
Development of an infiltration and heists
videogame through interaction with the

environment and intelligent NPCs

Ana Isabel Torner Ávalos

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

June 20, 2024

Supervised by: Damaris Pascual González

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my family and friends.

Acknowledgments

First of all, I would like to thank my Degree Final Project supervisor, Damaris Pascual
González for his help.

I also would like to thank my family for their support and my friends Enoc López
and Adrián "Zero" Cruz for testing my game and for the support given.

Finally, I would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for
their inspiring LaTeX template for writing the Final Degree Work report, which I have
used as a starting point in writing this report.

i

http://lorca.act.uji.es/curso/latex/

Abstract

Currently, video games have a very important role in the entertainment industry. Video
game production is constantly growing. The design and development of a videogame,
is a process that integrate different tasks: graphic design, animation, characters, mu-
sic, sound, definition of the game mechanic, environment in which the characters act,
formalize rewards, etc; until achieve the final version of it.

In this document, is presented the design and implementation of a 3D and third-
person videogame named Zero el Zorro, as the Final Degree Work report of Ana Isabel
Torner Ávalos in Videogame Design and Development. This one, is about robberies by
infiltrating a place in order to acquire the loot it has. The place is protected by security
mechanisms and a NPC (Non Playable Character) with artificial intelligence. Also, the
player can uses bonuses to improve his effectiveness in the robbery and ensure the vic-
tory. The videogame was created with Unity 3D engine, using C# programming code,
and it is playable on PC.

Keywords

Document, Final Degree Work, Heist, Infiltration, Artificial Intelligence (AI), Security.

iii

Contents

Acknowledgments i

Abstract iii

Contents v

1 Introduction 1
1.1 Work Motivation . 2
1.2 Objectives . 2
1.3 Environment and Initial State . 3

2 Planning and resources evaluation 5
2.1 Planning . 5
2.2 Resource Evaluation . 8
2.3 Deviations from the initial Planning . 8

3 System Analysis and Design 9
3.1 Requirement Analysis . 9
3.2 System Design . 17
3.3 System Architecture . 21
3.4 Interface Design . 22

4 Work Development and Results 31
4.1 Work Development . 31
4.2 Results . 39

5 Conclusions and Future Work 41
5.1 Conclusions . 41
5.2 Future work . 42

Bibliography 43

A Source code 45

v

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 2
1.2 Objectives . 2
1.3 Environment and Initial State . 3

“A video game is an electronic game in which one or more people interact by means
of a controller with a device that displays video images. This electronic device, known
generically as a "platform", can be a computer, an arcade machine, a game console or a
portable device, such as a mobile phone, smartphone or tablet.” [14]

The history of videogames has its beginnings in the 1950s, after World War II. Since
then, the videogames industry has not stopped growing, in 1972 Pong (Nolan Bushnell
founded Atari company and published the game), in 1981 Super Mario Bros (one of the
most famous characters in the world of videogames and Nintendo’s mascot ever since
it’s a platform game in 2D), in 1985 The Legend of Zelda (2D adventure game), in 1987
Final Fantasy (role-playing game). Currently, in 2015 Metal Gear Solid V: The Phantom
Pain (infiltration and stealth), in 2016 Uncharted 4 (3D action-adventure game), in 2017
Mario Kart 8 (kart racing), in 2023 Thief Simulator 2 (infiltration and stealth) and so.

In recent years, the video game industry has experienced a rapid development, for
example, the visual quality (before in 2D, now in 3D), the use of speakers has improved
the sound, the interactivity of the players, mobile phones and tablets as gaming platforms
too. It is important to mention that there are a great variety of videogames: adventure,
arcade, sports, shooting, strategy, platforms, infiltration, etc.

Unity 3D is a powerful cross-platform to make videogames, both in 2D and 3D, with
a pleasant environment. It has a library of assets, supports different resource formats,

1

2 Introduction

uses the languages C# and JavaScript, and it is not so difficult the use of Visual Studio
IDE.

Building a video game goes through several stages, starting with the idea itself,
followed by the design: artistic (appearance) and mechanics of the game (interactions
of the characters in the game) and also the planning, production and testing, among
others.

The present work is about a 3D videogame, classified as an infiltration and stealth
game, developed in Unity 3D engine, and programmed in C#. In this chapter, is ex-
plained the motivations, objectives, environment and initial state of this project.

1.1 Work Motivation

Throughout my life I have played a wide variety of heist, infiltration and stealth video
games, being Payday 2 (Overkill Software, 2013) [7] one of the games that I have dedi-
cated more time to and that I like the most. This game has been the main motivation
and inspiration for my project.

Another of my motivations is to improve the knowledge that I have acquired during
my studies, in particular: the use of Unity, C#, 3D modeling, animation and artificial
intelligence in videogames.

1.2 Objectives

The main objective of this project is to create an infiltration and heist videogame with
3D low poly style for PC using Unity 3D engine. To achieve this, the following specific
objectives are proposed:

• Build the main character in the way that its appearance will be related to the idea
of the game (infiltration and heist).

• Implementing a non-playable character with artificial intelligence, specifically, im-
plementing a state machine to reinforce and improve my knowledge acquired in
the Artificial intelligence subject.

• To achieve a security system that communicates with the NPC in order to create
an interactive environment.

• Adding a save system to the videogame to store the game progress, with the aim
of the player continues the game where it was left, and most of all, learning about
how to create and implement them in Unity.

• Design an attractive, intuitive and friendly interface to make the players’ experi-
ence accessible and enjoyable.

1.3. Environment and Initial State 3

1.3 Environment and Initial State
At the beginning of the course, just when I was looking for a theme for my project,
the game Payday 3 (Overkill Software, 2023) [8] was released, with the release of this
game I remembered its predecessor, the game Payday 2 (Overkill Software, 2013) [7],
a game in which I had spent a lot of hours playing alone or with friends, this game
was my inspiration and the source from which I got the idea to create a game of heists,
infiltration and stealth. From that moment I had clear the theme of the game but I
wanted to give a little twist to the menus. In the game that inspired me, the menus were
managed the character and where it is chosen the place to go to do the heists was simply
screens. I had the idea of creating a menu with scenery, that is to say, a place where
the player could move around and access the different options without it being a simple
screen, so I had the idea to create the lair where the player can manage the character
and the game, and the map of the city from where the thief could access the place to
steal. Another detail I wanted to include in the game was to create a charismatic main
character, I didn’t want it to be a generic character. Following the theme of the game, I
remembered a videogame saga I played when I was a child, the Sly Cooper saga created
by Sanzaru Games [2], the main character of this game was a thief raccoon and inspired
by it I chose as the main character a fox.

Taking into account the above, I determined that the game would be developed
using the Unity engine, the scenery design with 2D assets, the main character in 3D,
and the rest of the 3D models would be purchased from the Synty Studios store [9], and
all this work developed by myself. The work methodology I have followed has been to
work as many hours as I could, especially at weekends, following as much as possible
the established planning and combining the project with the external practices and the
study of other subjects of the degree.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 5
2.2 Resource Evaluation . 8
2.3 Deviations from the initial Planning 8

This chapter is the most technical part of the work, it shows the planning followed
for the development of the video game and the resources used.

2.1 Planning

This section shows the detailed time planning of the work, including all its tasks and
subtasks.

• Initial investigation (5 hours): during this task, a brief research was carried
out to collect references and to search for assets to be used in the project.

• Art (75 hours):

– 2D Art (15 hours): the creation of the 2D assets used in the videogame
for the UI with the Krita programme.

– Modelling (15 hours): the creation of the 3D model used for the main
character, as well as adding the textures, all done with the Blender tool.

– Animation (15 hours): search, configuration and assignment of animations
for both the main character and NPCs.

5

6 Planning and resources evaluation

– Stage Design (35 hours): design of all the video game stages, the lair,
the map and the stealable location, as well as making sure everything has
collisions assigned to it.

– Interface Design (5 hours): design of the entire interface, as well as the
functionality of the buttons, trying to create an intuitive and effective design.

• Development (170 hours):

– Game Mechanics (70 hours): programming of game mechanics: money
system, shop, scene change, item collection and save system.

– Player (15 hours): programming of character and camera movement.
– Bonuses (25 hours): programming of available player bonuses: speed boost

and temporary invisibility.
– Security Measures (45 hours): programming of cameras used as a security

mode in the stealable location that detect the player and communicate with
NPCs.

– NPCs (15 hours): programming of the NPCs patrolling in the stealable
location, have been created by making use of a navMesh and a state machine.

• Documents (50 hours):

– Technical Proposal (2 hours)
– GDD (8 hours)
– Memory (35 hours)
– Presentation (5 hours)

The image below shows the planning of the tasks and sub-tasks in a visual form with
a Gantt chart (see Figure 2.1)

2.1. Planning 7

Figure 2.1: Gantt chart of the tasks (made with Google Sheets)

8 Planning and resources evaluation

2.2 Resource Evaluation
The resources used for this project are:

• Hardware:

– Laptop MSI Pulse GL76 11UEK-038XES Intel Core i7-11800H/32GB/1TB
SSD/RTX 3060/17.3. Cost: 1700€.

• Software:

– Unity 2022.3.20 version [13], used to create the project and work on it. Cost:
free.

– Visual Studio 2019 [5], used to program the project. Cost: free.
– GitHub Desktop [4], to store the project and have control of the versions.

Cost: free.
– Krita [3], used to create some assets. Cost: free.
– Blender [1], used to create the 3D model of the main character. Cost: free.
– Mixamo [6], used to obtain 3D animations. Cost: free.
– Synty Studios Store [9], a website used to purchase most of the assets used.

Cost: 25€.

• Human resources:

– Videogame designer salary [10]: 9,23€/h * 75h = 692,25€.
– Videogame developer salary [11]: 20,51€/h * 170h = 3486,7€.

Concept Amount (€)
Hardware 1700€
Software 25€
Human resources 4178,95€
Total 5903,95€

Table 2.1: Budget Breakdown

2.3 Deviations from the initial Planning
The Initial investigation and Art tasks were carried out in compliance with the planned
hours (80). In the case of Development task, the sub-tasks Game mechanics, Player,
Bonuses and Security players were executed in the planned time (155 h), but the begin-
ning of the NPC creation was delayed due to problems with the Unity version.

Starting the NPC later than planned also had an impact on the initial moment of
writing the memory. Also some reports was delayed.

The rest of sub-tasks: technical proposal and GDD were carried out in time (10 h).

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 9
3.2 System Design . 17
3.3 System Architecture . 21
3.4 Interface Design . 22

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as, where appropriate, its interface design.

3.1 Requirement Analysis

Zero el Zorro is a stealth game where the main character infiltrates places to steal their
contents in order to get money. To achieve this, he must avoid the security measures
and guards of these places, as well as, acquire upgrades to make better heists.

After opening the game, the main menu appears (see Figure 3.2), in this menu there
are three options: Jugar, Tutorial and Salir. Pressing Jugar will start the gameplay of
the game, pressing Tutorial will take you to the game tutorial where the game mechanics
are explained in a general way (see Figure 3.3) and finally, pressing Exit will close the
game.

Once inside the game, there are different menus and options. Inside the lair there
are three menus: the safe box, the shop and the reset progress menu. In the safe box
the player can check their money, in the shop the available character upgrades can be
bought and the reset progress option allows to reset the money and the bonuses that
the player have purchased to zero.

9

10 System Analysis and Design

If the player goes to the stealable location they will see a guide on what to do to
complete the level by pressing a button (see Figure 3.10 and 3.11). There will also be
icons indicating the objects that have been collected. (see Figure 3.12). If the player
is captured, a message will be displayed indicating this (see Figure 3.16) and if they
manages to complete the level, a message of victory will be shown (see Figure 3.15).

3.1.1 Functional Requirements

A functional requirement defines a function of the system that is going to be developed.
These are the functional requirements of the game:

• R1. The player can start the game (Table 3.1).

• R2. The player can access to the tutorial (Table 3.2).

• R3. The player return to the main menu from the tutorial (Table 3.3).

• R4. The player can close the game (Table 3.4).

• R5. The player can move through the lair. (Table 3.5).

• R6. The player can access to the safe box (Table 3.8).

• R7. The player can access to the shop (Table 3.9).

• R8. The player can buy bonuses (Table 3.10).

• R9. The player can use the invisibility bonus (Table 3.11).

• R10. The player velocity updates when they get the velocity bonus (Table 3.12).

• R11. The player can access to the restart progress menu (Table 3.13).

• R12. The player can restart the progress (Table 3.14).

• R13. The player can go from the lair to the city map (Table 3.15).

• R14. The player can move through the city map (Table 3.6).

• R15. The player can go from the city map to the lair (Table 3.16).

• R16. The player can go from the city map to the office (Table 3.17).

• R17. The player can move through the office (Table 3.7).

• R18. The player can display the guide (Table 3.19).

• R19. The cameras detect the player (Table 3.20).

• R20. The police officer detect and chase the player (Table 3.21).

3.1. Requirement Analysis 11

• R21. The police officer caught the player (Table 3.22).

• R22. A caught message appears when the player is captured (Table 3.23).

• R23. The player can collect items (Table 3.25).

• R24. The card item appears in a random place among the available ones (Table 3.26).

• R25. The player can read the note (Table 3.27).

• R26. The code from the note is randomly generated (Table 3.28).

• R27. The player can use the key pad (Table 3.29).

• R28. The player can go from the office to the city map (Table 3.18).

• R29. A winning message appears when the player complete the level (Table 3.24).

Input: Press Jugar button

Output: Game initialized

When the user presses the Jugar button, the game must initialize all necessary
components and transition to the first scenery, ready for user interaction.

Table 3.1: Functional requirement «START1. Start Game»

Input: Press Tutorial button

Output: Tutorial screen displayed

When the user presses the Tutorial button, the game must display the tutorial
screen, providing instructions and information on how to play the game.

Table 3.2: Functional requirement «TUT1. Access Tutorial»

Input: Press Atrás button

Output: Main menu screen displayed

When the user presses the Atrás button, the game must display the main menu
screen.

Table 3.3: Functional requirement «TUT2. Return Main Menu»

12 System Analysis and Design

Input: Press Salir button

Output: Game application closed

When the user presses the Salir button, the game must close the application
safely, ensuring all necessary data is saved and resources are properly released.

Table 3.4: Functional requirement «EXIT1. Exit Game»

Input: Player movement input (keyboard)

Output: Player position updated

The player must be able to move within the lair environment using appropriate
input controls (W, A, S, D). The game should update the player’s position
accordingly, allowing exploration and interaction within the lair.

Table 3.5: Functional requirement «MOVE1. Move Player in Lair»

Input: Player movement input (keyboard)

Output: Player position updated

The player must be able to move within the city map environment using ap-
propriate input controls (W, A, S, D). The game should update the player’s
position accordingly, allowing exploration and interaction within the city map.

Table 3.6: Functional requirement «MOVE2. Move Player in City Map»

Input: Player movement input (keyboard)

Output: Player position updated

The player must be able to move within the office environment using appropriate
input controls (W, A, S, D). The game should update the player’s position
accordingly, allowing exploration and interaction within the office setting.

Table 3.7: Functional requirement «MOVE3. Move Player in Office»

Input: Press E key near safe

Output: Display player’s money amount

When the player presses the E key near the safe, the game must display a
window with the amount of money the player currently has stored in the safe.
This interaction allows the player to check their financial status within the
game.

Table 3.8: Functional requirement «SAFE1. Access Safe to Check Money»

3.1. Requirement Analysis 13

Input: Press E key near store

Output: Store interface displayed

When the player presses the E key near the store, the game must display the
store interface.

Table 3.9: Functional requirement «STORE1. Access Store»

Input: Press the button to buy "+ Velocidad" or the button to buy
"Invisibilidad"

Output: Bonus acquired if sufficient money and not previously pur-
chased

When the player presses the button to buy "+ Velocidad" or the button to buy
"Invisibilidad", the game must check if the player has enough money and if the
bonus has not already been acquired. If both conditions are met, the respective
bonus is granted to the player, and the cost is deducted from the player’s money.

Table 3.10: Functional requirement «STORE2. Buy Bonuses»

Input: Press F key if cooldown is not active

Output: Player becomes undetectable

When the player presses the F key, the game must check if the invisibility bonus
is available (i.e., the cooldown period is not active). If the bonus is available,
the player becomes undetectable for five seconds, and the cooldown period is
initiated.

Table 3.11: Functional requirement «BONUS1. Use Invisibility Bonus»

Input: Bonus purchased: "+ Velocidad"

Output: Player speed increased by 15% permanently

When the player purchases the "+ Velocidad" bonus, the game must perma-
nently increase the player’s velocity by 15%. This increase should be applied
immediately upon purchase and persist throughout the game.

Table 3.12: Functional requirement «BONUS2. Permanent Velocity Upgrade»

14 System Analysis and Design

Input: Press E key near bed

Output: Reset progress menu displayed

When the player presses the E key near the bed, the game must display the
reset progress menu, allowing the player to choose options for resetting their
game progress.

Table 3.13: Functional requirement «RESET1. Access Reset Progress Menu»

Input: Press "SI" button in reset progress menu

Output: Player’s money and bonuses reset

When the player presses the "SI" button in the reset progress menu, the game
must reset the player’s money and bonuses to their initial states, effectively
restarting the player’s progress.

Table 3.14: Functional requirement «RESET2. Reset Progress Confirmation»

Input: Press E key near lair door

Output: Transition to city map scene

When the player presses the E key near the door of the lair, the game must
transition from the lair scene to the city map scene, allowing the player to
explore the city.

Table 3.15: Functional requirement «SCENE1. Change from Lair to City Map»

Input: Press E key near player’s house

Output: Transition to lair scene

When the player presses the E key near the player’s house in the city map, the
game must transition from the city map scene to the lair scene, allowing the
player to enter the lair.

Table 3.16: Functional requirement «SCENE2. Change from City Map to Lair»

Input: Press E key near office building

Output: Transition to office scene

When the player presses the E key near the office building on the city map, the
game must transition from the city map scene to the office scene, allowing the
player to enter and interact within the office environment.

Table 3.17: Functional requirement «SCENE3. Change from City Map to Office»

3.1. Requirement Analysis 15

Input: Press E key near exit door

Output: Transition to city map scene

When the player presses the E key near the exit door in the office map, the
game must transition from the office map scene back to the city map scene,
allowing the player to return to the city environment.

Table 3.18: Functional requirement «SCENE4. Change from Office Map to City Map»

Input: Press Tab key

Output: Guide interface displayed

When the player presses the Tab key, the game must display a guide interface,
providing a guide to complete the level. .

Table 3.19: Functional requirement «GUIDE1. Display Guide on Tab Press»

Input: Player enters camera detection area

Output: Camera detects player presence

When the player enters the detection area of a camera, the camera must detect
the player’s presence and advice the NPC. This mechanic enhances the stealth
aspects of gameplay.

Table 3.20: Functional requirement «CAMERA1. Player Detection by Cameras»

Input: Player enters police’s line of sight

Output: Police starts chasing player

When the player enters the police’s line of sight, the police must detect the
player and initiate a pursuit. The police will actively attempt to apprehend the
player, adding challenge and consequences to gameplay scenarios involving law
enforcement.

Table 3.21: Functional requirement «POLICE1. Player Detection by Police»

Input: Police collides with player

Output: Player captured by police

When the police collides with the player during a pursuit, the player must be
captured by the police..

Table 3.22: Functional requirement «POLICE2. Police Captures Player on Collision»

16 System Analysis and Design

Input: Player captured event

Output: Display a player captured message

When the player is captured, the game must display a message indicating that
the player has been captured.

Table 3.23: Functional requirement «MESSAGE1. Display Captured Message»

Input: Player completes level

Output: Display a victory message

When the player completes the level successfully, the game must display a mes-
sage indicating that the player has won. This notification celebrates the player’s
achievement and signifies the completion of the gameplay objective.

Table 3.24: Functional requirement «MESSAGE2. Display Victory Message»

Input: Press E key near object

Output: Object collected by player

When the player presses the E key near an object, the game must allow the
player to collect the object. This interaction enables the player to gather items
useful for gameplay progression.

Table 3.25: Functional requirement «OBJECT1. Object Pickup»

Input: Random appearance in available locations

Output: Card object appears

The card object must appear randomly in one of the available locations within
the office map. This randomness adds variability and difficulty to the gameplay.

Table 3.26: Functional requirement «OBJECT2. Random Spawn of Card Object»

Input: Press E key near note

Output: Note content displayed

When the player presses the E key near a note, the game must display the
content of the note. This interaction allows the player to read the code for the
key pad.

Table 3.27: Functional requirement «NOTE1. Read Note»

3.2. System Design 17

Input: Note with randomly generated code

Output: Random code displayed

The code from the note is generated randomly. This random generation adds
variability and difficulty to the game.

Table 3.28: Functional requirement «NOTE2. Randomly Generated Code on Note»

Input: Press E key near keypad, enter numbers, press buttons

Output: Display entered numbers, validate code, clear input

When the player presses the E key near the keypad, they can enter numbers
using the keypad buttons. The entered numbers should appear on the keypad
screen. Pressing the "M" button submits the entered code for validation. Press-
ing the "C" button clears the entered code. This interaction allows the player
to input and validate the code to open manager’s door.

Table 3.29: Functional requirement «KEYPAD1. Use of Keypad»

3.1.2 Non-functional Requirements

• R30. The game can be played on PC.

• R31. The game will be made with low poly models.

• R32. The UI will be simple and clear.

• R33. The mechanics of the game will be simple to understand.

• R34. The main character will be original.

• R35. The game will be replayable.

3.2 System Design
In this section is presented the logical or operational design of the system to be carried
out. These logical design is shown below with the use case diagram of the game (see
Figure 3.1).

18 System Analysis and Design

Requirement: R1

Actor: Player

Description: The player can start the game

Preconditions: 1.The player is on the main menu

Normal sequence: 1.The player presses the button Jugar
2.The system load the lair stage

Alternative sequence: None

Table 3.30: Case of use «Start game»

Requirement: R2

Actor: Player

Description: The player can go to the tutorial

Preconditions: 1.The player is on the main menu

Normal sequence: 1.The player presses the button Tutorial
2.The tutorial is shown

Alternative sequence: None

Table 3.31: Case of use «Go to tutorial»

Requirement: R4

Actor: Player

Description: The player can close the game

Preconditions: 1.The player is on the main menu

Normal sequence: 1.The player presses the button Salir
2.The system close the game

Alternative sequence: None

Table 3.32: Case of use «Quit the game»

3.2. System Design 19

Requirement: R6

Actor: Player

Description: The player can check how much money they has

Preconditions: 1.The player is on the lair

Normal sequence: 1.The player is near the shop
2.The player press E key
3.A window opens showing the money

Alternative sequence: None

Table 3.33: Case of use «Consult money»

Requirement: R8

Actor: Player

Description: The player can buy bonuses

Preconditions: 1.The player is on the lair

Normal sequence: 1.The player is near the shop
2.The player press E key
3.The player press a button to buy a bonus
4.The bonus is bought

Alternative sequence: 4.1.The bonus is not bought because the player does not have
enough money
4.2.The bonus is not bought because the player has already
bought it

Table 3.34: Case of use «Buy bonus»

Requirement: R5, R14, R17

Actor: Player

Description: The player can move through all the stages

Preconditions: 1.The player is on the lair/city/office

Normal sequence: 1.The player press W,A,S or D keys
2.The character moves

Alternative sequence: None

Table 3.35: Case of use «Move»

20 System Analysis and Design

Requirement: R23

Actor: Player

Description: The player can take items

Preconditions: 1.The player is on the office stage
2.The player is near an object

Normal sequence: 1.The player press E key
2.The item is recollected

Alternative sequence: None

Table 3.36: Case of use «Take item»

Requirement: R15

Actor: Player

Description: The player can go to the lair

Preconditions: 1.The player is on the city map
2.The player is near the player’s house

Normal sequence: 1.The player press E key
2.The system loads the lair stage

Alternative sequence: None

Table 3.37: Case of use «Go to lair»

Requirement: R13, R28

Actor: Player

Description: The player can go to the city map

Preconditions: 1.The player is on the lair/office
2.The player is near the exit door

Normal sequence: 1.The player press E key
2.The system loads the city map stage

Alternative sequence: 2.1.The system doesn’t load the stage because the player
hasn’t yet completed the office level.

Table 3.38: Case of use «Go to city map»

3.3. System Architecture 21

Requirement: R16

Actor: Player

Description: The player can go to the office

Preconditions: 1.The player is on the city map
2.The player is near the office

Normal sequence: 1.The player press E key
2.The system loads the office stage

Alternative sequence: None

Table 3.39: Case of use «Go to office»

Requirement: R19, R20, R21

Actor: Security systems / NPC

Description: The player is detected by the security systems / NPC

Preconditions: 1.The player is on the office

Normal sequence: 1.The player collide with the detection area of the security
systems / NPC

Alternative sequence: None

Table 3.40: Case of use «Detect player»

3.3 System Architecture
According to the Unity documentation[12], the minimum requirements to run games
made with this game engine are:

• A minimum operating system of Windows 7 SP1 or newer.

• A CPU with x86 or x64 architecture, including SSE2 instruction set support.

• A graphics card (GPU) supporting DX10 or higher.

• A keyboard and mouse, or alternatively, a touch panel.

I cannot guarantee that the game will run on all devices that fulfill these require-
ments, but the game has been played successfully on a computer with the following
characteristics:

• Intel Celeron N5100

• 8GB RAM

• Intel UHD Graphics 600, 250-750MHz

22 System Analysis and Design

Figure 3.1: Case use diagram (made with https://online.visual-paradigm.com)

3.4 Interface Design

The game user interface (GUI) is simple and non-invasive. The interface, which appears
during the game, is mostly hidden and only appears if the player requires it. The first
interface the player sees when starting the game is the main menu. This menu has a
background image, a game title/logo and three buttons, the button to start the game,
the button to view the tutorial and the button to exit (see Figure 3.2).

By clicking on the tutorial button, the player is taken to the tutorial and can see
the interface with images and advice texts, also the menu can be returned to with the
button "Atrás". (see Figure 3.3).

Once stated the game a variety of interfaces and menus can be seen:
When the player approaches a door or interactive object, an icon appears in the

centre of the screen with the key to press to interact (see Figure 3.4).
Inside the lair the player can find three windows/menus. The first one would be the

safe. Here the player can see the current money being updated (see Figure 3.5). The
second one would be the shop which has two buttons, they will be red if they cannot be
pressed and green if they can be pressed, they will also have a tick next to them if the
bonus has already been bought (see Figure 3.6). The third one would be the reset menu,
it has two buttons, one to close the menu and one to confirm the reset (see Figure 3.7).

If the player purchases the invisibility bonus, an icon will appear on the screen with

https://online.visual-paradigm.com

3.4. Interface Design 23

the key to press, if activated, two counters will appear, one for the time the bonus is
active and one for the cooldown (see Figures 3.8 and 3.9).

Within the stealable site there is a wide variety of UIs:
The first thing the player will see is an icon indicating a button to press. Pressing

the button displays a guide (see Figures 3.10 and 3.11).
While playing through the level the player must collect two items, once collected

they will be displayed on the screen indicating that they are in their possession (see
Figure 3.12).

The player will have to obtain a code, which will be displayed in a note (see Figure
3.13), and once obtained, the player will have to use a key pad to enter it (see Figure
3.14).

If the player completes the level and escapes to the city map a victory message will
be displayed (see Figure 3.15) otherwise if they are captured by the security guard a
defeat message will appear (see Figure 3.16).

Figure 3.2: Main menu of the game (image taken in game)

24 System Analysis and Design

Figure 3.3: Game tutorial in the main menu (image taken in game)

Figure 3.4: Icon of the key to press to interact (image taken in game)

3.4. Interface Design 25

Figure 3.5: Menu of the safe box (image taken in game)

Figure 3.6: Menu of the shop (image taken in game)

26 System Analysis and Design

Figure 3.7: Menu to restart the game (image taken in game)

Figure 3.8: Invisibility bonus deactivated (image taken in game)

3.4. Interface Design 27

Figure 3.9: Invisibility bonus activated (image taken in game)

Figure 3.10: Button to display the guide (image taken in game)

28 System Analysis and Design

Figure 3.11: Guide displayed (image taken in game)

Figure 3.12: USB and key card icons (image taken in game)

3.4. Interface Design 29

Figure 3.13: Note with the code (image taken in game)

Figure 3.14: Key pad (image taken in game)

30 System Analysis and Design

Figure 3.15: Winning message (image taken in game)

Figure 3.16: Caught message (image taken in game)

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 31
4.2 Results . 39

In this chapter it is shown the game development work and the results.

4.1 Work Development

The work done will be explained following the order of the planning. Therefore, the
explanation will be divided into three parts: Initial investigation, art and development.

Initial investigation
In this part I was busy researching information to lay the base for what the game

was going to be. I researched a variety of stealth and heist games to learn more about
their mechanics and gameplay. I also looked for assets to use in the game, in this case
3D models, taking into account that I had made the decision to make a low poly game.

Art
This part refers to everything to do with the artistic design of the game and has five

subsections.
The first one would be Art, which refers to the 2D assets used during the game. The

assets created by me are the background of the main menu (see Figure 4.1), the buttons
used in the main menu (see Figure 4.2), the game logo (see Figure 4.3), the item icons

31

32 Work Development and Results

(see Figure 4.4), the invisibility bonus icon (see Figure 4.5) and all the key pad elements
(see Figure 4.6). All of this was made with Krita[3].

The second subsection is Modelling. This part was dedicated to creating the model
of the main character (see Figure 4.7) and texturing it, adapting it to the style of the
game and especially to the look of the NPC (see Figure 4.15). This tasks was made
using Blender [1].

The next part is Animation. To make the animations of the characters I used
Mixamo[6], a software that includes a large library of animations and allows to adjust
them for own models and export these animations to be used in different projects.

The fourth subsection is Stage design. In this section I designed all the stages of the
game: the lair (see Figure 4.8), the city (see Figure 4.9) and the office (see Figure 4.10).

Finally, the section Interface design, where I created the whole interface of the game,
both the main menu and the one that appears throughout the gameplay (see section
3.4).

Figure 4.1: Background of the main menu

4.1. Work Development 33

Figure 4.2: Main menu buttons icon

Figure 4.3: Game logo

Figure 4.4: Card and USB items icons

34 Work Development and Results

Figure 4.5: Invisibility icon

Figure 4.6: Key pad

Figure 4.7: Main character 3D model

4.1. Work Development 35

Figure 4.8: Lair stage

Figure 4.9: City stage

36 Work Development and Results

Figure 4.10: Office stage

Development
This section refers to all programming aspects of the game. Again, it is divided into

five subsections.
The first subsection is Game mechanics, it is related to the general mechanics of the

game.
When the player is close to an interacting object, an icon with the key to press for

the interaction will appear on the screen (floatingImage).
Changes of scene (SceneManagement). You can go from the lair to the city, from

the city to the lair, from the city to the office and from the office to the city. To go from
one location to another, press the E key near the accesses to these locations (when the
icon appears on the screen).

The functioning of the monetary system (MoneyManager) and the safe (SafeBox).
The player gets money when the level is completed, this money can be consulted in the
SafeBox inside the lair (see Figure 4.11) by pressing the E key near the lair (when the
icon appears on the screen). The money earned is saved and is retained even if the game
is restarted thanks to the save system implemented.

Objects in the office. The cards that appear randomly in one of the available loca-
tions on the map (RandomObjectVisibility), when collected, they will open the human
resources door where the player needs to enter to continue advancing. A USB which is
the object that the user needs to get to unlock the exit and thus complete the level, this
will appear in a fixed location. These items (see Figure 4.12), when the icon appears on
screen, are collected by pressing E key near them (ItemCollector).

The code to access the manager’s office. Once the player get the card, as it is said
before, the human resources door opens and inside there is a note that can be interacted
with by pressing the E key near it (when the icon appears on the screen). In this note will
appear a code that is randomly generated every time the level is accessed (CodeScript).
Once the code is obtained, the Player has to enter it in the numerical keyboard that
there is in the door of the manager’s office (KeyPadScript), this keyboard is composed
of buttons with numerical keys, a button to delete the code and another one to enter
it, if it is correct the door will be opened. As the player types in numbers, this will be

4.1. Work Development 37

displayed on the small screen on the keypad, the maximum number of numbers that can
be typed in is four (see Figures 3.14 and 4.6).

As soon as the USB is obtained and the exit is unlocked, if the player goes to the
exit and presses the E key nearby (when the icon appears on the screen) the city scene
(exitManagment) will be loaded, taking into account that the player has completed the
level, therefore, the player will appear in front of the office and a message will emerge
indicating that the money has been obtained (CitySpawnManager).

Inside the office, the player will be able to see a small guide to the steps to complete
the level (GuideScript). The guide will be displayed by holding down the Tab key and
hidden when the key is released (see Figures 3.10 and 3.11).

If the player wishes, all the progress can be restarted from the lair bed (see Figure
4.11), resetting will affect both money and bonuses.

The second subsection is Player. This subsection concerns to the movement of the
player (PlayerMovement) and the camera (CameraController). The character can move
and rotate using the movement keys (W, A, S, D), and the camera will rotate with the
character, always behind the character.

The next subsection is Bonuses. In this part, everything related to character upgrades
was programmed.

On the one hand, there is the shop which can be accessed from the computer in the
lair (see Figure 4.11). In this shop the player can buy the two bonuses that are available,
the bought bonuses will be kept as well as money (BonusManager). To buy them, the
player must click on the buttons, which will only be available if they have enough money
and the upgrade has not been bought yet, if the upgrade has already been bought it will
be marked with a tick next to the button (see Figure 3.6) (ShopScript).

The first bonus is +Velocity. This bonus will permanently improve the player’s speed
by 15% (VelocityBonus).

The other bonus is Invisibility. This bonus allows the player to become invisible for
five seconds and has a cooldown of thirty seconds (see Figures 3.8 and 3.9). If the bonus
is active the player will become undetectable to the cameras and to the NPC.

The next subsection, Security measures, is about the security cameras in the office
stage.

Throughout the stage there are several security cameras (see Figure 4.13), these will
rotate between set angles (SecurityCameras) and have a detection area marked with a
red light, if the player enters this detection area the camera invokes the player’s position
and sends it to the NPC to investigate the area (CameraDetection).

The last subsection is NPCs. This involves all aspects of NPC creation.
The first thing was to create a navigation mesh (see Figure 4.14) to mark where the

NPC (see Figure 4.15) should move and place waypoints to use for their route later on.
The NPC will change state/task as needed (StateMachine).

At first it will be in the Normal state, in this state the NPC will wander between
the waypoints in the scene. If a camera detects the player it will switch to Investigate
state, in this state it will go to the location where the player has been detected and
switch to Wait state and stay there for a few seconds, then return to Normal state. If

38 Work Development and Results

the player enters the NPC’s detection area the NPC will enter the Chase state and start
chasing the player. If he manages to catch the player (collide) the game will be over, a
message will appear warning that the player has been captured (see Figure 3.16) and it
will be indicated that the player has been captured (GameEnding), this way the player
will appear in the city in front of the police station (CitySpawnManager).

Figure 4.11: Safe, PC and Bed from the lair

Figure 4.12: Items from the office

4.2. Results 39

Figure 4.13: Office cameras

Figure 4.14: Navigation mesh

4.2 Results

The first objective was achieved because the main character is a fox. In addition to the
considerations mentioned at the beginning of this work, in many animal stories the fox
is characterised as a clever, petty thief, deceitful, stealthy, which is combined with the
fact that it is a game of heist and infiltration.

The second goal was achieved too. This was to implement an NPC with artificial
intelligence using a state machine. I did this by programming a state machine with four
states: Normal, Investigate, Wait and Chase, the NPC switches between these states
when the condition of these ones occurs. This objective, although it took me more time
than expected and delayed the project a bit, was achieved as I had planned.

The third one was to create security measures that communicate with the NPC

40 Work Development and Results

Figure 4.15: NPC

to create an interactive environment. This objective was achieved, I have created the
security cameras that have a detection area and when the player enters they invoke the
character’s location for the NPC to go there.

Another outcome is the creation of a save system for the game, in correspondence
with the fourth objective. This system was to save the money the player owned and the
bonuses he had acquired. This objective was thought mainly because I wanted to learn
how to create a save system even if it was a simple version. The goal was successfully
achieved, I was able to implement it without any problems and I learned how to do it.

With regard to the fifth objective, the interface was made in a simple way, intuitive,
friendly to provide the user with a pleasant experience.

Finally, a 3D style infiltration and heist videogame for PC was created using the
Unity 3D engine, with a coherent game flow and usability, achieving the overall goal.

The GitHub repository can be accessed here:

https://github.com/AnabelTorner/TFG

And you can also access the build of the project for Windows here:

https://drive.google.com/drive/folders/1bkqokA99D464Gfq-7k-4wU4v3deKgjE_?usp=

sharing

https://github.com/AnabelTorner/TFG
https://drive.google.com/drive/folders/1bkqokA99D464Gfq-7k-4wU4v3deKgjE_?usp=sharing
https://drive.google.com/drive/folders/1bkqokA99D464Gfq-7k-4wU4v3deKgjE_?usp=sharing

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 41
5.2 Future work . 42

In this chapter, the conclusions of the work, as well as its future extensions are shown.

5.1 Conclusions

In this work I have mainly shown my ability to design and develop a 3D videogame, I
have been able to learn the different phases to create a videogame, the planning, the
difficulties and the constraints presented during the work. Knowing more about Unity
and C# gave me the desired result. The video game presented here fulfils the conditions
I was looking for, the design of the main character is appropriate according to the idea
of the game and the NPC, the use of AI to program the NPC and the cameras make
the game more interesting by incorporating bonuses, collectable objects, etc. to provide
a pleasant interface and make a story of robbery and stealth around the fox.

In conclusion, after finishing this project I can say that I have enjoyed developing it
and improving my skills, but I also have to say that it has been months of hard work
to complete it. I have had to combine the development of the project with the external
practices, with the study and delivery of work of other subjects. It has been a difficult
task but a great experience. I have to say that I would have liked to have more time
for the development of this project, and to include more aspects in the game to make it
more playable, but unfortunately it has been impossible for me.

41

42 Conclusions and Future Work

Nevertheless, I am satisfied with the final result of the game and with having been
able to improve my skills in videogame design and development and to learn new con-
cepts.

5.2 Future work
The created game has no endgame, it is conceived as a replayable game, so it has a
lot of possibilities for expansion. New bonuses, more stealable locations, more security
measures, as well as more NPCs can be added. It is possible that, in the future, I will
try to improve these aspects of the game in order to continue practising and learning.

Bibliography

[1] Blender. Blender software. https://www.blender.org/.

[2] Sanzaru Games. Sly cooper. https://es.wikipedia.org/wiki/SlyCooper(serie), 2002.

[3] Krita. Krita software. https://krita.org/es/.

[4] Microsoft. Github. https://github.com/.

[5] Microsoft. Microsoft visual studio. https://visualstudio.microsoft.com/es/

downloads/, 2019.

[6] Mixamo. Mixamo web. https://www.mixamo.com/#/.

[7] Overkill Software. Payday 2. https://www.paydaythegame.com/payday2/, 2013.

[8] Overkill Software. Payday 3. https://www.paydaythegame.com/payday3/, 2023.

[9] Synty Studios. Synty store. https://syntystore.com/.

[10] Talent. Videogame designer salary. https://es.talent.com/salary?job=dise%C3%

B1ador+videojuegos.

[11] Talent. Videogame developer salary. https : / / es . talent . com / salary ? job =

desarrollador+videojuegos.

[12] Unity. Unity documentation. https://docs.unity3d.com/Manual/UnityManual.html.

[13] Unity. Unity technologies. https://unity.com/es, 2022.

[14] Wikipedia. Videojuego. https://es.wikipedia.org/wiki/Videojuego.

43

https://www.blender.org/
https://krita.org/es/
https://github.com/
https://visualstudio.microsoft.com/es/downloads/
https://visualstudio.microsoft.com/es/downloads/
https://www.mixamo.com/#/
https://www.paydaythegame.com/payday2/
https://www.paydaythegame.com/payday3/
https://syntystore.com/
https://es.talent.com/salary?job=dise%C3%B1ador+videojuegos
https://es.talent.com/salary?job=dise%C3%B1ador+videojuegos
https://es.talent.com/salary?job=desarrollador+videojuegos
https://es.talent.com/salary?job=desarrollador+videojuegos
https://docs.unity3d.com/Manual/UnityManual.html
https://unity.com/es
https://es.wikipedia.org/wiki/Videojuego

A
p

p
e

n
d

ix A
Source code

This appendix contains all the scripts used in the development of the project. All the
code can be accessed and downloaded from the link to the repository in section 4.2.

SceneManagement script

1 using UnityEngine;

2 using UnityEngine.SceneManagement;

3
4 public class SceneManagement : MonoBehaviour

5 {

6
7 public string SceneName;

8
9 public void CerrarJuego()

10 {

11 Application.Quit(); // Cierra el juego

12 Debug.Log("Salir"); // Comprobación por consola para Unity

13 }

14
15 public void CambioEscena()

16 {

17 SceneManager.LoadScene(SceneName); // Carga la escena indicada

18 }

19
20 private void OnTriggerStay()

21 {

22 if (Input.GetKey(KeyCode.E)) // Comprueba que se pulsa la tecla E

23 {

24 CambioEscena(); // Carga la escena indicada

25 }

26 }

45

46 Source code

27 }

PlayerMovement script

1 using UnityEngine;

2
3 public class PlayerMovement : MonoBehaviour

4 {

5 public float moveSpeed = 3f; // Velocidad de movimiento del jugador

6 public float rotationSpeed = 3f; // Velocidad de rotación del jugador

7 public Transform cameraTransform; // Transform de la cámara

8
9 private Rigidbody rb;

10 private Animator animator;

11
12 void Start()

13 {

14 rb = GetComponent<Rigidbody>();

15 animator = GetComponent<Animator>();

16 rb.freezeRotation = true; // Evitar rotaciones debido a colisiones

17 }

18
19 void Update()

20 {

21 // Obtener la entrada de teclado para el movimiento horizontal y vertical

22 float moveHorizontal = Input.GetAxis("Horizontal");

23 float moveVertical = Input.GetAxis("Vertical");

24
25 // Calcular la dirección de movimiento relativa a la cámara

26 Vector3 forward = cameraTransform.forward;

27 Vector3 right = cameraTransform.right;

28
29 // Asegurarse de que forward y right no tengan componente y

30 forward.y = 0f;

31 right.y = 0f;

32 forward.Normalize();

33 right.Normalize();

34
35 // Calcular el vector de movimiento basado en la entrada del teclado y la cámara

36 Vector3 movement = forward * moveVertical + right * moveHorizontal;

37
38 // Aplicar el movimiento al Rigidbody

39 rb.velocity = movement * moveSpeed;

40
41 // Actualizar el parámetro IsWalking del Animator basado en el movimiento

42 bool isWalking = movement != Vector3.zero;

43 animator.SetBool("IsWalking", isWalking);

44
45 // Rotar el personaje hacia la dirección del movimiento

46 if (isWalking)

47 {

48 Quaternion toRotation = Quaternion.LookRotation(movement, Vector3.up);

Source code 47

49 transform.rotation = Quaternion.Slerp(transform.rotation, toRotation, rotationSpeed

50 * Time.deltaTime);

51 }

52 }

53 }

CameraController script

1 using UnityEngine;

2
3 public class CameraController : MonoBehaviour

4 {

5 public Transform target; // Referencia al jugador

6 public float smoothSpeed = 0.125f; // Velocidad de suavizado

7 public Vector3 locationOffset; // Desplazamiento de posición

8 public Vector3 rotationOffset; // Desplazamiento de rotación

9
10 void FixedUpdate()

11 {

12 // Calcula la posición deseada de la cámara

13 Vector3 desiredPosition = target.position + target.rotation * locationOffset;

14 Vector3 smoothedPosition = Vector3.Lerp(transform.position, desiredPosition,

15 smoothSpeed);

16 transform.position = smoothedPosition;

17
18 // Calcula la rotación deseada de la cámara

19 Quaternion desiredRotation = target.rotation * Quaternion.Euler(rotationOffset);

20 Quaternion smoothedRotation = Quaternion.Lerp(transform.rotation, desiredRotation,

21 smoothSpeed);

22 transform.rotation = smoothedRotation;

23 }

24 }

BonusManager script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class BonusManager : MonoBehaviour

6 {

7 public static BonusManager instance;

8 public VelocityBonus velocityBonus;

9
10 public GameObject invisibilityBonusCanvas;

11
12 private string velocityKey = "VelocityBonus";

13 private string invisibilityKey = "InvisibilityBonus";

14
15 public bool velocidadComprada = false;

48 Source code

16 public bool invisibilidadComprada = false;

17
18 private void Awake()

19 {

20 // Verifica si ya existe una instancia del BonusManager

21 if (instance == null)

22 {

23 // Si no existe, establece esta instancia como la instancia única

24 instance = this;

25 // Marca este GameObject como no destruible al cargar una nueva escena

26 DontDestroyOnLoad(gameObject);

27 }

28 else

29 {

30 // Si ya existe una instancia, destruye este GameObject para evitar duplicados

31 Destroy(gameObject);

32 }

33 }

34
35 private void Start()

36 {

37 LoadPlayerBonus();

38 BonusInvisibilityActive();

39 }

40
41 private void SavePlayerBonus()

42 {

43 PlayerPrefs.SetInt(velocityKey, velocidadComprada ? 1 : 0);

44 PlayerPrefs.SetInt(invisibilityKey, invisibilidadComprada ? 1 : 0);

45 PlayerPrefs.Save();

46 }

47
48 private void LoadPlayerBonus()

49 {

50 velocidadComprada = PlayerPrefs.GetInt(velocityKey, 0) == 1;

51 invisibilidadComprada = PlayerPrefs.GetInt(invisibilityKey, 0) == 1;

52 }

53
54 // Método para acceder a la variable velocidadComprada desde otras clases si es necesario

55 public bool GetVelocidadComprada()

56 {

57 return velocidadComprada;

58 }

59
60 // Método para acceder a la variable invisibilidadComprada desde otras clases si es necesario

61 public bool GetInvisibilidadComprada()

62 {

63 return invisibilidadComprada;

64 }

65
66 public void VelocidadComprada()

67 {

68 velocidadComprada = true;

69 velocityBonus.UpdateVelocity();

Source code 49

70 SavePlayerBonus();

71 }

72
73 public void InvisibilidadComprada()

74 {

75 invisibilidadComprada = true;

76 BonusInvisibilityActive();

77 SavePlayerBonus();

78 }

79
80 private void BonusInvisibilityActive()

81 {

82 if (GetInvisibilidadComprada())

83 {

84 invisibilityBonusCanvas.SetActive(true);

85 }

86 else

87 {

88 invisibilityBonusCanvas.SetActive(false);

89 }

90 }

91
92 public void RestartBonus()

93 {

94 velocidadComprada = false;

95 invisibilidadComprada = false;

96 SavePlayerBonus();

97 }

98 }

MoneyManager script

1 using UnityEngine;

2
3 public class MoneyManager : MonoBehaviour

4 {

5 public static MoneyManager instance;

6
7 private int playerMoney = 0;

8 private string moneyKey = "PlayerMoney";

9
10 private void Awake()

11 {

12 // Verifica si ya existe una instancia del MoneyManager

13 if (instance == null)

14 {

15 // Si no existe, establece esta instancia como la instancia única

16 instance = this;

17 // Marca este GameObject como no destruible al cargar una nueva escena

18 DontDestroyOnLoad(gameObject);

19 }

20 else

50 Source code

21 {

22 // Si ya existe una instancia, destruye este GameObject para evitar duplicados

23 Destroy(gameObject);

24 }

25 }

26
27 private void Start()

28 {

29 LoadPlayerMoney();

30 }

31
32 public void AddMoney(int amount)

33 {

34 playerMoney += amount;

35 SavePlayerMoney();

36 }

37
38 public void SubstractMoney(int amount)

39 {

40 playerMoney -= amount;

41 SavePlayerMoney();

42 }

43
44 public void RestartMoney()

45 {

46 playerMoney = 0;

47 SavePlayerMoney();

48 }

49
50 private void SavePlayerMoney()

51 {

52 PlayerPrefs.SetInt(moneyKey, playerMoney);

53 }

54
55 private void LoadPlayerMoney()

56 {

57 if (PlayerPrefs.HasKey(moneyKey))

58 {

59 playerMoney = PlayerPrefs.GetInt(moneyKey);

60 }

61 }

62
63 public int GetPlayerMoney()

64 {

65 return playerMoney;

66 }

67 }

restartScript script

1 using UnityEngine;

2

Source code 51

3 public class restartScript : MonoBehaviour

4 {

5 public MoneyManager moneyManager;

6 public BonusManager bonusManager;

7 public VelocityBonus velocityBonus;

8 public GameObject cuadroAviso;

9 public GameObject invisibilityBonusCanvas;

10
11 private void Start()

12 {

13 moneyManager = FindObjectOfType<MoneyManager>();

14 bonusManager = FindObjectOfType<BonusManager>();

15 velocityBonus = FindObjectOfType<VelocityBonus>();

16
17 Transform foundTransform = bonusManager.transform.Find("invisibilityBonusCanvas");

18 invisibilityBonusCanvas = foundTransform.gameObject;

19 }

20
21 private void OnTriggerStay()

22 {

23 if (Input.GetKey(KeyCode.E)) // Comprueba que se pulsa la tecla E

24 {

25 cuadroAviso.SetActive(true);

26 }

27 }

28
29 public void restartAll()

30 {

31 moneyManager.RestartMoney();

32 bonusManager.RestartBonus();

33 cuadroAviso.SetActive(false);

34 invisibilityBonusCanvas.SetActive(false);

35 velocityBonus.restartVelocity();

36 }

37
38 public void OnTriggerExit()

39 {

40 cuadroAviso.SetActive(false);

41 }

42 }

SafeBox script

1 using UnityEngine;

2 using TMPro;

3
4 public class SafeBox : MonoBehaviour

5 {

6 public GameObject safeInventory;

7 public TextMeshProUGUI money;

8 public MoneyManager moneyManager;

9

52 Source code

10 void Start()

11 {

12 safeInventory.SetActive(false);

13 moneyManager = FindObjectOfType<MoneyManager>();

14 }

15
16 private void OnTriggerStay()

17 {

18 if (Input.GetKey(KeyCode.E)) // Comprueba que se pulsa la tecla E

19 {

20 safeInventory.SetActive(true);

21 money.text = moneyManager.GetPlayerMoney().ToString() + "Zc";

22 }

23 }

24
25 public void OnTriggerExit()

26 {

27 safeInventory.SetActive(false);

28 }

29 }

ShopScript script

1 using UnityEngine;

2 using UnityEngine.UI;

3
4 public class ShopScript : MonoBehaviour

5 {

6 public GameObject pcShop;

7 public MoneyManager moneyManager;

8 public BonusManager bonusManager;

9
10 public Button velocidadButton;

11 public GameObject checkMarkVelocidad;

12 public int velocidadPrecio = 5000;

13
14 public Button invisibilidadButton;

15 public GameObject checkMarkInvisibilidad;

16 public int invisibilidadPrecio = 10000;

17
18 void Start()

19 {

20 pcShop.SetActive(false);

21 }

22
23 private void OnTriggerStay()

24 {

25 if (Input.GetKey(KeyCode.E)) // Comprueba que se pulsa la tecla E

26 {

27 pcShop.SetActive(true);

28 buttonState();

29 if (bonusManager.GetVelocidadComprada()) checkMarkVelocidad.SetActive(true);

Source code 53

30 else checkMarkVelocidad.SetActive(false);

31 if (bonusManager.GetInvisibilidadComprada()) checkMarkInvisibilidad.SetActive(true);

32 else checkMarkInvisibilidad.SetActive(false);

33 }

34 }

35
36 public void OnTriggerExit()

37 {

38 pcShop.SetActive(false);

39 }

40
41 private void buttonState()

42 {

43 int money = moneyManager.GetPlayerMoney();

44 velocidadButton.interactable = money >= velocidadPrecio &&

45 !bonusManager.velocidadComprada;

46 invisibilidadButton.interactable = money >= invisibilidadPrecio &&

47 !bonusManager.invisibilidadComprada;

48 }

49
50 public void ComprarVelocidad()

51 {

52 if (moneyManager.GetPlayerMoney() >= velocidadPrecio)

53 {

54 moneyManager.SubstractMoney(velocidadPrecio);

55 bonusManager.VelocidadComprada();

56 checkMarkVelocidad.SetActive(true);

57 buttonState();

58 }

59 }

60
61 public void ComprarInvisibilidad()

62 {

63 if (moneyManager.GetPlayerMoney() >= invisibilidadPrecio)

64 {

65 moneyManager.SubstractMoney(invisibilidadPrecio);

66 bonusManager.InvisibilidadComprada();

67 checkMarkInvisibilidad.SetActive(true);

68 buttonState();

69 }

70 }

71 }

InvisibilityBonus script

1 using UnityEngine;

2 using TMPro;

3
4 public class InvisibilityBonus : MonoBehaviour

5 {

6 public TextMeshProUGUI cooldownTimer;

7 public TextMeshProUGUI bonusTimer;

54 Source code

8
9 private float cooldownTime = 30f;

10 private float bonusTime = 5f;

11
12 private bool cooldownActive = false;

13 private bool bonusActive = false;

14
15 void Start()

16 {

17 // Desactivar los textos al inicio

18 cooldownTimer.gameObject.SetActive(false);

19 bonusTimer.gameObject.SetActive(false);

20 }

21
22 void Update()

23 {

24 // Verificar si se presiona la tecla F para iniciar el temporizador

25 if (!cooldownActive && Input.GetKeyDown(KeyCode.F))

26 {

27 IniciarCooldown();

28 IniciarBonusTimer();

29 }

30
31 if (cooldownActive)

32 {

33 ActualizarTemporizador(ref cooldownTime, cooldownTimer);

34
35 if (cooldownTime <= 0)

36 {

37 cooldownTime = 0;

38 cooldownActive = false;

39 cooldownTimer.gameObject.SetActive(false);

40 }

41 }

42
43 if (bonusActive)

44 {

45 ActualizarTemporizador(ref bonusTime, bonusTimer);

46
47 if (bonusTime <= 0)

48 {

49 bonusTime = 0;

50 bonusActive = false;

51 bonusTimer.gameObject.SetActive(false);

52 }

53 }

54 }

55
56 // Función para iniciar el temporizador de cooldown

57 void IniciarCooldown()

58 {

59 cooldownTime = 30f;

60 cooldownActive = true;

61 cooldownTimer.gameObject.SetActive(true);

Source code 55

62 }

63
64 // Función para iniciar el temporizador de bonificación

65 void IniciarBonusTimer()

66 {

67 bonusTime = 5f;

68 bonusActive = true;

69 bonusTimer.gameObject.SetActive(true);

70 }

71
72 // Función para actualizar un temporizador

73 void ActualizarTemporizador(ref float tiempoRestante, TextMeshProUGUI textoTemporizador)

74 {

75 tiempoRestante -= Time.deltaTime;

76 textoTemporizador.text = Mathf.RoundToInt(tiempoRestante).ToString();

77 }

78
79 public bool GetInvisibility()

80 {

81 return bonusActive;

82 }

83 }

VelocityBonus script

1 using UnityEngine;

2 using UnityEngine.SceneManagement;

3
4 public class VelocityBonus : MonoBehaviour

5 {

6 public BonusManager bonusManager;

7
8 public float newMoveSpeed = 3.45f;

9 public float initialMoveSpeed = 3f;

10
11 void Start()

12 {

13 // Registrar el callback cuando se carga una nueva escena

14 SceneManager.sceneLoaded += OnSceneLoaded;

15
16 // Comprueba si ya se compró la velocidad al iniciar

17 if (bonusManager.GetVelocidadComprada())

18 {

19 UpdateVelocity();

20 }

21 }

22
23 void OnDestroy()

24 {

25 // Desregistrar el callback cuando el objeto se destruye

26 SceneManager.sceneLoaded -= OnSceneLoaded;

27 }

56 Source code

28
29 // Método que se llama cuando una nueva escena se carga

30 void OnSceneLoaded(Scene scene, LoadSceneMode mode)

31 {

32 if (bonusManager.GetVelocidadComprada())

33 {

34 UpdateVelocity();

35 }

36 }

37
38 public void UpdateVelocity()

39 {

40 GameObject playerGameObject = GameObject.FindGameObjectWithTag("Player");

41 PlayerMovement playerMovement = playerGameObject.GetComponent<PlayerMovement>();

42 playerMovement.moveSpeed = newMoveSpeed;

43 }

44
45 public void restartVelocity()

46 {

47 GameObject playerGameObject = GameObject.FindGameObjectWithTag("Player");

48 PlayerMovement playerMovement = playerGameObject.GetComponent<PlayerMovement>();

49 playerMovement.moveSpeed = initialMoveSpeed;

50 }

51 }

floatImage script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4 using UnityEngine.UI;

5
6 public class floatingImage : MonoBehaviour

7 {

8 public GameObject floatImg; // Referencia al objeto FloatingImage

9
10 private void Start()

11 {

12 floatImg.SetActive(false); // Desactiva la imagen flotante al inicio

13 }

14
15 private void OnTriggerEnter()

16 {

17 floatImg.SetActive(true); // Activa la imagen flotante

18 }

19
20 private void OnTriggerExit()

21 {

22 floatImg.SetActive(false); // Desactiva la imagen flotante

23 }

24
25 private void OnTriggerStay()

Source code 57

26 {

27 if (Input.GetKey(KeyCode.E)) // Comprueba que se pulsa la tecla E

28 {

29 floatImg.SetActive(false); // Desactiva la imagen flotante

30 }

31 }

32 }

CitySpawnManager script

1 using System.Collections;

2 using UnityEngine;

3 using UnityEngine.SceneManagement;

4 using TMPro;

5
6 public class CitySpawnManager : MonoBehaviour

7 {

8 public Vector3 cityPlayerStartPosition; // Posición de inicio en el último edificio

9 // al que se ha accedido

10 public Vector3 policePlayerStartPosition; // Posición de inicio en la policia

11
12 public static CitySpawnManager instance;

13 public TextMeshProUGUI moneyMessage = null;

14 public MoneyManager moneyManager;

15
16 private bool playerCaught = false;

17 private string previousScene;

18
19 void Awake()

20 {

21 // Verifica si ya existe una instancia del CitySpawnManager

22 if (instance == null)

23 {

24 // Si no existe, establece esta instancia como la instancia única

25 instance = this;

26 // Marca este GameObject como no destruible al cargar una nueva escena

27 DontDestroyOnLoad(gameObject);

28 SceneManager.sceneLoaded += OnSceneLoaded;

29 }

30 else

31 {

32 // Si ya existe una instancia, destruye este GameObject para evitar duplicados

33 Destroy(gameObject);

34 }

35 }

36
37 void OnSceneLoaded(Scene scene, LoadSceneMode mode)

38 {

39 // Carga la posición de inicio dependiendo de la escena actual

40 string currentSceneName = SceneManager.GetActiveScene().name;

41 if (currentSceneName == "City" && previousScene != "Lair")

42 {

58 Source code

43 // Si el jugador fue capturado, establece la posición de inicio en la policia

44 if (playerCaught)

45 {

46 SetPlayerStartPosition(policePlayerStartPosition);

47 playerCaught = false;

48 }

49 else

50 {

51 SetPlayerStartPosition(cityPlayerStartPosition);

52 FindMoneyMessage();

53 MoneyMessage();

54 }

55 }

56 else

57 {

58 previousScene = currentSceneName;

59 }

60 }

61
62 public void SetPlayerStartPosition(Vector3 position)

63 {

64 // Mover al jugador a la posición especificada

65 GameObject player = GameObject.FindGameObjectWithTag("Player");

66 player.transform.position = position;

67 }

68
69 public void PlayerCaught()

70 {

71 playerCaught = true;

72 }

73
74 public void LoadCityScene()

75 {

76 SceneManager.LoadScene("City");

77 }

78
79 private void OnDestroy()

80 {

81 SceneManager.sceneLoaded -= OnSceneLoaded;

82 }

83
84 private void FindMoneyMessage()

85 {

86 GameObject moneyMessageObject = GameObject.FindGameObjectWithTag("MoneyMessage");

87 moneyMessage = moneyMessageObject.GetComponent<TextMeshProUGUI>();

88 }

89
90 private void MoneyMessage()

91 {

92 AssignMessage();

93 AssignMoney();

94 moneyMessage.gameObject.SetActive(true);

95 Invoke("FadeAndDeactivateMoneyMessage", 5f); // Invocar el método después de 5 segundos

96 }

Source code 59

97
98 private void FadeAndDeactivateMoneyMessage()

99 {

100 // Asumiendo que tienes un componente CanvasGroup en moneyMessage

101 // para controlar la transparencia

102 CanvasGroup canvasGroup = moneyMessage.GetComponent<CanvasGroup>();

103
104 // Iniciar el proceso de desvanecimiento utilizando una corrutina

105 StartCoroutine(FadeOut(canvasGroup, 1f)); // Duración de 1 segundo

106 }

107
108 private IEnumerator FadeOut(CanvasGroup canvasGroup, float duration)

109 {

110 float currentTime = 0f;

111 float startAlpha = canvasGroup.alpha;

112 float targetAlpha = 0f; // Desvanecer completamente

113
114 while (currentTime < duration)

115 {

116 currentTime += Time.deltaTime;

117 canvasGroup.alpha = Mathf.Lerp(startAlpha, targetAlpha, currentTime / duration);

118 yield return null;

119 }

120
121 canvasGroup.alpha = targetAlpha;

122
123 // Desactivar el mensaje después de desvanecerlo

124 moneyMessage.gameObject.SetActive(false);

125 }

126
127 private void AssignMessage()

128 {

129 if (previousScene == "Office") moneyMessage.text =

130 "Has vendido el USB a unos Señores Naturalmente Inteligentes.

131 Has ganado 1000Zc que han sido depositados en tu caja fuerte";

132 }

133
134 private void AssignMoney()

135 {

136 if (previousScene == "Office") moneyManager.AddMoney(1000);

137 Debug.Log(moneyManager.GetPlayerMoney());

138 }

139
140 }

StateMachine script

1 using System.Collections;

2 using UnityEngine;

3 using UnityEngine.AI;

4
5 public class StateMachine : MonoBehaviour

60 Source code

6 {

7 public enum State

8 {

9 Normal,

10 Investigate,

11 Wait,

12 Chase

13 }

14
15 public Transform[] waypoints;

16 public float secondsWaiting = 5f;

17 public float chaseSpeed = 5f;

18
19 private State currentState;

20
21 private NavMeshAgent navMeshAgent;

22 private int currentWaypointIndex;

23 private Coroutine currentStateCoroutine;

24
25 //Invisibility bonus

26 public BonusManager bonusManager;

27 public InvisibilityBonus invisibilityBonusCanvas;

28
29 void Start()

30 {

31 currentState = State.Normal;

32 currentWaypointIndex = 0;

33 navMeshAgent = GetComponent<NavMeshAgent>();

34 navMeshAgent.SetDestination(waypoints[currentWaypointIndex].position);

35
36 StartCoroutine(FSM());

37 Debug.Log(currentState);

38
39 //Invisibility bonus

40 bonusManager = FindObjectOfType<BonusManager>();

41 invisibilityBonusCanvas = bonusManager.GetComponent<InvisibilityBonus>();

42 }

43
44 IEnumerator FSM()

45 {

46 while (true)

47 {

48 yield return StartCoroutine(currentState.ToString());

49 }

50 }

51
52 IEnumerator Normal()

53 {

54 while (currentState == State.Normal)

55 {

56 Patrol();

57 yield return null;

58 }

59 }

Source code 61

60
61 IEnumerator Investigate()

62 {

63 while (currentState == State.Investigate)

64 {

65 InvestigateLogic();

66 yield return null;

67 }

68 }

69
70 IEnumerator Wait()

71 {

72 float timer = secondsWaiting;

73 while (currentState == State.Wait)

74 {

75 timer -= Time.deltaTime;

76 if (timer <= 0)

77 {

78 ChangeState(State.Normal);

79 }

80 else

81 {

82 // Cambiar a la animación "looking"

83 GetComponent<Animator>().Play("looking");

84 }

85 yield return null;

86 }

87
88 // Restaurar la animación original al salir del estado de espera

89 GetComponent<Animator>().Play("walking");

90 }

91
92 IEnumerator Chase()

93 {

94 navMeshAgent.speed = chaseSpeed;

95 while (currentState == State.Chase)

96 {

97 ChasePlayer();

98 yield return null;

99 }

100 }

101
102 void Patrol()

103 {

104 if (!navMeshAgent.pathPending && navMeshAgent.remainingDistance

105 <= navMeshAgent.stoppingDistance)

106 {

107 currentWaypointIndex = (currentWaypointIndex + 1) % waypoints.Length;

108 navMeshAgent.SetDestination(waypoints[currentWaypointIndex].position);

109 }

110 }

111
112 void InvestigateLogic()

113 {

62 Source code

114 if (!navMeshAgent.pathPending && navMeshAgent.remainingDistance

115 <= navMeshAgent.stoppingDistance)

116 {

117 ChangeState(State.Wait);

118 }

119 }

120
121 private void OnEnable()

122 {

123 CameraDetection.OnPlayerDetected += HandlePlayerDetected;

124 }

125
126 private void OnDisable()

127 {

128 CameraDetection.OnPlayerDetected -= HandlePlayerDetected;

129 }

130
131 private void HandlePlayerDetected(Vector3 playerPosition)

132 {

133 ChangeState(State.Investigate);

134 navMeshAgent.SetDestination(playerPosition);

135 }

136
137 void ChasePlayer()

138 {

139 GameObject player = GameObject.FindGameObjectWithTag("Player");

140 if (player != null)

141 {

142 navMeshAgent.SetDestination(player.transform.position);

143 }

144 }

145
146 void ChangeState(State newState)

147 {

148 if (currentState == newState) return;

149
150 currentState = newState;

151
152 if (currentStateCoroutine != null)

153 {

154 StopCoroutine(currentStateCoroutine);

155 }

156
157 currentStateCoroutine = StartCoroutine(currentState.ToString());

158 }

159
160 void OnTriggerEnter(Collider other)

161 {

162 if (currentState != State.Chase && other.gameObject.tag == "Player" &&

163 !invisibilityBonusCanvas.GetInvisibility())

164 {

165 ChangeState(State.Chase);

166 }

167 }

Source code 63

168 }

SecurityCameras script

1 using UnityEngine;

2
3 public class SecurityCameras : MonoBehaviour

4 {

5 // Ángulo mínimo y máximo en el eje Y

6 public float minYAngle = 0f;

7 public float maxYAngle = 360f;

8
9 // Velocidad de rotación en grados por segundo

10 public float rotationSpeed = 30f;

11
12 void FixedUpdate()

13 {

14 // Calcular el ángulo de rotación en el eje Y basado en el tiempo

15 float yAngle = Mathf.Lerp(minYAngle, maxYAngle,

16 Mathf.PingPong(Time.time * rotationSpeed, 1f));

17
18 // Aplicar la rotación al objeto solo en el eje Y

19 transform.rotation = Quaternion.Euler(0f, yAngle, 0f);

20 }

21 }

CameraDetection script

1 using System;

2 using UnityEngine;

3
4 public class CameraDetection : MonoBehaviour

5 {

6 // Delegado para el evento de detección de jugador

7 public static event Action<Vector3> OnPlayerDetected;

8
9 //Invisibility bonus

10 public BonusManager bonusManager;

11 public InvisibilityBonus invisibilityBonusCanvas;

12
13 void Start()

14 {

15 //Invisibility bonus

16 bonusManager = FindObjectOfType<BonusManager>();

17 invisibilityBonusCanvas = bonusManager.GetComponent<InvisibilityBonus>();

18 }

19
20 private void OnTriggerEnter(Collider other)

21 {

22 if (other.CompareTag("Player") && !invisibilityBonusCanvas.GetInvisibility())

64 Source code

23 {

24 Debug.Log("Detectado");

25 // Obtener la posición del jugador

26 Vector3 playerPosition = other.transform.position;

27 // Notificar a todos los suscriptores del evento

28 OnPlayerDetected?.Invoke(playerPosition);

29 }

30 }

31 }

GameEnding script

1 using UnityEngine;

2
3 public class GameEnding : MonoBehaviour

4 {

5 public float fadeDuration = 1f;

6 public float displayImageDuration = 3f;

7 public GameObject player;

8 public CanvasGroup caughtBackgroundImageCanvasGroup;

9 public CitySpawnManager citySpawnManager;

10
11 float m_Timer;

12 bool playerCaught = false;

13
14 //Invisibility bonus

15 public BonusManager bonusManager;

16 public InvisibilityBonus invisibilityBonusCanvas;

17
18 void Start()

19 {

20 citySpawnManager = FindObjectOfType<CitySpawnManager>();

21
22 //Invisibility bonus

23 bonusManager = FindObjectOfType<BonusManager>();

24 invisibilityBonusCanvas = bonusManager.GetComponent<InvisibilityBonus>();

25 }

26
27 private void Update()

28 {

29 if (playerCaught) EndLevel();

30 }

31
32 void OnCollisionEnter(Collision collision)

33 {

34 if (collision.gameObject.tag == "Player" && !invisibilityBonusCanvas.GetInvisibility())

35 {

36 playerCaught = true;

37 }

38 }

39
40 void EndLevel()

Source code 65

41 {

42 m_Timer += Time.deltaTime;

43 caughtBackgroundImageCanvasGroup.alpha = m_Timer / fadeDuration;

44
45 if (m_Timer > fadeDuration + displayImageDuration)

46 {

47 citySpawnManager.PlayerCaught();

48 citySpawnManager.LoadCityScene();

49 }

50 }

51 }

GuideScript script

1 using UnityEngine;

2
3 public class GuideScript : MonoBehaviour

4 {

5 public GameObject guia;

6 public GameObject icono;

7
8 private void Start()

9 {

10 // Desactivar la guía y activar el icono al incio

11 guia.SetActive(false);

12 icono.SetActive(true);

13 }

14 void Update()

15 {

16 // Verificar si se presiona o se suelta la tecla Tabulador

17 if (Input.GetKeyDown(KeyCode.Tab))

18 {

19 // Activar la guía y desactivar el icono al presionar la tecla Tabulador

20 guia.SetActive(true);

21 icono.SetActive(false);

22 }

23 else if (Input.GetKeyUp(KeyCode.Tab))

24 {

25 // Desactivar la guía y activar el icono al soltar la tecla Tabulador

26 guia.SetActive(false);

27 icono.SetActive(true);

28 }

29 }

30 }

RandomObjectVisibility script

1 using UnityEngine;

2
3 public class RandomObjectVisibility : MonoBehaviour

66 Source code

4 {

5 public GameObject[] objetos;

6
7 void Start()

8 {

9 // Oculta todos los objetos al inicio

10 foreach (GameObject objetos in objetos)

11 {

12 objetos.SetActive(false);

13 }

14
15 // Escoge un objeto aleatorio para volverlo visible

16 int indexObjetoVisible = Random.Range(0, objetos.Length);

17 objetos[indexObjetoVisible].SetActive(true);

18 }

19 }

SetVisibility script

1 using UnityEngine;

2
3 public class SetVisibility : MonoBehaviour

4 {

5 public GameObject objeto;

6
7 void Start()

8 {

9 objeto.SetActive(false);

10 }

11
12 private void OnTriggerStay()

13 {

14 if (Input.GetKey(KeyCode.E)) // Comprueba que se pulsa la tecla E

15 {

16 objeto.SetActive(true);

17 }

18 }

19
20 public void OnTriggerExit()

21 {

22 objeto.SetActive(false);

23 }

24 }

ItemCollector script

1 using UnityEngine;

2
3 public class ItemCollector : MonoBehaviour

4 {

Source code 67

5 public GameObject itemImage; // Imagen del objeto en el canvas

6 public GameObject door;

7 public GameObject exit = null;

8
9 public bool lastObject = false; // Bool para saber si es el objeto que completa el nivel

10
11 private void Start()

12 {

13 itemImage.SetActive(false);

14 exit.SetActive(false);

15 }

16
17 private void OnTriggerStay()

18 {

19 if (Input.GetKey(KeyCode.E)) // Comprueba que se pulsa la tecla E

20 {

21 gameObject.SetActive(false);

22 itemImage.SetActive(true);

23 rotateDoor();

24 levelCompleted();

25 }

26 }

27
28 private void rotateDoor()

29 {

30 if (door != null)

31 {

32 // Girar el objeto 90 grados alrededor del eje Y

33 door.transform.Rotate(0, 90, 0);

34 }

35 }

36
37 private void levelCompleted()

38 {

39 if (lastObject && exit != null)

40 {

41 // Activar salida

42 exit.SetActive(true);

43 }

44 }

45 }

CodeScript script

1 using TMPro;

2 using UnityEngine;

3
4 public class CodeScript : MonoBehaviour

5 {

6 // Referencia al componente TextMeshPro

7 public TextMeshProUGUI code;

8 public GameObject note;

68 Source code

9
10 void Start()

11 {

12 // Generar cuatro números aleatorios entre 0 y 9 y asignarlos como texto

13 string randomNumbers = GenerateRandomNumbers();

14 code.text = randomNumbers;

15 note.SetActive(false);

16 }

17
18 // Método para generar cuatro números aleatorios como texto

19 string GenerateRandomNumbers()

20 {

21 string numbers = "";

22 for (int i = 0; i < 4; i++)

23 {

24 // Generar un número aleatorio entre 0 y 9 y agregarlo al texto

25 int randomNumber = Random.Range(0, 10);

26 numbers += randomNumber.ToString();

27 }

28 return numbers;

29 }

30
31 private void OnTriggerStay()

32 {

33 if (Input.GetKey(KeyCode.E)) // Comprueba que se pulsa la tecla E

34 {

35 note.SetActive(true);

36 }

37 }

38
39 public void OnTriggerExit()

40 {

41 note.SetActive(false);

42 }

43 }

KeyPadScript script

1 using TMPro;

2 using UnityEngine;

3
4 public class KeyPadScript : MonoBehaviour

5 {

6 string code;

7 string padCode = null;

8 int padCodeIndex = 0;

9
10 public GameObject door;

11 public GameObject padTrigger;

12 public TextMeshProUGUI padCodeText;

13 public TextMeshProUGUI codeText;

14

Source code 69

15 private void Start()

16 {

17 code = codeText.text;

18 Debug.Log(code);

19 }

20
21 public void CodeFunction(string Numbers)

22 {

23 if(padCodeIndex < 4)

24 {

25 padCodeIndex++;

26 padCode = padCode + Numbers;

27 padCodeText.text = padCode;

28 }

29 }

30 public void Enter()

31 {

32 if (padCode == code)

33 {

34 RotateDoor();

35 padTrigger.SetActive(false);

36 gameObject.SetActive(false);

37 }

38 }

39 public void Delete()

40 {

41 padCodeIndex = 0;

42 padCode = null;

43 padCodeText.text = padCode;

44 }

45
46 public void RotateDoor()

47 {

48 if (door != null)

49 {

50 // Girar el objeto 90 grados alrededor del eje Y

51 door.transform.Rotate(0, 90, 0);

52 }

53 }

54 }

exitManagment script

1 using UnityEngine;

2
3 public class exitManagment : MonoBehaviour

4 {

5 public CitySpawnManager citySpawnManager;

6
7 private void Start()

8 {

9 // Buscar automáticamente una instancia de CitySpawnManager en la escena actual

70 Source code

10 citySpawnManager = FindObjectOfType<CitySpawnManager>();

11 }

12
13 private void OnTriggerStay()

14 {

15 if (Input.GetKey(KeyCode.E)) // Comprueba que se pulsa la tecla E

16 {

17 citySpawnManager.LoadCityScene(); // Carga la escena indicada

18 }

19 }

20 }

	Acknowledgments
	Abstract
	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation
	Deviations from the initial Planning

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source code

