chapter presents the requirements analysis, design and
architecture of the proposed work, as well as, where appropriate,
its interface design.

3.1 Requirement Analysis

Every project originates from a problem that needs to be solved. In
this case, the problem is to create the game, and for that, it is
necessary to analyze how the game will be.

Astrokeeper is about a robot and it's ship, in a mission to clean the
outer space, after a mistake calculating a route through an
asteroid belt, they crash in a uninhabited planet similar to our
earth, where a lost ancient civilization left their servant robots,
which AI evolutioned to a point where they adapted their ald tasks
to defend the planet. SPARKLE & ASTRA, have to escape this planet
save & sound to continue their mission.

The game will have several scenes, including different menus and
the playable level. In the initial menu, the player will find five
buttons: "Play," which will take the player to the first level; "Options,"
which will open the options menu; "Controls and Rules," where the
gameplay mechanics are explained; "Credits," an informational
screen about the game; and "Exit," which will close the game.

In the options screen, there will be various sections where the
player can adjust the game volume, language, screen mode
(windowed or fullscreen), resolution, and the frame rate limit (FPS).

Once in the game, the player can move the character using WASD
and jump with the space bar. The mouse will be used to move the
camera, with the right button for aiming, and while holding it, the

8

left button for shooting. Additionally, the player can start the next
wave with Z, interact with platforms and turrets with E, and speed
up time with LCtrl.

The ESC and P buttons can open the pause menu, which has three
buttons: one to continue the game, another to open the options
menu, and a button to return to the main menu.

3.1.1 Functional Requirements

Functional requirements define a function of the system that is to
be developed. From the previous analysis, they can be easily
identified:

- R1: The player can start the game.
- R2: The player can change the game options.
- R3: The player can exit the game.
- R4: The player can move through the level.
- R5: The player can jump.
- R6: The player can aim.
- R7: The player can shoot (while aiming).
- R8: The player can start the next wave.
- R9: The player can spawn turrets.
- R10: The player can heal turrets.
- R11: The player can speed up the game time.
- R12: The player can pause the game.
- R13: The player can return to the main menu.
- R14: The player & turrets can hurt the enemies.
- R15: The turrets can be hurt by enemies

3.1.2 Non-Functional Requirements

Non-functional requirements impose restrictions on the design
and implementation of the system, such as graphical aspects or
quality standards. The following can be identified for this project:

- R14: The game can be played on PC.
- R15: The game mechanics will be easy to learn.
- R16: The aesthetic is stylized.
- R17: The UI will not be obstructive.
- R18: Enemy waves will scale in difficulty

9

3.2 System Design

In this section its presented the cases of use (Tables 3.2 to 3.12) and
case of use diagram (Figure 3.1) taken from the functional
requirements seen on the last section:

Figure 3.1. Case use diagram

Requirement: R1

Actor: Player

Description The player starts the level by pressing the play
button

Preconditions 1. The player must be in the main menu

Normal
sequence

1. The player presses the play button
2. The game starts

Alternate
Sequence

none

Table 3.2. Case of use <play game>

10

Requirement: R2

Actor: Player

Description The player changes the options of the game

Preconditions The player must be in the options menu

Normal
sequence

The player presses any option
The option changed is applied

Alternate
Sequence

none

Table 3.3. Case of use <adjust options>

Requirement: R3

Actor: Player

Description The player exits the game

Preconditions The player must be in the main menu

Normal
sequence

The player presses the exit button
The game closes

Alternate
Sequence

none

Table 3.4. Case of use <exit game>

Requirement: R4

Actor: Player

Description The player move on the level

Preconditions The player must be in game

Normal
sequence

The player presses WASD
The character moves

Alternate
Sequence

none

Table 3.5. Case of use <move the player>

11

Requirement: R5

Actor: Player

Description The player jumps

Preconditions The player must be in game

Normal
sequence

The player presses space
The character jumps

Alternate
Sequence

none

Table 3.6. Case of use <jump>

Requirement: R6

Actor: Player

Description The player aims

Preconditions The player must be in game

Normal
sequence

The player presses RMouse
The character aims

Alternate
Sequence

none

Table 3.7. Case of use <Aim>

Requirement: R7

Actor: Player

Description The player shoots

Preconditions The player must be in game and aiming

Normal
sequence

The player is aiming
The player presses LMouse
The character shoots

Alternate
Sequence

The player presses LMouse
The character do not shoot
Table 3.8. Case of use <shoot>

12

Requirement: R8

Actor: Player

Description The player starts the next wave

Preconditions The player must be in game and the previous
wave should be finished

Normal
sequence

The player presses Z
The game start a new wave

Alternate
Sequence

none

Table 3.9. Case of use <Start New Wave>

Requirement: R9

Actor: Player, object

Description The player interacts with an object

Preconditions The player must be in game and next to the
object

Normal
sequence

The player presses E
The object does something

Alternate
Sequence

none

Table 3.10. Case of use <interact with objects>

Requirement: R10

Actor: Player

Description The player accelerates the time

Preconditions The player must be in game

Normal
sequence

The player presses LCtrl
The time accelerates

Alternate
Sequence

none

Table 3.11. Case of use <accelate time>

13

Requirement: R11

Actor: Player

Description The player opens the pause menu

Preconditions The player must be in game

Normal
sequence

The player presses P or Esc
The pause menu opens

Alternate
Sequence

none

Table 3.12. Case of use <pause game>

14

3.3 System Architecture

The minimum requirements needed to play the engine are:

● Operating System Windows 10 version 1703, MacOS 13 Ventura
or any reasonable new Linux distro from CentOS 7.x and up

● Graphic card any compatible with Direct X 11 or greater

These features are according to Unreal Documentation but the
well function of this project is not guaranteed.

This project was tested and developed with the following features
so any features equivalent or better than these will guarantee a
smooth experience:

● Operating system: Windows 10 Home 22H2
● Processor: AMD Ryzen 5 3600 6-Core Processor 3.60GHz
● RAM Memory: 16GB
● Graphics: Nvidia Geforce GTX 750 Ti

Also the game is recommended to be played with mouse and
keyboard but can also be played with a Xbox controller or similar.

15

3.4 Interface Design

The ingame interface (figure 3.13) design is unobtrusive and simple,
giving the player the necessary information as the wave number,
the enemies remaining or the ship life.

Figure 3.13. In Game Interface Design draft

The rest of the interfaces (Figures 3.14 - 3.16) are very simple and
intuitive, letting the player play without complications.

Figure 3.14. Main menu and options Interface Design draft

16

Figure 3.15. Credits and Controls Design draft

Figure 3.16. Pause menu Interface Design draft

17

WORK DEVELOPMENT AND RESULTS

Starting from a solid understanding of the tasks to be performed,
the requirements of the video game, and the desired gameplay
style, this section will explore the project's progress, the
intermediate objectives achieved, and the modifications
implemented during the process. Additionally, the results obtained
will be evaluated, highlighting how some original ideas were
adjusted and why.

4.1 Work Development

This section will be explained in the different areas of work:
Modeling and Programming. This is the simplest way to explain the
work done, as these tasks have been intertwined during
development, and applying them in chronological order would be
complicated. Also all these blueprints and functions mentioned
can be seen on the Source Code point of this document.

MODELING:
The first task undertaken was modeling, specifically the modeling
of the main character, SPARKLE, a cute space cleaning robot who,
after some calculation errors and an asteroid accident, ends up
crash-landing on an unknown planet where an ancient civilization
left its servant robots in charge of the planet's defense.

There were three key aspects to its design: it had to be round and
cuddly, low-poly, and easy to rig. It needed to be round and cuddly
because who can resist the charm of such a character? It needed
to be low-poly to keep the project lightweight, and easy to rig due
to my practically nonexistent knowledge of this skill. For
inspiration and references, I turned to Pinterest and created a

18

board with images that had the characteristics I was looking for.
The result is shown in Figure 4.1, fulfilling the mentioned points to a
greater or lesser extent, to achieve the desired roundness, more
vertices were needed, although there are not too many,
approximately 3000.

Figure 4.1. Sparke Model Wireframe & materials

After the main character, it was necessary to model the enemies.
Following the same three pillars mentioned earlier and using the
same method of searching for images on Pinterest, I developed five
different models (Figure 4.2), each representing an enemy with a
special ability.

The red one would be the common enemy, the yellow one a faster
enemy, hence the thrusters on its sides, and the blue one, which
was not implemented in the game, was intended to be the healer
enemy, able to heal the other enemies. The purple one, the
destroyer, deals a lot of damage but has little health, and the
green one, the tank, would be a nod to a real tank with high health
but slow movement.

19

Figure 4.2 The enemies models

After the enemies, it was time to model what is considered the
foundation of any tower defense game: the turrets and the "tower"
to defend. Here, I based the design on a simple concept that
would align with the game's aesthetics and the main character. In
this case, the turrets (Figure 4.3) consist of two parts: the platforms
where they spawn and the turret bodies themselves, which are the
shooting mechanisms.

Figure 4.3. Turret model

20

The "Tower" that the player has to defend is our character's
crashed spaceship, which is being "repaired" since it is controlled
by an artificial intelligence. This spaceship underwent a couple of
variations because the first version (Figure 4.4) didn't quite
convince me. It had too many vertices and didn't fully match the
game's aesthetics. Later on, I modeled another one that was more
suitable, as shown in Figure 4.5.

Figure 4.4. The "bad" ship model

Figure 4.5 The new & final ship model

21

Other modeling work I did later on includes a simple projectile
model without complications, while in a more advanced phase of
the project, using Unreal's own Landscape tool, I created the level's
environment (Figure 4.6) where I had a some problems as some of
the textures used, as I was painting them on the landscape would
simply disappear, after some research, it was caused by some
issue with the texture buffer cache or something similar, a quick fix
.I also modeled various foliage elements in Blender (Figures 4.7
and 4.8), the decorative elements, which I placed throughout the
level using Unreal's own tool.

Figure 4.6 Level 1 Landscape

Figure 4.7 Cacti models

22

Figure 4.8 Rocks models

As a way to summarize and complete the section, I have carried
out a study on all the models made and their statistics for the
project and I have captured it in the following table (Table 4.9):

MODEL VERTS MATERIALS In use

Sparke 3729 5

Enemies ~ 2000 Each 4 each

Turret 4010 3

Ship 2027 4

Bullet 500 2

Small Rocks 40-70 1

Large Rocks 1100-7700 1

Small Cacti1 350 -1400 2

Large Cacti 2000-3900 2

Terrain 8836 5

Spawer 360 1

Clouds 100-300 1

Table 4.9 Models Stats

1 This number is this high due to all the spikes

23

PROGRAMING:
On the other hand, we must not forget the foundation of any
game: programming. Since Unreal was chosen as the platform for
this project, it allows for programming through Blueprints (Figure
4.10), a visual scripting tool based on object-oriented
programming. This tool enables developers to create and manage
game logic using a system of nodes and connections that
represent events, functions, and variables. It simplifies the design
and implementation of game behaviors and mechanics without
the need to write traditional code.

Figure 4.10 Blueprint example

This section will be explained according to the different blueprints,
starting with the main character's blueprint:

CHARACTER:
The blueprint for SPARKLE inherits from the Character class, which
is predefined in Unreal. At the start of this blueprint, the engine's
input system is defined and assigned to this character, along with
the camera limits. This camera has two positions: one when the
character is not aiming and another when the character is aiming.
These positions are similar but have some differences. When not
aiming, the character will orient towards the movement direction,
while when aiming, the character will be fixed towards where the
camera is pointing, with a slight change in the field of view (FOV)
and the character's speed.

24

Regarding Sparkle's movement, Unreal provides simple inherited
functions to which only the input values need to be connected,
including movement and jumping (which can only be performed
when not aiming).

As for shooting, the character model has a socket, which is a point
where something can be attached. This is where the projectiles are
instantiated when shooting.
To interact with different objects in the game, they must implement
an interface (a collection of functions without implementation that
different classes can implement, allowing for common
communication and functionality between unrelated objects in the
game). Each time the interact button (E) is pressed, it will check
each nearby object that implements this interface and, depending
on the object, it will call the corresponding function in the
blueprint of the object to be interacted with.

Since this blueprint essentially controls the game's inputs, it also
contains the functions that manage the activation of the Widget (a
type of blueprint for UI, to summarize) for the pause menu (Figure
4.11), the function to speed up time, and the function to start a new
wave, which I will explain in more detail later.

Figure 4.11 Pause menu Widget Blueprint

ENEMIES:
In this project, most of the programming efforts are dedicated to
the enemies, their behavior, and how they appear. Taking
advantage of object-oriented programming, all enemies originate

25

from the same blueprint, with each one then modifying variable
values (shown in Table 4.12) and the 3D model accordingly.

Table 4.12 Enemies Stats

Each time an enemy is spawned, several references to other actors
in the scene are assigned to it, such as the game mode, the path it
follows, the spaceship, and other variables are initialized. These
include tags, its health (displayed as text in the game), and the
initialization of its movement. Additionally, a call is set up for each
game tick to the function responsible for detecting turrets and
shooting at them.

The function that handles the enemy's movement (Figure 4.13) is
simple: a path is established using a spline that the enemy follows
from start to finish at a set speed in the direction of the path.

Figure 4.13 Part of the function in charge of the enemy movement

26

Enemy Health Speed Damage Shoot
speed

Standard 250 5 5 0.5s

Quick 100 13 3 0.1s

Destroyer 250 3.5 20 1.5s

Tank 500 2 10 1.5s

The complication arises when the enemy detects one or more
turrets near the path.
It detects them through a system of triggers that check if what has
entered its vision range are turrets, adding these to a list that
contains all the turrets the enemy can shoot at. When these
turrets leave the range, they are removed from the list.

This is where the shooting function comes into play. While there
are no turrets in sight, meaning there are no turrets in the list of
possible targets, the shooting function does nothing and allows
the movement function to take full control of the enemy. The
moment it detects one or more turrets, it calls a function that
iterates through all the turrets in the list and returns the nearest
turret. After this, it calls a function that handles the enemy's
rotation (as shown in Figure 4.14). If this turret is "dead," it does
nothing, but if it is alive, it sets the enemy's rotation to face the
turret. Once rotated, and after a small delay, the enemy will start
shooting, just like the main character, from a socket. Additionally,
when the projectile is instantiated, it is added to a list so that when
the enemy dies, any remaining projectiles in the game are
removed.

Figure 4.14 Enemy and turret aiming at each other

27

In the enemy blueprint, the next function handles the damage
dealt to it, utilizing Unreal Engine's built-in damage system, which
offers convenient features. This system allows specifying the type
of damage, the amount, the object causing it, and the actor
responsible for it. Each time this function is called, it calculates the
new health, updates the health bar displayed in the game, and
then checks if the enemy is dead. If it is, it sets a boolean flag to
indicate this and performs several tasks:

Firstly, it iterates through the previously mentioned list of
projectiles and removes them from the game. Then, using a
random number generator, it determines if the enemy will drop
money for the player to build more turrets (Figure 4.15). There's a
60% chance to drop 50 coins, a 30% chance for 100 coins, and a
10% chance for 200 coins. Afterward, it generates a particle system
for the explosion effect and subsequently destroys the actor.

Figure 4.15 The random money system

This previously described function is called from within the same
blueprint, and the enemy has another integrated trigger ('Hit').
Each time something passes through it, it checks the nature of this
actor, and if it's a projectile not fired by itself, it applies damage
because upon instantiation, the projectile is assigned damage
and its instigator. Immediately after, this projectile is destroyed.

28

In this same blueprint, we also find a simple function that is called
every game tick, which updates the rotation of the health bar of
these enemies to ensure it is always visible to the player.

TURRETS:
The turrets operate in a similar manner to the enemies. The Start
function initializes the actor's tags, displays the health text in the
game, starts a tick timer that calls the function responsible for
targeting enemies, and initializes the maximum health.

The enemy detection system works identically to its counterparts,
with the strategy of shooting the closest enemy, using a trigger
(Shown in Figure 4.16) and a list. Similarly, the function responsible
for targeting enemies operates likewise with two slight variations.
Firstly, since turrets cannot be destroyed but only weakened (if
health reaches zero), there is a preliminary check to ensure this
function does not execute if the turret is already weakened.

Figure 4.16 A turret and all its components

Similarly, the function that manages collisions checks that
projectiles are not fired by itself and applies damage. In this case,
before destroying the projectile actor, it also removes it from the
list mentioned earlier for each enemy. The function that applies

29

damage to the turret follows a similar approach: it verifies that the
projectile was fired by an enemy to avoid friendly fire. It calculates
the new life of the turret, and based on its condition, it sets the
boolean IsDead?

The only function that differs somewhat from the enemy is the
healing function, which is called while the player is holding "E" near
the turret. This function heals the turret by the specified amount
with a delay determined by the player's blueprint.

PLATFORMS:
The other part of the turrets are the platforms, plates distributed
throughout the map (pre-distributed at the start of the level) that
act as turret placement points. Their structure and programming
are straightforward, consisting of a couple of functions and a
trigger. When the player comes into contact with this trigger, a
message appears on the screen indicating that they can place a
turret and showing its cost (which disappears when they exit the
trigger). While inside the trigger, if the player presses the interact
button ("E") and has enough money, a turret will be constructed on
the socket assigned in the platform's model.

PROJECTILE:

Figure: 4.17 "Friend" Bullet

There's not much to say about the projectile blueprint (Figure 4.17)
It simply changes color depending on who fires it (yellow for
friendly fire, pink for enemy fire). Additionally, to prevent actor
overload in the world, there's a function that deletes the
instantiated projectile upon collision with anything other than an
enemy or turret (considering the list of enemy projectiles).

30

SHIP:
Another straightforward blueprint to explain is the ship. At the
start of the level, it initializes the health widget (and controls it),
and then this blueprint also includes a function for applying
damage inflicted upon the ship. When the ship's health reaches
zero, it calls the 'end level' function, responsible for ending the
level. How does the ship take damage? Enemies, upon completing
their path along the previously mentioned spline, inflict
proportional damage to the ship based on the remaining enemy
health and the damage they cause, according to the following
formula (Figure 4.18):

10 × 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑚𝑦 𝐻𝑒𝑎𝑙𝑡ℎ
𝑀𝑎𝑥 𝐸𝑛𝑒𝑚𝑦 𝐻𝑒𝑎𝑙𝑡ℎ() × 𝐸𝑛𝑒𝑚𝑦 𝐷𝑎𝑚𝑎𝑔𝑒

Figure 4.18 Ship damage formula

WAVE SYSTEM AND SPAWNER:
Once all the actors in the equation have been explained, it's time
to look into the core mechanics of the game: waves and enemy
spawning.

These are primarily implemented in the game mode blueprint,
which runs at the level scope rather than being tied to a specific
actor, although levels themselves also have their own blueprints.
Functions in this blueprint include for example adding or
subtracting coins from the player, which are referenced by the
respective blueprints that use them.

The game mode starts by scanning the level for all actors with the
spawner blueprint and adds them to a list (useful for using
multiple spawners per level). Next, it initializes the HUD and sets
the number of waves depending on the level. Then, it waits for
player input. When it receives input, it triggers the EnterTransition
function, which in turn calls the function that starts everything
once the specified transition time has elapsed.

NewWave is responsible for incrementing the current wave number,
calling StartWave, and updating the widget with the current wave
number and the number of remaining enemies. StartWave
prepares the list of enemies that should appear during the wave

31

and passes it to the spawner. Depending on the level, there's a
data table with this information. Each row in this table represents
a wave and lists references to enemy types and their quantities.
This step also allows for the possibility of generating waves
algorithmically.

These data are referenced in a dictionary-like structure, shown in
Figure 4.19, where the key is the enemy type and the value is the
number of enemies of that type to spawn. With this structure, it's
straightforward to calculate the total number of enemies in the
wave by iterating through each key and summing all the values.
This total is then used to iterate through the same structure
randomly, adding these enemies to a queue in the spawner
blueprint.

Figure 4.19 Data Table with the enemies in each wave

To clarify, these enemies are added to a queue using the
AddEnemyToQueue function in the spawner blueprint (Actor
shown in Figure 4.20). If there are no enemies nearby, the spawner
attempts to spawn an enemy by calling SpawnEnemy. If
SpawnEnemy isn't called by AddEnemyToQueue, a timer set during
the spawner blueprint initialization triggers SpawnEnemy every 2
seconds.

The role of SpawnEnemy is to take the first enemy in the queue
and spawn it. Additionally, it sets up an event binded to the death
of this enemy.

32

Figure 4.20 Spawner Actor on the level

The event mentioned, OnEnemyDeafeated, is triggered when an
enemy dies, whether by the player, a turret, or reaching the end of
its path. Its purpose is to decrement the remaining enemy count
and check the EnemyMaxCount variable.

The EnemyMaxCount variable ensures that there's a maximum
number of enemies always present in the game, particularly useful
for large waves and not having lots of enemies to deal with. If there
are still enemies left to spawn, they continue appearing.

Finally, if no enemies remain to be spawned and depending on
whether it's the last wave of the level or not, it either ends the level
or prepares for the player to start the next wave.

33

OTHER:
During the project, many other less significant tasks were also
carried out, such as searching for sound materials and free-to-use
sources on websites like Dafont or Pixabay, several redesigns of
the visual appearance of the UI (Figures 4.21-22), and work within
the engine to create particle systems and visual effects.

Figure 4.21 Old Button design

Figure 4.22 New Button design

This last image is part of almost all of the widgets referring to
menus, like the Main menu (in which the background is also made
by me in blender) or the option menu which lets the player change
some of the game options like the screen resolution or the game
volume.

34

4.2 Results

After completing the project and reflecting on the established
objectives, I believe that while I didn't achieve all goals 100%,
particularly in not developing more than one level as planned, I do
feel that the game is highly playable, and I am satisfied with the
functionality of the developed mechanics. Some of this results can
be seen on figures 4.23-25 shown below:

Figure 4.23 Main menu

Figure 4.24 A wave starting

35

Figure 4.25 Sparkle shooting an enemy

As one of the objectives stated, I aimed for the game to be fully
playable and now it's available for download at2:

● Google Drive: ASTROKEEPER_DEMOS (Windows only)
● Itch.io: https://pensadox11.itch.io/astrokeeper (Windows &

Linux)

Additionally, there is a complete project download available on
Google Drive with the different versions of the project (too large for
GitHub): Projects Folder

A playtesting campaign is also being carried out, leaving a list of
bugs and features to improve for the future. The link to the form is
https://forms.gle/bVjhw1kv1gPSAMGQ6 or it can be found also in
the Itch.io page linked before.

2Mac builds are exclusive for Mac users, since I am not one it is impossible for me to
generate one

36

https://drive.google.com/drive/folders/14OJ7URB61o_r0CAtmK7-uqepkIeCs3GA?usp=sharing
https://pensadox11.itch.io/astrokeeper
https://drive.google.com/drive/folders/1fhpM2PnDiyQaMAjZQFAvcPtq9NJqrW84?usp=sharing
https://forms.gle/bVjhw1kv1gPSAMGQ6

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

During this past year, I have finally discovered what I want to
dedicate my professional career to, or at least give it a try. This
project has been the final step that made it clear to me.

In this industry, teamwork is usually the norm, but having
managed to develop a video game almost from scratch (whether
more professional or less) has helped me overcome the impostor
syndrome that we all struggle with. It has taught me that this
feeling can be mitigated through hard work, practice, and effort.
No one enters the professional world knowing everything or
knowing exactly what to do at all times

37

5.2 Future work

This project was rescued from a course where I learned a lot, and I
held some affection for it because it was where I realized I could
program, despite entering the degree without even knowing what a
for loop was.

The success of the game is partly due to the enthusiasm I had for
the project since its conception in that course, so now I am
determined not to let it fall into oblivion.

There are many things left to do, things that I hadn't initially
considered, such as an initial cinematic or intermediate cutscenes,
adding an ending, and giving meaning to the story. Regarding
mechanics, I aim to fully achieve the initially set objectives:
creating 4 or 5 levels with different environments to enhance my
modeling skills, adding other types of turrets that cause different
types of damage, implementing a character and turret upgrade
system, and even including the healer enemy that was left out
along the way. Most of these "to do" improvements have been
mentioned in the responses of the playtesting survey among
others that have already been solved.

Someday, this project is going to be uploaded on steam, that's the
goal.

38

BIBLIOGRAPHY

A.1 Bibliography

- Hardware and Software Specifications. (s/f). Epicgames.com.
Retrieved 29/07/2024
https://dev.epicgames.com/documentation/en-us/unreal-eng
ine/hardware-and-software-specifications-for-unreal-engine
#requirementsforue5renderingfeatures

- AstroKeeper Board. Pinterest. (s/f). Pinterest.com. Retrieved
29/07/2024
https://www.pinterest.es/juanmapensado/astrokeeper/

- DaFont - Descargar fuentes. (s/f). Dafont.com. Retrieved
29/07/2024
https://www.dafont.com/es/

- Música y efectos de sonido. (s/f). Pixabay.com. Retrieved
29/07/2024 https://pixabay.com/es/sound-effects/

- PcComponentes. (s. f.). PcComponentes.com. Retrieved
29/07/2024
https://www.pccomponentes.com/pccom-ready-amd-ryzen-5-
5600x-16gb-1tb-ssd-rtx-4060

- Glassdoor. (n.d.-a). Sueldo: Diseñador 3D. Retrieved 29/07/2024
https://www.glassdoor.es/Sueldos/diseñador-3d-sueldo-SRCH

39

https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine#requirementsforue5renderingfeatures
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine#requirementsforue5renderingfeatures
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine#requirementsforue5renderingfeatures
https://www.pinterest.es/juanmapensado/astrokeeper/
https://www.dafont.com/es/
https://pixabay.com/es/sound-effects/
https://www.pccomponentes.com/pccom-ready-amd-ryzen-5-5600x-16gb-1tb-ssd-rtx-4060
https://www.pccomponentes.com/pccom-ready-amd-ryzen-5-5600x-16gb-1tb-ssd-rtx-4060
https://www.glassdoor.es/Sueldos/dise%C3%B1ador-3d-sueldo-SRCH_KO0,12.htm#:~:text=El%20sueldo%20medio%20para%20el,929%20%E2%82%AC%20y%201020%20%E2%82%AC

_KO0,12.htm#:~:text=El%20sueldo%20medio%20para%20el,929%
20€%20y%201020%20€.

- Glassdoor. (n.d.-b). Sueldo: Desarrollador de videojuegos.
Retrieved 29/07/2024
https://www.glassdoor.es/Sueldos/desarrollador-de-videojue
gos-sueldo-SRCH_KO0,28.htm

40

https://www.glassdoor.es/Sueldos/dise%C3%B1ador-3d-sueldo-SRCH_KO0,12.htm#:~:text=El%20sueldo%20medio%20para%20el,929%20%E2%82%AC%20y%201020%20%E2%82%AC
https://www.glassdoor.es/Sueldos/dise%C3%B1ador-3d-sueldo-SRCH_KO0,12.htm#:~:text=El%20sueldo%20medio%20para%20el,929%20%E2%82%AC%20y%201020%20%E2%82%AC
https://www.glassdoor.es/Sueldos/desarrollador-de-videojuegos-sueldo-SRCH_KO0,28.htm
https://www.glassdoor.es/Sueldos/desarrollador-de-videojuegos-sueldo-SRCH_KO0,28.htm

A.2 List of Figures

41

Figure Page

Figure 2.1: Outdated Gantt Chart 6

Table 3.1. Case use diagram 10

Table 3.2. Case of use <play game> 10

Table 3.3. Case of use <adjust options> 11

Table 3.4. Case of use <exit game> 11

Table 3.5. Case of use <move the player> 11

Table 3.6. Case of use <jump> 12

Table 3.7. Case of use <Aim> 12

Table 3.8. Case of use <shoot> 12

Table 3.9. Case of use <Start New Wave> 13

Table 3.10. Case of use <interact with objects> 13

Table 3.11. Case of use <accelate time> 13

Table 3.12. Case of use <pause game> 14

Figure 3.13. In Game Interface Design draft 16

Figure 3.14. Main menu and options Interface Design draft 16

Figure 3.15. Credits and Controls Design draft 17

Figure 3.16. Pause menu Interface Design draft 17

Figure 4.1. Sparke Model Wireframe & materials 19

Figure 4.2 The enemies models 20

Figure 4.3. Turret model 20

Figure 4.4. The "bad" ship model 21

Figure 4.5 The new & final ship model 21

Figure 4.6 Level 1 Landscape 22

Figure 4.7 Cacti models 22

42

Figure 4.8 Rocks models 23

Table 4.9 Models Stats 23

Figure 4.10 Blueprint example 24

Figure 4.11 Pause menu Widget Blueprint 25

Table 4.12 Enemies Stats 26

Figure 4.13 Part of the function in charge of the enemy
movement

26

Figure 4.14 Enemy and turret aiming at each other 27

Figure 4.15 The random money system 28

Figure 4.16 A turret and all its components 29

Figure 4.17 "Friend" Bullet 30

Figure 4.18 Ship damage formula 31

Figure 4.19 Data Table with the enemies in each wave 32

Figure 4.20 Spawner Actor on the level 33

Figure 4.21 Old Button design 34

Figure 4.22 New Button design 34

Figure 4.23 Main menu 35

Figure 4.24 A wave starting 35

Figure 4.25 Sparkle shooting an enemy 36

SOURCE CODE

This project is located in ready to download a drive folder (see 4.2
Results) and needs the Unreal 5.3.2 Editor version to open it.

On the other hand HERE I linked a google drive folder with images
and folders to all the blueprints mentioned (some blueprints are
more than one image) due to the limitation to zoom on the photo
in a pdf.

43

https://drive.google.com/drive/folders/1QJlL_B7P9QoC4L6PIk0HwuB5hx43oSAC?usp=sharing

